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Abstract: Early Big Data solutions were not based on database management system 

principles. As the popularity of these solutions have increased and are applied in more data 

management scenarios in the recent years, DBMS principles, are being recognized as 

important factors and are becoming important in newly developed solutions. Big Data 

collections do not enforce document structure, but just because a data store is schema-less, 

it does not mean the structure of the stored documents will not play an important role in the 

overall performance and flexibility of an application. In this paper we will explore a 

method for the conceptual modeling for document based databases, using Formal Concept 

Analysis (FCA). We have shown that FCA is a valuable visual analyzer for large-scale 

data, for example, offering a means of reading the possibility of nested scheme design from 

the built concept lattice. Results of experiments using our method have proven that 

decisions affecting the modeling of data can affect application performance and database 

capacity. 
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1 Introduction 

Data is growing exponetially in the digital world, increasing in volume, variety 

(structured, un-structured or hybrid) and velocity (high speed of growth). This 

phenomenon is refered to as ‘Big Data’. This growing data collection is so large 

that it can not be effectively managed using conventional relational data 

management tools. To handle this problem, traditional RDBMS are complemented 

with rich set systems: NoSQL [1, 4, 20] data stores, NewSQL and Search-based 

systems. 

NoSQL systems generally have some common features. The first is the ability to 

horizontally scale simple operations over many servers. They can replicate and 

partition data over many servers with a simple call level interface. These new 
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systems accept a weaker concurrency model, than the ACID transactions of 

relational database systems. They are often flexible enough to accommodate semi-

structured and sparse data sets [20]. NoSQL data stores vary in their data and 

query model. The most common categorization of these systems is by data model, 

distinguishing key-value stores, document stores, column-family stores, and graph 

databases [4]. Key-value stores data structure is composed of a unique key and an 

opaque value. Document based NoSQL systems also store key-value pairs, but the 

values are structured as documents. The document is a set of name-value pairs, 

usually in JSON (JavaScript Object Notation) [8] format or the binary 

representation BSON. Name-value pairs represent the properties of data objects. 

Values can be scalar or appear as lists, but may contain nested documents too. 

Column-family stores manage records with properties. A schema for a column-

family declares property families, and new properties can be added to a property 

family ad hoc. Graph databases represent data in graph format; objects are stored 

in nodes and their relationships in the edges. 

Most NoSQL data stores do not enforce any structural constraints on the data; they 

are usually referenced as schema-less data. But programmatically accessing this 

data, it is important to have some notion about its structure. Without knowing the 

general structure of the data, it is nearly impossible to perform any application 

development or data analysis [15]. Many NoSQL data stores provide a declarative 

query language. Developers need to know which attributes are present (or absent) 

in persisted objects in order to formulate queries. For OLAP-style data analysis, 

developers also need to know which structure to expect when parsing JSON 

documents. So, these tasks require some form of schema description. The 

structure of the stored documents plays an important role in the overall 

performance of the application. 

In this paper we focus on designing document stores, which are based on a semi-

structured data model, implemented as JSON, XML or BSON format. The design 

of any database follows a well-defined methodology for conceptual, logical, and 

physical data modeling. A prevalent model in the conceptual database design is 

the Entity-Relationship (E-R) model. The semi-structured data has a loose 

schema: a core of attributes is shared by all objects, but many individual variants 

are possible. A hierarchical structure of the data is a common design opportunity 

for embedding complex entities. 

Formal Concept Analysis (FCA) [11] supports knowledge discovery and 

knowledge representation [14]. Current FCA methods have the capabilities for 

taking into account the presence and management of relational attributes or links 

in the data [18, 19]. 

In this paper a Formal Concept Analysis (FCA) approach for conceptual modeling 

of document based databases is proposed. A mapping from Entity-Relationship 

model to a schema for semi-structured data in the form of concept lattices are 

presented for relations of type One-to-One, One-to-Many and Many-to-Many. For 
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different relationship types we obtain different concept lattices [22]. The 

possibility of nested scheme design can be read from the lattices. 

We propose a Relational Concept Analysis (RCA) grounded approach to 

conceptual document based NoSQL database design, one which is a data model, 

for the systems that can store and manage Big Data. 

In Section 2, we assume familiarity with the basic notions of FCA and RCA and 

after that, in Section 3, we discuss how relational modeling can be emulated in the 

case of document databases using RCA. Section 4 presents the experiments on 

DBLP [6] bibliography dataset. Finally, we finish our work with conclusions. 

2 Preliminaries and Basic Notions in FCA and RCA 

Our research is mainly based on the mathematical foundations of FCA and in this 

section we introduce the necessary formal background. 

FCA is a data analysis method which enables the discovery of knowledge hidden 

within data, such as association rule mining, ontology engineering, machine 

learning. FCA actually provides support for processing large dynamic complex 

data. 

