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Abstract: This paper deals with the experimental study and comparison of various 
adaptation methods for setting-up parameters of fuzzy cognitive maps (FCMs). A survey is 
given of the best known methods, which are mostly based on unsupervised learning. The 
authors show better performance using supervised learning, namely least mean square 
approaches. Experiments were done on a simulation example of autonomous vehicle 
navigation. The paper is concluded by comparing their efficacy and properties. 
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1 Introduction 

A navigation process of a vehicle requires solving a number of problems of 
different matter, i.e. finding not only a path to a goal but also regarding various 
constraints such as obstacle avoidance, limitations resulting from cooperation 
tasks with other vehicles, minimizing fuel consumption, etc. Such a process can be 
described by a set of conditions, which are at the same time mutually 
interconnected, creating complex decision chains and recurrences and causing 
very complicated mutual influences. 

Means of artificial intelligence are based mostly on production rules, mainly 
because of their human-friendly knowledge representation, which will be the case 
if the rules are mutually independent; i.e. outputs of any rule do not enter 
antecedents of any other rule and so decision chains and closed loops are not 
created [10, 17]. Such systems will be named ‘simple’ rule-based systems for the 
following. However, a complex system is characterized by just such chains and 
loops. In that case the rule-based knowledge representation loses its main 
advantage and becomes ‘unreadable’. 



J. Vaščák et al. Adaptation of Fuzzy Cognitive Maps – a Comparison Study 

 – 110 – 

Therefore, for overcoming the limits of simple rule bases, fuzzy cognitive maps 
(FCMs) seem to be very suitable means, and these are able very clearly to 
represent graphically to a human notions and relations among them as seen in Fig. 
1. A simple rule base (a rule set) lacking any chains or loops is the simplest or, in 
other words, the most degenerated form of an FCM. Hence, all operations and 
properties of production rules are valid for FCMs, too. Further, FCMs possess 
other additional properties and abilities (described in the next section) that are also 
convenient for the analysis and modelling of dynamic systems. 

On the other hand, FCMs have the same basic drawbacks as other fuzzy systems: 
they are not able to self-learn. The design of adaptation approaches is much more 
difficult because of their complex structure and its variability [16, 18]. Therefore, 
at least the definition of notions, which are represented by nodes (see Fig. 1), is 
done manually by an expert and adaptation is limited to setting-up relations, i.e. 
graph edges. Most adaptation approaches are based on unsupervised learning, 
mainly Hebbian learning, e.g. [1, 3, 4, 13] but there are also approaches utilizing 
evolutionary computing [12]. 

Unsupervised learning is convenient for tasks such as clustering if we need, for 
instance, to separate data into a few groups. It is significant that elements from a 
given group have stronger relations among them and usually they react or are 
activated at the same time, which corresponds to the Hebbian paradigm of 
learning. However, navigation is a specific kind of activity somewhere between 
decision and control. It is a set of several processes with different dynamics, and 
any trial for separation could fail [14]. From this point of view, supervised 
learning seems to be more convenient. To verify this hypothesis as well, the well-
known least mean square (LMS) approach, with some modifications, was used to 
show its suitability in this area. 

In this paper, after introducing some basic notions regarding FCMs and their 
properties in Section 2, we will concentrate on variations of Hebbian learning and 
LMS in Section 3 and show properties of these learning approaches on a 
navigation simulation of a vehicle with their mutual comparison in Section 4. 
Finally, we will conclude with some remarks regarding the utilization of 
adaptation methods for navigation. 

2 Fuzzy Cognitive Maps 

In general a Cognitive Map (CM) is an oriented graph where its nodes represent 
notions and its edges causal relations (see Fig. 1). Mostly, notions are states or 
conditions and edges are actions or transfer functions, which transform a state in a 
node to another one in another node. 
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Figure 1 

An example of FCM with crisp edges 

CM is able to describe complex dynamic systems. It is possible to investigate e.g. 
limit cycles, collisions, etc. In addition, it is possible to define the strengths of 
relations, too. Originally they were represented by three values -1, 0 and 1. 
Perhaps the main advantage of CM is its human-friendly knowledge 
representation in graphical form. 