In FCA, data are represented by a formal context, which will contain objects and 

attributes. From the context, formal concepts are generated by grouping objects 

which have the same set of attributes. Each formal context is transformed into a 

concept lattice, which forms the basis for further data analysis. 

Definition 1. (𝐹𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). A formal context 𝐾 = (𝐺,𝑀, 𝐼) consists of two 

sets 𝐺 and 𝑀 and a binary relation 𝐼 between 𝐺 and 𝑀. Elements of 𝐺 are called 

objects while elements of 𝑀 are called attributes of the context. The fact (𝑔,𝑚) ∈
𝐼 is interpreted as "the object 𝑔 has attribute 𝑚". 

Example 1. Consider the set of objects 𝐺 =  {𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐶ℎ𝑎𝑟𝑖𝑜𝑡, 𝐵𝑜𝑎𝑡, 𝐶𝑎𝑟,
𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒}. Consider the set of attributes 𝑀 =  {𝐻𝑎𝑠 𝑤𝑖𝑛𝑔𝑠, 𝐻𝑎𝑠 𝑒𝑛𝑔𝑖𝑛𝑒,
𝐻𝑎𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 𝐻𝑎𝑠 𝑤ℎ𝑒𝑒𝑙𝑠} that are properties that vehicles may have or not. 

Table 1 gives an example of formal context (𝐺,𝑀, 𝐼), the X indicates that a certain 

object has a certain attribute. 

Table 1 

An example of formal context 𝐾 =  (𝐺,𝑀, 𝐼) 

 Has wings  Has engine Has windows Has wheels 

Bicycle    X 

Chariot    X 

Boat  X X  

Car  X X X 

Airplane X X X X 
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Definition 2. (𝐹𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑝𝑡). A formal concept of a context (𝐺,𝑀, 𝐼) is a pair 

(𝐴, 𝐵) with A ⊆ G, B ⊆ M, A' = B and 𝐵′ = 𝐴. 𝐴 is called the extent of the concept 

(𝐴, 𝐵) while 𝐵 is called its intent. A' and 𝐵′ define a Galois connection between 

the power sets of G and M. The set of all formal concepts of a context (𝐺,𝑀, 𝐼) is 

written Ɓ(𝐺,𝑀, 𝐼). Concepts are partially ordered by (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) ⇔
𝐴1 ⊆ 𝐴2 (⇔ 𝐵2 ⊆  𝐵1). (𝐴1, 𝐵1) is called sub-concept and (𝐴2, 𝐵2) a super-

concept. 

Example 2. From the previous example, it directly follows that the pair 

({𝐵𝑜𝑎𝑡, 𝐶𝑎𝑟, 𝐴𝑖𝑟 − 𝑝𝑙𝑎𝑛𝑒}, {𝐻𝑎𝑠 𝑒𝑛𝑔𝑖𝑛𝑒, 𝐻𝑎𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠}) is a formal concept. A 

Galois connection implies that if one makes the sets of one type larger, they 

correspond to smaller sets of the other type, and vice versa. Using this concept, if 

𝐻𝑎𝑠 𝑤𝑖𝑛𝑔𝑠 is added to the list of attributes, the set of vehicles reduces to 

{𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒}. 

FCA organizes the information through concept lattices, which fundamentally 

comprises a partial order, modeling the subconcept-superconcept hierarchy. 

Concept lattice is the common name for a specialized form of Hasse diagram that 

is used in conceptual data processing. 

Definition 3. (𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝑙𝑎𝑡𝑡𝑖𝑐𝑒). The set of all formal concepts from a context 

𝐾 = (𝐺,𝑀, 𝐼) ordered with the relation ≤ form a complete lattice called concept 

lattice of (𝐺,𝑀, 𝐼) and denoted by Ɓ(𝐺,𝑀, 𝐼). 

 

Figure 1 

Concept lattice raised from Table 1 

Figure 1 shows the concept lattice, associated with Table 1. A line diagram 

consists of circles, lines and the names of all objects and all attributes of the given 

context appearing as labels. Each node in the lattice corresponds to a formal 

concept while a line denotes an order relation between two concepts. An object 𝑔 

has an attribute 𝑚 if and only if there is an upwards leading path from the circle 

named by 𝑔 to the circle named by 𝑚. 

Real-life data are often more complex than those given by a formal context. There 

are several extensions of FCA to handle complex data, such as Conceptual scaling 

[23] (where complex data are turned into binary contexts by using scales), Pattern 

structures [24]  (a general approach to conceptual scaling by giving a direct 

method of knowledge discovery in complex data such as logical formulas, graphs, 

strings, tuples of numerical intervals), Power Context Families [25], Relational 

Concept Analysis [18] and Logical Concept Analysis (for analyzing arbitrary 
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relations between objects), Triadic Concept Analysis [26] (to analyze three-

dimensional data), Fuzzy FCA [23] and Rough FCA [16] (were developed to work 

with uncertain data and approximations). These papers have proven that FCA is 

feasible for Big Data. The approach in [16] makes FCA useful for analyzing 

extremely large data. Also, FCA contributes to the analysis and mining of social 

networks [27] such as affiliation and interaction networks and possibly more 

complex structures using this theory and some of its extensions. [17] gives an 

overview of several extensions of the main FCA model, and shows that FCA 

algorithms are efficient from both theoretical and practical points of view [25]. Its 

time complexity and performance proves its supremacy over concurrent methods 

and allows us to use it for Big Data problems. 

In this paper, to cope with complex data, we use the following FCA extensions: 

conceptual scaling [23] and Relational Concept Analysis (RCA) [18, 19]. The 

process of deriving a one-valued context from a many-valued context is called 

conceptual scaling. 

Definition 4. (𝑀𝑎𝑛𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). A many-valued context (𝐺,𝑀,𝑊, 𝐼) 
consists of sets 𝐺,𝑀 and 𝑊 and a ternary relation 𝐼 between those three sets, i.e. 

𝐼 ⊆ 𝐺 ×𝑀 ×𝑊, for which it holds that (𝑔,𝑚,𝑤) ∈ 𝐼 𝑎𝑛𝑑 (𝑔,𝑚, 𝑣) ∈ 𝐼 always 

imply 𝑤 =  𝑣. 

Elements of 𝐺 are still called objects. Elements of 𝑀 are called (many-valued) 

attributes. Elements of 𝑊 are called attribute values. Accordingly, the fact 

(𝑔,𝑚,𝑤) ∈ 𝐼 means "the attribute 𝑚 takes value 𝑤 for object 𝑔", simply written 

as 𝑚(𝑔)  =  𝑤. 

Standard FCA is restricted to data sets that are either already represented as binary 

relations or that can be easily transformed into such a representation [14]. 

Relational Concept Analysis (RCA) [18, 19] extends standard FCA by taking 

relations between objects into account. 

The objective of RCA is to build a set of lattices whose concepts are related by 

relational attributes, similar to UML associations. 

In RCA, data are organized within a structure composed of a set of contexts and a 

set of binary relations. 

Definition 5. (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑓𝑎𝑚𝑖𝑙𝑦). A relational context family 𝐹 is a 

pair (𝐾, 𝑅), where 𝐾 is a set of contexts  𝐾𝑖  =  (𝐺𝑖 , 𝑀𝑖 , 𝐼𝑖) - with objects 𝐺𝑖, 
properties 𝑀𝑖 and a relationship 𝐼𝑖  between these objects and properties; and 𝑅 is a 

set of Object-Object relations 𝑟𝑘  ⊆  𝐺𝑖 × 𝐺𝑗 where 𝐺𝑖 and 𝐺𝑗 are the object sets of 

the formal contexts 𝐾𝑖 and 𝐾𝑗. The structure (𝐾, 𝑅) can be compared to a 

relational database schema, including both classes of individuals and classes of 

relations. 
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For example Table 2 shows two Object – Attribute contexts of some authors and 

their papers presented in different conferences. Table 3 represents the Object-

Object context related to Table 2. 

In RCA data tables are iteratively merged into one in the following way: in each 

step all formal concepts are computed of one data table and these concepts are 

used as additional attributes for the merged data table. After obtaining a final 

merged data table, all formal concepts are extracted. 

The RCA methodology is the following: given the RCF Object-Attribute contexts 

and Object-Object contexts - the concept lattice is built for each Object-Attribute 

context at first, then relational scaling is applied to all Object-Object contexts and 

relational extension of each Object-Attribute context is built. Finally the concept 

lattice for each relational extension is constructed, thus a concept lattice family is 

obtained. 

Table 2 

RCF: Object-Attributes contexts 

 

Author 

L
ec

tu
re

r 

P
h

D
 

S
tu

d
en

t 

P
ro

fe
ss

o
r 

Adam  X  

Tom   X 

Jack   X 

Lena  X  

Jim X   

Sophia X   

Lucia   X 

Mike   X 

 

Table 3 

 RCF: Object-Object context 

 FESTA RK ELKA OpenR XKENA 

Adam X  X  X 

Tom X    X 

Jack  X    

Lena  X    

Jim      

Sophia X  X   

Lucia    X  

Mike    X X 

Paper 
IC

F
C

A
 

A
D

B
IS

 

V
L

D
B

 

S
IG

M
O

D
 

K
D

D
 

FESTA X     

RK   X   

ELKA     X 

OpenR     X 

XKENA  X    
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3 Document Store Data Modeling using RCA 

In this section we investigate the architectural challenges in document based 

NoSQL database design. The Entity-Relationship diagram is the most common 

tool for conceptual schema design. It is independent of the physical 

implementation of the database. It can be transformed to any other data model: 

relational, object oriented, hierarchical, semi-structured etc. In relational data 

model design, the tables obtained from the E-R diagram can be analyzed for 

different normal forms. If an E-R diagram is carefully designed, identifying all 

entities correctly, the tables generated from the E-R diagram should not need 

further normalization. 