FCM represents an extension of CM and was proposed by Kosko in 1986 [6]. The 
extension is based on the strength values that are from an interval [-1; 1] as well 
as the fact that the nodes can be represented by membership functions. Strengths, 
or rather weights, correspond to rule weights in rule-based systems. 

There are several possible formal definitions of FCM, but still the most commonly 
used one is in form given by Chen [2], which respects the original numerical 
matrix representation proposed by Kosko, where FCM is defined as a 4-tuple: 

( , , , )FCM C E α β=  (1) 

where: 
C – finite set of cognitive units described by their states C = {C1, C2, …, Cn}, 
E – finite set of oriented connections between nodes E = {e11, e12, …, enn}, 
α – mapping α → [-1;1], 
β – mapping β → [-1;1]. 

In other words, C represents nodes, E is for edges, α is a membership function 
placed in a node and the result is a grade of membership for values entering such a 
node. Similarly, β has the same meaning as α but for edges. The only difference 
compared to the definition of a fuzzy set is that the original interval of real values 
determined for grades of membership [0; 1] was extended to [-1; 1] in order to 
define as well negative connections, which refer to negations in logic. Similarly, β 
does the same but it is placed on a connection, i.e. it is its weight represented as a 
membership function. Further, we will use β only in the form of a singleton (a 
crisp value). 
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For computational representation of FCM a transition matrix is used. For the 
example in Fig. 1 it will look like: 

0 1 0 1 1
1 0 1 0 0

.0 0 0 0 1
0 0 1 0 1
0 0 0 1 0

E

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

Cognitive units are in each time step in a certain state. Using a transition matrix 
we can compute their states for next time step and thus repeatedly for further 
steps. Similarly, as for differential equations we can draw phase portraits. To 
preserve values in prescribed limits a boundary function L is used as well. So we 
can compute the states for t+1 as follows [6]: 

( 1) ( ( ) ).C t L C t E+ = ⋅  (3) 

Comparing Fig. 1 and 2 we can see FCMs are an extension of simple fuzzy rule-
based systems. Fuzzy rules are totally independent because their consequents do 
not have any mutual influence, which is possible only in simpler decision cases. 
Simple rule-based systems do not enable any decision chains or representation of 
temporal information. From this point of view they are only a very special and 
restrained case of FCM, which can be depicted as an example in Fig. 2, where a 
set of m rules with inputs LXi and outputs LUi (i=1,…m) is figured in the form of 
an FCM. There is depicted the evaluation process resulting in an accumulated 
(aggregated) value LUc being defuzzified into a crisp form LUc

*, too.  

 
Figure 2 

An example of FCM representing a simple rule set 
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3 Adaptation Approaches to FCM in Navigation 

There are two basic approaches for setting-up the parameters of FCM. The first 
approach is based on expert skills where we need several experts who are able to 
set-up their own FCM. The weights of edges are then averaged. It seems to be 
very simple, but firstly we need to have such experts, and secondly the skills of 
these experts will necessarily be of different quality, which means we should 
rather do a weighted average, but there does not exist any hint how to determine 
these weights. 

The second approach is based on unsupervised learning, which is well known 
mainly from neural networks. The creator of FCM, Bart Kosko, proposed using 
Hebbian learning [7], which is unsupervised. FCM was originally proposed only 
for causal relations, and looking at (3) we can see the state of a node and its 
change in next time t+1, i.e. C(t+1) depends on E(t) and C(t), so we can write for 
the change of an element eij(t) ∈ E(t) generally: 

( ) ( ( ), ( )) ( )ij ij ije t f E t C t g t= +  (4) 

where gij(t) is the so-called forcing function. In other words, there should be found 
a certain mutual correlation among nodes in individual time steps because they are 
more or less interconnected. So for n nodes we can get 

1 2

1

( 1) ( 1) ( 2) ( 2) ( 3)

( 1) ( )

( ) ( 1),

T T

T
n

T
n

E t n q C t C t q C t C t

q C t n C t n

q C t n C t
−

+ + = + ⋅ + + + ⋅ + + +

+ − ⋅ + +

+ ⋅ +

…
 (5) 

which is the sum of correlation matrices with the same dimensions like E and qi 
are properly chosen weights. 

Further, we can see that FCM, with its topology, resembles a neural network, too. 
Correlation learning (5) is a form of Hebbian learning and for neural networks it is 
known in the form: 

( ) ( ) ( ) ( )ij ij i je t e t C t C t= − + ⋅  (6) 

where Ci(t), Cj(t) ∈ C(t) are directly interconnected nodes – i as output and j as 
input node. The formula (6) is named Hebbian correlation learning (HCL). The 
principle of Hebbian learning is based on the synchronous (at the same time) 
activation of both nodes. In such a case, the connection between them will be 
strengthened. Otherwise, if the nodes do not activate at the same moment, the 
connection will be weakened. However, in control generally due to various 
dynamic dependences, it can happen that the nodes will be activated at different 
time steps although there is a connection between them. Already this fact puts the 
idea of using Hebbian learning into doubt. Several experiments such as e.g. in [3, 
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7] as well as our own experience confirm poor results using the original form of 
Hebbian learning - HCL (6). There are problems with the selection of training 
patterns. If their activations are small, then probably only a few connections will 
arise and FCM will be poorly structured. In the opposite case many so-called false 
connections will remain, which should be removed. 

Hebbian learning with damping / decay (HLD) is a modification of HCL using 
forgetting (decay) factor, which depends on the forgetting parameter α, and it is 
able to control the learning speed by learning parameter γ: 

( ) ( ) ( ) ( ) ( ).ij i j i ije t C t C t C t e tγ α= ⋅ ⋅ − ⋅ ⋅  (7) 

Another modification is differential Hebbian learning (DHL), which takes into 
consideration changes of node activations, i.e. their derivatives. If the derivatives 
of Ci(t), Cj(t) are nonzero then 

( ) ( ) ( ) ( ).ij ij i je t e t C t C t= − + ⋅  (8) 

Nonlinear Hebbian learning (NHL) [13] is a more sophisticated method using 
stopping criteria as well. It uses its own calculations of activation values for nodes 
Cj(t): 

1

( 1) ( ( ) ( ) ( )).
n

j j i ij
i i
i

C t f C t C t e t
≠
=

+ = + ⋅∑  (9) 

The weight eij for the next time step t+1 is then calculated as 

( 1) ( ) ( ) ( ( ) ( ( )) ( ) ( ))ij ij j i ij ij je t e t C t C t sgn e t e t C tη γ+ = ⋅ + ⋅ ⋅ − ⋅ ⋅  (10) 

where η is the weight decay learning coefficient and γ is the own learning 
parameter. However, formula (10) is used only for weights that were initially 
nonzero, which requires knowledge from an expert, and this method is convenient 
first of all for final fine-tuning FCM. 

There are two stopping criteria for learning: criterion of minimum square error F1 
of nodes, which represent outputs of FCM (denoted as OC) and criterion F2 
indicating whether there are still some significant changes of node activations 
during learning: 

2
1

1
( ) ,

p

k k
k

F OC T
=

= −∑  (11) 

2 ( 1) ( ) .k kF OC t OC t ε= + − <  (12) 
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F1 gives us information about the performance quality of p outputs from FCM 
(e.g. action variables of a controller in the form of FCM) where Tk is an average 
value from the interval of allowed values for a given OC and it should be known 
by experts (e.g. the allowed range of accelerations for a vehicle). The goal is to 
minimize F1 under a certain value. F2 tells us about the stability of the designed 
FCM, which is characterized by the stabilizing activation values of output nodes. 
The size of ∂ has been chosen after a series of experiments to be 0,002 [13]. When 
both criteria are fulfilled then the learning will be stopped. 

The modified version, the so-called improved nonlinear Hebbian learning (INHL) 
introduced in [9], is based on the following weight change adaptation: 

2( ) ( 1) ( ) (1 ( )) ( ( ) ( 1) ( ))ij ij j ij je t e t z t z t C t e t C tη γΔ = ⋅Δ − + ⋅ ⋅ − ⋅ − − ⋅  (13) 

where ( )( ) 1/ 1 exp( ( ))iz t C t= + −  and the weight in the next time step eij(t+1) 

is calculated as eij(t)+Δeij(t). There is modified also the criterion F1 as a sum of 
OCk

2. 