Documents using the semi-structured data model may contain redundant 

information and may be prone to update anomalies. Such problems are caused by 

some functional dependencies. XML Functional Dependency (FD) and normal 

form XNF for XML documents were defined by Arenas and Libkin introducing 

the so-called tree tuple approach [2]. Yu and Jagadish [13] show, that these XML 

FD notions are insufficient and propose a Generalized Tree Tuple (GTT) based 

XML functional dependency and key notion, which includes particular 

redundancies involving set elements. Based on these concepts, they present the 

GTT-XNF normal form. We offer some FCA based tools for finding functional 

dependencies in XML documents and propose a correct XML scheme in [14, 5]. 

Our FCA based method gives a mapping of E-R diagrams to RCA, using a 

graphical representation of binary relationships having two cardinalities. We 

consider that carefully designed relationships using our method will produce a 

document in XNF normal form. The method is simpler than the normalization 

process of semi-structured data. 

3.1 Conceptual Design of Semi-structured Data 

We model the Entity-Relationship (E-R) schema as a Relational Context Family 

as follows: The E-R schema consists of entity sets, attributes, and relationships 

between entity sets. Since attributes are properties representative of real world 

objects, they are many-valued, hence we can represent every entity set of the E-R 

model as a many-valued context. Let 𝐸1, 𝐸2, … , 𝐸𝑛 be entity sets of an E-R 

diagram. Every entity set 𝐸𝑖, 𝑖 = 1,… , 𝑛 will be modelled as a many-valued 

context. The objects of the many-valued context modelled for entity set 𝐸𝑖  will be 

the entities from 𝐸𝑖. Let us denote by 𝐴𝑖1 , 𝐴𝑖2 , … , 𝐴𝑖𝑘 the attributes of entity set 𝐸𝑖, 

which will be the attributes of the many-valued context. Entity sets are connected 

by relations. The relationship between entities from 𝐸𝑖 and 𝐸𝑗 will be represented 

using their entity keys in a formal context. 

Let 𝑅𝑖𝑗 be a relation between the entity sets 𝐸𝑖  and 𝐸𝑗. The Object-Object context 

of 𝑅𝑖𝑗 is defined as the context having as object sets different key values of 𝐸𝑖 and 
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𝐸𝑗 . The relationship between objects of 𝐸𝑖   and objects of 𝐸𝑗 is given in the 

incidence table. 

The simplest form of a relationship is the binary relation. Relationships involving 

more than two entity sets are called n-ary relations. Binary relationships have two 

cardinality constraints [9] of the form (x; y), where x, y are natural numbers, x 

specifies the minimum cardinality and y the maximum participation constraint. Let 

us consider two entity sets 𝐸1 and 𝐸2 and a binary relation R between them with 

left cardinality constraint (x1; y1) and right cardinality constraint (x2; y2) denoted 

with: 𝐸1
(𝑥1,𝑦1)
↔   𝑅

(𝑥2,𝑦2)
↔   𝐸2. 

Based on their maximum cardinality constraints binary relationships are: 

(i)  One-to-One, if both roles have maximum cardinality 1 

(ii)  One-to-Many, if one role has maximum cardinality 1 and the other one 

has maximum cardinality N 

(iii)  Many-to-Many, if both roles have maximum cardinality N 

The same E-R conceptual schema can be mapped into a different schema for semi- 

structured data. We consider two alternative ways of mapping E-R conceptual 

schemas into schema for semi-structured data: a relational-style (flat) design 

methodology and a nesting (or embedding) approach. In the flat schema model 

each entity is at the same level of the hierarchy and uses references to another 

entity as foreign keys in relational databases, the schema never nests. The nested 

schema embeds entities as much as possible. M. Franceschet et al. in [10] proved 

that both validation of data and query processing are globally more efficient with 

nested schemas than with flat ones. Highly nested XML schemas reduce the 

number of expensive join operations. 

To optimize application performance and reliability, a NoSQL schema must be 

driven by the application’s intended purpose; it is about our data and how it is 

used. In the design process one has to decide whether flat or nested structuring 

optimizes one’s schema. Both designs have advantages and disadvantages. The 

main advantage of the nested data model is that one can retrieve the complete 

class master information with one query. The main disadvantage of it is that there 

is no way of accessing the nested details as stand-alone entities. 