Because our training data also contained the desired values of output variables we 
tried to use a supervised learning method, in this case a well known LMS method 
defined as 

1
( 1) ( ) ( ( ) ( ) ( )) ( )

n

ij ij d ij i i
i

e t e t y t e t C t C tγ
=

+ = + ⋅ − ⋅ ⋅∑  (14) 

where 
1

( ) ( )n
ij ii

e t C t
=

⋅∑  is the activation value of the input node Cj(t) and yd(t) 

is the desired activation value of Cj(t). 

4 Modifications and Experimental Comparison 

For automatic navigation of a vehicle, a simulator based on ODE library 
(http://www.ode.org/) was proposed [15] as being able to respond to real physical 
conditions. The main interface consists of an area with various obstacles and a 
vehicle model that can be controlled manually as well as automatically 
implementing source code of a given method. The simulator is able to collect data 
during the movement using 5 sensors that divide the surroundings into the same 
number of sectors, and from these data it can compute the current position of the 
vehicle. The goal is depicted as a vertical pole and its position is given in advance, 
see Fig. 3. 

For all methods three basic experiments were performed using different starting 
positions, as depicted in Fig. 3. For comparison purposes, a manually designed 



J. Vaščák et al. Adaptation of Fuzzy Cognitive Maps – a Comparison Study 

 – 116 – 

FCM was constructed, which is depicted in Fig. 4. There are in total 16 nodes, 
where 4 of them are output nodes (OC) C0 – C3 with bold capitals – turn to left 
(L), go forward (F), turn to right (R), stop (S). Other nodes represent calculated 
positions of the goal in relation to the vehicle C4 – C7, with symbols GL – goal left, 
GS – goal straight, GR – goal right, GC – goal close, and signals from sensors C8 – 
C15 where Si means the number of a sensor, c – close and cc – critically close. 
Positive connections are depicted as solid lines and negative connections as 
dashed ones. 

 
(a) 

 
(b) 

 
(c) 

Figure 3 
Starting positions of the vehicle simulator 
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Figure 4 

Manually defined reference FCM for the navigation of a simulated vehicle 

Concerning the functions, which were implemented in the nodes, they are 
membership functions (Fig. 5) for evaluating signals from the sensors as obstacle 
closeness – nodes C8 – C15, calculated position of the goal like goal position – 
nodes C4 – C6 and goal closeness – node C7 and finally, for evaluating action 
values of output nodes angle of turning – nodes C0 – C2. When the activation 
value in the node C3 (stopping) achieves the value 0,95 then the vehicle will stop. 

 
Figure 5 

Membership functions of manually designed FCM nodes 
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In the case of a manual design it is necessary to mention we can consider only 
suboptimal solutions because we can never state that there is no better solution. 
Therefore, we suppose after a satisfactory number of cycles in the manual setting-
up process that we have potentially the ‘best’ possible solution. 

Concerning the evaluation criteria, we chose a subjective classification from 1 – 
the best to 5 – the worst (unsatisfactory). Generally such aspects were observed 
and evaluated as the behaviour of the vehicle in the goal area, the quality of 
obstacle avoidance, the smoothness of the wheel traces (whether the wheels did 
not turn too chaotically as a beginner), the choice of possible paths and of course 
the number of collisions with obstacles. The subjectivity of our evaluation is based 
on these three points: criteria weights, comparison to manually designed FCM as 
well as the calculation of some criteria. Firstly, the mentioned criteria have 
different weights of importance, with in this case the most important criteria being 
the number of collisions and the number of successfully found paths to the goal, 
which in turn are related to the total number of experiments. These weights were 
determined manually by a human reflecting his/her opinions. Secondly, resulting 
behaviour of a vehicle based on the adapted FCM is compared to the behaviour 
resulting from the manually designed FCM, which again reflects the properties of 
a given human. Finally, a criterion such as the choice of a possible path is 
evaluated purely subjectively, where another user may have a different opinion, 
because we consider uncertain notions such as the complexity of a path. 

It seems to be a very ‘non-scientific’ approach but considering some objective 
criteria such as the shortest trajectory, the minimum number of turnings, the 
minimum number of collisions with obstacles, the minimum time, etc. there will 
be many situations when some criteria are evaluated better and some worse, and 
calculating the total measure of fulfilment is a nondeterministic task dependent on 
a given application. (This task leads again to weighted averaging, and simply 
setting-up weights for given criteria is a nondeterministic and very subjective 
task.) So we can get several solutions with the same or approximate total 
evaluation value. If we compare subjective and objective evaluation approaches 
the first approach seems to be more similar to the intuitive human reasoning and 
this was the most important element for choosing the subjective approach. 

As already mentioned above, the task of adaptation methods is only to set-up the 
weights of connections eij. The structure (topology) of nodes and their activation 
(in our case membership) functions are given by an expert in advance. Further, the 
behaviour description of FCM designed by individual adaptation methods follows. 

HCL by (6) showed really very poor results. Only two connections were created 
and the vehicle stopped very quickly. The reason for this is that in the training data 
there were many patterns which did not activate any membership function in the 
nodes, and thus in such a case already created connections were zeroed. Therefore, 
such patterns were removed before learning started to prevent clearing 
connections. The number of connections increased considerably but weights were 
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very small so the result was almost identical with the previous case. Only through 
using a very large training set and after many learning cycles was this approach 
able to bring some results, which is unacceptable. 

Similarly, HLD by (7) behaved in a manner similar to HCL – without filtering 
inactive patterns, only a few connections were established; and omitting them, too 
many connections were established. Either there were strong connections to the 
stopping node C3, which caused premature finish, or too many, and weak 
connections are in fact false and they should be removed. In any event, such a 
structure of connections needs manual corrections done by an expert, which is not 
welcome. 

In contrast, concerning Hebbian learning, NHL and INHL represented excellent 
results [8] after only a few learning cycles. Although NHL needs setting-up of 
nonzero connections in the matrix E by an expert, it produces very stable solutions 
without any false or weak connections behaving like noise. There are very small 
differences between a manually designed matrix E and matrices created by NHL 
and INHL. As the INHL method also enables the updating of zero initial weights, 
it tends to create almost a full set of all possible connections but with very small 
weight values which do not affect the performance of such an FCM. Filtering such 
connections could be useful because INHL shows slightly smaller stability of 
learning than NHL, and it needs a few more learning cycles. 

Using supervised learning also brought very good results. At first, LMS by (14) 
was tried on a zero initial weight matrix. The results were only a little worse than 
those obtained by the manually designed FCM. However, the best results of all 
were achieved using LMS with unity initial matrix. The smoothness of wheel 
traces was even better than with an FCM designed by an expert, but it is necessary 
to do many experiments setting-up the learning parameter to find the best one, 
which is time consuming work. In Fig. 6 there are depicted for comparison the 
weight matrices of LMS with unity initialization and the FCM manually designed 
by an expert. We can see significant differences in matrices although they are 
functionally similar. 

Table I 
Successfulness of FCM Learning Methods 

Order Method Note 
1 LMS with unity initialization 1 
2 Expert 2 
3 Nonlinear Hebbian learning 2 
4 Improved nonlinear Hebbian learning 2 
5 LMS with zero initialization 3 
6 Hebbian learning with damping 5 
7 Hebbian correlation learning 5 
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In the Table I are the mentioned methods ordered according to their degree of 
success, and total evaluations are assigned to them based on experiments done 
with the simulation of vehicle navigation in the area with obstacles. HLD and 
HCL are denoted in italics because they seem to be fully inconvenient for FCM. 

Conclusions 

Although the proposed experiment does not require the creation of a complex 
form of FCM containing decision chains or loops, and therefore it was possible to 
use a simple LMS method, the utilization of supervised learning is a challenge for 
research in spite of many theoretical difficulties. Unsupervised learning is not a 
nostrum for solving problems of machinery learning. The Hebbian law is very 
general as it does not go into the depth of learning principles, and therefore 
enhanced methods derived from Hebbian learning such as NHL and INHL are 
perhaps also efficient only for simpler low-order problems such as two-tank 
systems, etc., as is often presented in literature. Therefore it could also be very 
useful to focus interest on various interpolation and nonlinear methods already 
used in conventional rule-based fuzzy systems [5, 11]. There is still one more 
aspect which should be taken into consideration. Using learning methods we can 
get indeed two functionally identical systems – FCM but their structure is quite 
different, as we can see also in Fig. 6. This is a problem because especially FCM 
should reflect just human representation of knowledge. 
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Figure 6 
Weight matrices of FCM designed manually (a) and using LMS with unity initialization (b) 

Acknowledgement 

This work is the result of the project implementation: Center of Information and 
Communication Technologies for Knowledge Systems (ITMS project code: 
26220120020) supported by the Research & Development Operational Program 
funded by the ERDF. 