In our method we will first create the Object-Object context of our data, build the 

concept lattice related to that context and read its background knowledge. From 

the graphical representation of the built concept lattice, one can discover and 

understand the conceptual relationships within a given set of data.  Reading the 

built concept lattice we can decide if nesting is feasible or not based on Algorithm 

1. We distinguish between the nodes of the Object-Object lattice the top node, the 

bottom node and intermediate nodes. The concept nodes of the Object-Object 

lattice are labeled with the keys of the entities. 
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Algorithm 1. 
Input: a concept lattice 

Output: nesting is possible or not 

begin 

if intermediate nodes are situated in one level then 

    if intermediate nodes are labeled with utmost one key from 𝐸1  

      and utmost one key from 𝐸2  then 

            the relationship is One-to-One; 

            if top node has labels and bottom node has labels then  

    nesting is not possible; 

            else 

     nesting is possible; 

            end; 

    end; 

    if intermediate nodes are labeled with more keys from 𝐸1  

       and utmost one key from 𝐸2 then 

           the relationship is Many-to-One; 

           if top node has labels from 𝐸1  or bottom node has labels from 𝐸1  then 

              nesting is not possible; 

           else 

    nesting is possible; // 𝐸1 nested in 𝐸2; 

           end; 

    end; 

else  
    the relationship is Many-to-Many; 

    nesting is not possible; 

end; 

end; 

Next, we will discuss in detail each of these three basic forms of relations: One-to-

One, One-to-Many and Many-to-Many. 

3.1.1 One-to-One Relationship Mapping 

In general, the nested data model is the most advantageous, but when modeling 

One-to-One relationships, we have to carefully think through the structure of our 

data. Let  𝑬𝟏 and 𝑬𝟐 be two entity sets and R a One-to-One relationship between 

them. The question is how to nest them: 𝑬𝟏 in 𝑬𝟐 or 𝑬𝟐 in 𝑬𝟏? If we are using a 

nested data model and there are elements of 𝑬𝟏 which are not related to any 

element of 𝑬𝟐, or elements of 𝑬𝟐 which are not related to any element of 𝑬𝟏, then 

we may lose some elements of 𝑬𝟏 or 𝑬𝟐. Our method, using RCA helps one to 

decide if nesting is possible and provides the answer as how the entities should be 

nested. 

In order to decide which data model to use we will firstly create the Object-Object 

context of our data and build the related concept lattice. The concept lattice will be 

the basis of further analysis. (We will present the Object-Object contexts only in 

case of One-to-Many relationships). 
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Depending on its cardinality the One-to-One relationship has four cases. Table 4 

gives examples of these cases. We can observe, that for every concept (excepting 

the top and bottom of the lattice) there exists one element from 𝑬𝟏 and one 

element from 𝑬𝟐. The concept lattices vary only in bottom and top elements, but 

these are decisive in the nested data scheme. The elements of 𝑬𝟏 and 𝑬𝟐, which 

are not related to each other, will appear in the top or bottom of the lattice. 

Table 4 

Concept lattices of Object-Object context in case of One-to-One relationships 

 

 

a) Men 𝒔𝒑𝒐𝒖𝒔𝒆 ↔    
(𝟎,𝟏)

  ↔    
(𝟎,𝟏)

Women 

There are dangling entities in 𝑴𝒆𝒏 and 

𝑾𝒐𝒎𝒆𝒏, the top and bottom of the lattice 

contains non empty intent/extent, thus 

nested design is not possible. The inclusion 

of 𝑾𝒐𝒎𝒆𝒏 in 𝑴𝒆𝒏 would lead to the loss 

of 𝑾𝒐𝒎𝒆𝒏 elements which are not related 

to elements of 𝑴𝒆𝒏 and vice-versa. 

b) Teacher 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒊𝒃𝒍𝒆 ↔    
 (𝟎,𝟏)

 ↔    
(𝟏,𝟏)

 Class 

 

Every element of Class is related with one 

element of 𝑇𝑒𝑎𝑐ℎ𝑒𝑟. The nested design is 

possible, including Class in 𝑇𝑒𝑎𝑐ℎ𝑒𝑟, but 

not the inverse. 

 

 
 

c) Department 𝒎𝒂𝒏𝒂𝒈𝒆𝒅 ↔    
(𝟏,𝟏)

 

 ↔    
(𝟏,𝟏)

Manager 

The intent of the top element and extent of 

the bottom element of the concept lattice are 

empty, thus both nesting is correct, we can 

include 𝑫𝒆𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕 in 𝑴𝒂𝒏𝒂𝒈𝒆𝒓 or 

𝑴𝒂𝒏𝒂𝒈𝒆𝒓 in  𝑫𝒆𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕. 

d) Passport 𝒎𝒂𝒏𝒂𝒈𝒆𝒅 ↔    
(𝟏,𝟏)

  ↔    
(𝟎,𝟏)

 Person 

This case allows the existence of elements 

of 𝑷𝒆𝒓𝒔𝒐𝒏 not related to elements of 

𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕, but every element of 

𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕 is related to one element of 

𝑷𝒆𝒓𝒔𝒐𝒏. The nested design is possible, 

𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕 can be included in 𝑷𝒆𝒓𝒔𝒐𝒏, 

but not the inverse. 