References 

[1] Blanco A., Delgado M., Pegalajar M. C., Fuzzy Automaton Induction 
Using Neural Network, International Journal of Approximate Reasoning, 
Elsevier, Vol. 27, pp. 1-26, 2001 

[2] Chen S. M., Cognitive-Map-based Decision Analysis Based on NPN 
Logics, Fuzzy Sets and Systems, Elsevier, Vol. 71, No. 2, pp. 155-163, 
1995 

[3] Gavalec M., Mls K., Fuzzy Cognitive Maps and Decision Making Support, 
in: Proc. of the 21th Int. Conf. Mathematical Methods in Economics, 
Prague, pp. 87-93, 2003 

[4] Huerga A. V, A Balanced Differential Learning Algorithm in Fuzzy 
Cognitive Maps, in: Proc. of the Sixteenth International Workshop on 
Qualitative Reasoning, Barcelona, Spain, 2002 

[5] Johanyák Zs. Cs., Kovács Sz., A Brief Survey and Comparison on Various 
Interpolation-based Fuzzy Reasoning Methods, Acta Polytechnica 
Hungarica, Vol. 3, No. 1, pp. 91-105, 2006 

[6] Kosko B., Fuzzy Cognitive Maps, International Journal of Man-Machine 
Studies, Elsevier, Vol. 24, No. 1, pp. 65-75, 1986 



J. Vaščák et al. Adaptation of Fuzzy Cognitive Maps – a Comparison Study 

 – 122 – 

[7] Kosko, B., Fuzzy Engineering, Prentice-Hall, 1997 

[8] Kotras M., Adaptation of Fuzzy Cognitive Maps for Needs of Navigation, 
Bc. thesis in Slovak, Technical University in Košice, Slovakia, 2009 

[9] Li S. J., Shen R. M., Fuzzy Cognitive Map Learning Based on Improved 
Nonlinear Hebbian Rule, in: Proc. of the Third Int. Conference on Machine 
Learning and Cybernetics, Shanghai, China, pp. 2301-2306, 2004 

[10] Madarász L., Intelligent Technologies and their Applications in Complex 
Systems (in Slovak), Technical University in Košice, Slovakia, p. 348 

[11] Oblak S., Škrjanc I., Blažič S., If Approximating Nonlinear Areas, then 
Consider Fuzzy Systems, IEEE Potentials, Vol. 25, No. 6, pp. 18-23, 2006 

[12] Papageorgiou E. I., Parsopoulos K. E., Stylios C. D., Groumpos P. P., 
Vrahatis M. N., Fuzzy Cognitive Maps Learning Using Particle Swarm 
Optimization, International Journal of Intelligent Information Systems, 
Springer, Vol. 25, No. 1, pp. 95-121, 2005 

[13] Papageorgiou E. I., Stylios C. D., Groumpos P. P., Unsupervised Learning 
Techniques for Fine-Tuning Fuzzy Cognitive Map Causal Links, Int. 
Journal of Human-Computer Studies, Elsevier, Vol. 64, pp. 727-743, 2006 

[14] Pozna C., Troester F., Precup R.-E., Tar, J. K., Preitl S., On the Design of 
an Obstacle Avoiding Trajectory: Method and Simulation, Mathematics 
and Computers in Simulation, Elsevier Science, Vol. 79, No. 7, pp. 2211-
2226, 2009 

[15] Rutrich M., Adaptation of Fuzzy Cognitive Maps for Navigation Needs, 
MSc. thesis in Slovak, Technical University in Košice, Slovakia, 2009 

[16] Tar, J. K. et al., Centralized and Decentralized Applications of a Novel 
Adaptive Control, INES 2005, Budapest, Budapest Tech, 2005, pp. 87-92 

[17] Vaščák J., Fuzzy Cognitive Maps in Path Planning, Acta Technica 
Jaurinensis, Vol. 1, No. 3, 2008, pp. 467-479 

[18] Vaščák J., Madarász L., Automatic Adaptation of Fuzzy Controllers, Acta 
Polytechnica Hungarica, Budapest, Hungary, Vol. 2, No. 2, 2005, pp. 5-18 