When one knows how to read a concept lattice, it can indeed provide valuable 

information. In [14] we have shown that an XML database can be translated into a 

power context family and that the functional dependencies of such a database 



Acta Polytechnica Hungarica Vol. 13, No. 2, 2016 

 – 239 – 

correspond to FCA implications in a certain formal context. We are also able to 

visualize the structures of the different normal forms in a lattice. In Table 4 the 

possibility of nested scheme design can be read from the lattices. At this point, 

FCA proves to be a valuable tool for the design of such schemas. It gives an 

expressive graphical representation of the relationships between entities. This 

paper does not claim that these visualizations solve any computational problem or 

create new means for practical implementations. Instead, the visualizations are 

meant to serve as explanatory aids, to help us to decide which schema design to 

choose. NoSQL data modeling often requires a deeper understanding of data 

structures and algorithms than relational database modeling does. To the best of 

our knowledge, currently there are no applications which help in choosing 

between NoSQL data modeling techniques. Thus an FCA based visual aid is 

beneficial. 

3.1.2 One-to-Many Relationship Mapping 

In general, the N-side of a relationship is nested, if there is no need to access the 

embedded object outside the context of the parent object or one can use an array 

of references to the N-side objects if the N-side objects must stand alone, but we 

have to carefully think through the structure of our data. 

In order to decide which data model to use we will first create the Object-Object 

context of our documents and build the related concept lattice. Then we analyze 

the obtained lattice, reading the background knowledge from it, using Algorithm 

1, to determine if nesting is possible. 

Depending on its cardinality the One-to-Many relationship has four cases. We 

present three of them in Table 6. We denote 𝑬𝟏 the entities of the left hand side of 

the One-to-Many relation and 𝑬𝟐  the right hand side respectively, as a working 

example to generate the concept lattice, 𝑬𝟏 representing the N side of the One-to-

Many relationship. If we analyze the obtained lattices (Table 5) we can observe, 

that for every concept (excepting the top and bottom) there exists one element 

from 𝑬𝟐 and N elements from 𝑬𝟏. This illustrates the relationship between 

elements of 𝑬𝟏 and elements of 𝑬𝟐. 

For the sake of simplicity, in the following examples we have presented very 

small concept lattices, but it has been shown in [3, 12] that readable lattices can be 

produced from real data sets with a straightforward process of creating sub-

contexts. 
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Table 5 

Object-Object contexts and their concept lattices in case of One-to-Many relationships 

 

 

e) Persons 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒅 ↔    
(𝟎,𝟏)

  ↔    
(𝟎,𝑵)

Employers 

There are elements of 𝑷𝒆𝒓𝒔𝒐𝒏𝒔 which are not related to elements 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒓𝒔 being 

displayed at the top of the lattice, as well as elements of 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒓𝒔  which are not 

related to elements of Persons, appearing at the bottom of the lattice. Having elements in 

𝑷𝒆𝒓𝒔𝒐𝒏𝒔 representing the 𝑵 side not related to a parent, hierarchical design is not 

possible. There can be persons who are not employed and employers who have no 

employed person. 

 

 

 

f) Orders 𝑶𝒓𝒅𝒆𝒓𝒆𝒅 ↔    
(𝟏,𝟏)

  ↔    
(𝟎,𝑵)

 Customers 

There are elements of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 which are not related to elements of 𝑂𝑟𝑑𝑒𝑟𝑠, 
appearing in the bottom of the lattice, but every element of 𝑂𝑟𝑑𝑒𝑟𝑠 is related with one 

element of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. Hierarchical design is possible, including 𝑂𝑟𝑑𝑒𝑟𝑠 in 

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. 

 

 

 

g) Papers 𝑨𝒑𝒑𝒆𝒂𝒓𝒆𝒅 ↔    
(𝟏,𝟏)

  ↔    
(𝟏,𝑵)

 Proceedings 

There are no dangling entities: every element of 𝑷𝒂𝒑𝒆𝒓𝒔 is related to one element of 

𝑷𝒓𝒐𝒄𝒆𝒆𝒅𝒊𝒏𝒈𝒔, and also every element of 𝑷𝒓𝒐𝒄𝒆𝒆𝒅𝒊𝒏𝒈𝒔 is related with elements of 

𝑷𝒂𝒑𝒆𝒓𝒔. Nested structure is possible. 

3.1.3 Many-to-Many Relationship Mapping 

Concepts of conceptual lattices which represent Many-to-Many relationships are 

on more hierarchical levels. The top and bottom of the concept lattice are labeled 

if there are dangling elements in the entity sets A and B. 
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Example 3. Consider the Many-to-Many relation between Students and Courses: 

Students Choose ↔    
(0,𝑁)

  ↔    
(0,𝑁)

 Courses. One course can be chosen by 0 or more students 

and there can be students who choose 0 or more courses. 

 

Figure 2 

Concept lattice of Many-to-Many relationship 

Nested design is not possible in this case. 

In the case of Many-to-Many relationships, one can use bi-directional referencing 

if you are willing to pay the price of not having atomic updates or use of 

application-level joins, they are barely more expensive than server-side joins if 

you index correctly and use the projection specifier. 

4 Experimental Evaluation 

In the following we will use MongoDB for our discussion as it is one of the 

leading open-source NoSQL databases due to its simplicity, performance, 

scalability, and active user base. It has to be emphasized that our aproach is 

available in all semistructured datastores, not only in MongoDb. 

We use the DBLP [6] bibliography dataset imported in MongoDB to test queries 

on flat versus nested structure of the documents. Our experiments were conducted 

on three computers, both with i7 processors and 4 GB RAM, running with a 

Windows 7 (64bit) OS. 

3.2 Data Structure of Experimental Data 

The structure of DBLP data is described in [7], where the flat representation of 

XML data is used. We import 1.559.572 conference proceedings and 1.232.729 

journal articles from DBLP dataset. An inproceeding document is designed for the 

paper and a proceeding document for the volume. The journals are also stored in 

the proceeding collection with key value beginning with journal. We have 25593 

proceedings and journal documents. Journal articles are also stored in the 

inproceeding collection. 
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The relationship between papers and proceeding is presented in Table 5 case g) 

from 3.1.2. Using Algorithm 1 we can see that nesting is possible. 

We import the DBLP XML data in MongoDB in flat style first. In case of flat 

representation the key and crossref fields were used in order to map the one to 

many relationship between proceeding and the papers published in it, see 

Example 4. Then we constructed the nested representation in MongoDB using as 

input the flat MongoDB data. We used indexes for crossref field of inproceeding 

collection in flat style data to improve the retrieval of papers for one proceeding. 

Example 4. Consider the flat structure: one conference proceeding and two 

inproceeding documents: 

PROCEEDING: 

{   "_id" : ObjectId("54d61a311ba3b50d0c1f5a20"),  

    "key" : "conf/cla/2007",  

    "editor" : ["Peter W. Eklund", "Jean Diatta", "Michel Liquiere"],  

    "title" : "Proceedings of the Fifth International Conference on Concept Lattices 

     and Their Applications, CLA 2007, Montpellier, France, October 24-26, 2007",  

    "booktitle" : "CLA",  

    "publisher" : "CEUR-WS.org",  

    "volume" : "331",  

    "year" : "2008",  

    "series" : "CEUR Workshop Proceedings",  

    "url" : "db/conf/cla/cla2007.html" } 

 

INPROCEEDING:  

{   "_id" : ObjectId("54d61a311ba3b50d0c1f59e4"),  

    "author" : ["Radim Belohlvek", "Bernard De Baets", "Jan Outrata", "Vilm 

 Vychodil"],  

    "title" : "Inducing Decision Trees via Concept Lattices.",  

    "year" : "2007",  

    "ee" : "http://ceur-ws.org/Vol-331/Belohlavek3.pdf",  

    "crossref" : "conf/cla/2007",  

    "url" : "db/conf/cla/cla2007.html#BelohlavekBOV07" } 

{   "_id" : ObjectId("54d61a311ba3b50d0c1f59f4"),  

    "author" : ["Laszlo Szathmary", "Amedeo Napoli", "Sergei O. Kuznetsov"],  

    "title" : "ZART: A Multifunctional Itemset Mining Algorithm.",  

    "year" : "2007",  

    "ee" : "http://ceur-ws.org/Vol-331/Szathmary.pdf",  

    "crossref" : "conf/cla/2007",  

    "url" : "db/conf/cla/cla2007.html#SzathmaryNK07" } 

Example 5. Consider the nested structure: two inproceeding documents nested in 

a conference proceeding: 

 
NESTEDPROCEEDING: 

{   "_id" : ObjectId("54d61a311ba3b50d0c1f5a20"),  

    "key" : "conf/cla/2007", 

    "editor" : ["Peter W. Eklund", "Jean Diatta", "Michel Liquiere"],  

    "title" : "Proceedings of the Fifth International Conference on Concept Lattices 
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     and Their Applications, CLA 2007, Montpellier, France, October 24-26, 2007",  

    "booktitle" : "CLA",  

    "publisher" : "CEUR-WS.org",  

    "volume" : "331",  

    "year" : "2008",  

    "series" : "CEUR Workshop Proceedings",  

    "url" : "db/conf/cla/cla2007.html",  

    "inproceedings" : 

        [ { "author" : ["Radim Belohlvek", "Bernard De Baets", "Jan Outrata", "Vilm 

 Vychodil"],  

            "title" : "Inducing Decision Trees via Concept Lattices.",  

            "year" : "2007",  

            "ee" : "http://ceur-ws.org/Vol-331/Belohlavek3.pdf",  

            "url" : "db/conf/cla/cla2007.html#BelohlavekBOV07" }, 

        { "author" : ["Laszlo Szathmary", "Amedeo Napoli", "Sergei O. Kuznetsov"],  

            "title" : "ZART: A Multifunctional Itemset Mining Algorithm.",  

            "year" : "2007",  

            "ee" : "http://ceur-ws.org/Vol-331/Szathmary.pdf",  

            "url" : "db/conf/cla/cla2007.html#SzathmaryNK07" }] } 

3.2.1 Testing the Queries 

We test ten queries for a single server MongoDB configuration and the same 

queries for three servers. In the case of three servers the queries were executed by 

one and three different users. The queries were executed with different parameters 

in different order more times. In the graphic representation we consider the 

average of the execution times. 

The first five queries do not involve both proceeding and inproceeding type 

documents, only one of them. In the last five queries both - proceeding and papers 

needs to be accessed. In the case of nested design, the paper documents are 

embedded in the containing proceeding document. We create index on crossref 

field of inproceeding collection in case of flat representation to improve the 'join' 

operation, which has to be solved programmatically. 

The queries were: 

Query 1: Select the conference papers and journal articles for one author. 

Query 2: Select the journal articles written by author1 and written by author2 in a 

given year or articles written by author1 and not written by author3 in a given 

year. 

Query 3: Select the conference papers and journal articles in 3 given year. 

Query 4: Select conference proceeding or journal information given a booktitle 

value. The booktitle is the same for a series of conferences which are held every 

year or a journal which appears more times in a year. 

Query 5: The same as Query 4 complemented with a condition excluding a given 

year. 
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Query 6: Select conference or journal from proceedings collection given a 

booktitle value and a year value, together with papers from the selected 

proceeding. 

Query 7: Given a paper title finds the paper and the proceeding where the paper 

was published. 

Query 8: Given a part of a paper title finds the papers and the proceedings where 

the papers were published. 

Query 9: Given a part of a proceeding title finds the corresponding proceedings 

and the papers published in these proceedings. 

Query 10: Select journal articles of a given author in a given journal, in a given 

volume, for a given year and the corresponding journal. 

  

Figure 3 

Execution time of queries on a local machine 

The execution time for every query in nested design mode of data is between 0.01 

and 0.02 sec in every case, using local machine or 3 servers. The execution time in 

flat structure of data for queries 6-10 is between 0.04 and 1.89 sec. Queries 1-5 are 

executed nearly at the same time in embedded and non-embedding cases. 

In Figure 3 we can see the average execution time on a local machine for the ten 

queries in flat (Example 4) and nested (Example 5) structure of the data. The 

experiments for queries 6-10 show that the nested design mode of data is more 

suitable. The execution of the first five queries on one machine does not depend 

on the structure of the data. 

Figure 4 presents the results of query execution on three servers with one user. In 

this case, the results are nearly the same, for queries 1-5 the structure of the data is 

not relevant, but for queries 6-10 the nested design of the data is more appropriate. 
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Figure 4 

Execution time of queries on three servers one user 

Figure 5 illustrates the execution time of the same queries on three servers by 

three different users concurrently. The results are nearly the same, nested structure 

of data is superior in this case as well. 

 
 

Figure 5 

Execution time of queries on three servers with three users 

Figure 6 presents the execution times for the three different architectures in the 

case of flat data structure. The differences are not relevant between the local 

machine and distributed architectures. 
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Figure 6 

Execution time of queries for flat data structure 

Figure 7 compares the query execution time for the nested structure of the data on 

different system architecture.  

 

Figure 7 

Execution time of queries for nested data structure 

Our method of using RCA helps us to decide if nesting is feasible or not. We 

tested all queries in flat and nested versions and the results show that if we choose 

the design method, which is suggested by our algorithm, the execution time will 

be more efficient. Results of experiments using our method have proven that 

decisions affecting the modeling of data can affect application performance and 

database capacity. 

Conclusions 

In this paper we have proven that the more knowledge we have concerning a 

target domain, the better that certain tools can support the domain's analyses. 

Decisions that affect how we model data, can affect application performance and 

database capacity. We have covered the basics of data modeling for document 
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based data stores. The three basic types of relations were discussed and illustrated 

with the help of examples. 

We used FCA methods to visually analyze the schema of large-scale data. We 

proposed an RCA based approach to document based NoSQL database design. 

The possibility of nested scheme design can be read from the lattices. Results of 

experiments using our method have validated the feasibility of our approach. 
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