
Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 229 –

Conceptual Design of Document NoSQL

Database with Formal Concept Analysis

Viorica Varga, Katalin Tünde Jánosi-Rancz, Balázs Kálmán

Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

Sapientia Hungarian University of Transilvania, Corunca 1C, 540485 Târgu

Mureş, Romania

Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

ivarga@cs.ubbcluj.ro, tsuto@ms.sapientia.ro, kbim1225@scs.ubbcluj.ro

Abstract: Early Big Data solutions were not based on database management system

principles. As the popularity of these solutions have increased and are applied in more data

management scenarios in the recent years, DBMS principles, are being recognized as

important factors and are becoming important in newly developed solutions. Big Data

collections do not enforce document structure, but just because a data store is schema-less,

it does not mean the structure of the stored documents will not play an important role in the

overall performance and flexibility of an application. In this paper we will explore a

method for the conceptual modeling for document based databases, using Formal Concept

Analysis (FCA). We have shown that FCA is a valuable visual analyzer for large-scale

data, for example, offering a means of reading the possibility of nested scheme design from

the built concept lattice. Results of experiments using our method have proven that

decisions affecting the modeling of data can affect application performance and database

capacity.

Keywords: conceptual design; NoSQL database; document store; Formal Concept Analysis

1 Introduction

Data is growing exponetially in the digital world, increasing in volume, variety

(structured, un-structured or hybrid) and velocity (high speed of growth). This

phenomenon is refered to as ‘Big Data’. This growing data collection is so large

that it can not be effectively managed using conventional relational data

management tools. To handle this problem, traditional RDBMS are complemented

with rich set systems: NoSQL [1, 4, 20] data stores, NewSQL and Search-based

systems.

NoSQL systems generally have some common features. The first is the ability to

horizontally scale simple operations over many servers. They can replicate and

partition data over many servers with a simple call level interface. These new

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 230 –

systems accept a weaker concurrency model, than the ACID transactions of

relational database systems. They are often flexible enough to accommodate semi-

structured and sparse data sets [20]. NoSQL data stores vary in their data and

query model. The most common categorization of these systems is by data model,

distinguishing key-value stores, document stores, column-family stores, and graph

databases [4]. Key-value stores data structure is composed of a unique key and an

opaque value. Document based NoSQL systems also store key-value pairs, but the

values are structured as documents. The document is a set of name-value pairs,

usually in JSON (JavaScript Object Notation) [8] format or the binary

representation BSON. Name-value pairs represent the properties of data objects.

Values can be scalar or appear as lists, but may contain nested documents too.

Column-family stores manage records with properties. A schema for a column-

family declares property families, and new properties can be added to a property

family ad hoc. Graph databases represent data in graph format; objects are stored

in nodes and their relationships in the edges.

Most NoSQL data stores do not enforce any structural constraints on the data; they

are usually referenced as schema-less data. But programmatically accessing this

data, it is important to have some notion about its structure. Without knowing the

general structure of the data, it is nearly impossible to perform any application

development or data analysis [15]. Many NoSQL data stores provide a declarative

query language. Developers need to know which attributes are present (or absent)

in persisted objects in order to formulate queries. For OLAP-style data analysis,

developers also need to know which structure to expect when parsing JSON

documents. So, these tasks require some form of schema description. The

structure of the stored documents plays an important role in the overall

performance of the application.

In this paper we focus on designing document stores, which are based on a semi-

structured data model, implemented as JSON, XML or BSON format. The design

of any database follows a well-defined methodology for conceptual, logical, and

physical data modeling. A prevalent model in the conceptual database design is

the Entity-Relationship (E-R) model. The semi-structured data has a loose

schema: a core of attributes is shared by all objects, but many individual variants

are possible. A hierarchical structure of the data is a common design opportunity

for embedding complex entities.

Formal Concept Analysis (FCA) [11] supports knowledge discovery and

knowledge representation [14]. Current FCA methods have the capabilities for

taking into account the presence and management of relational attributes or links

in the data [18, 19].

In this paper a Formal Concept Analysis (FCA) approach for conceptual modeling

of document based databases is proposed. A mapping from Entity-Relationship

model to a schema for semi-structured data in the form of concept lattices are

presented for relations of type One-to-One, One-to-Many and Many-to-Many. For

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 231 –

different relationship types we obtain different concept lattices [22]. The

possibility of nested scheme design can be read from the lattices.

We propose a Relational Concept Analysis (RCA) grounded approach to

conceptual document based NoSQL database design, one which is a data model,

for the systems that can store and manage Big Data.

In Section 2, we assume familiarity with the basic notions of FCA and RCA and

after that, in Section 3, we discuss how relational modeling can be emulated in the

case of document databases using RCA. Section 4 presents the experiments on

DBLP [6] bibliography dataset. Finally, we finish our work with conclusions.

2 Preliminaries and Basic Notions in FCA and RCA

Our research is mainly based on the mathematical foundations of FCA and in this

section we introduce the necessary formal background.

FCA is a data analysis method which enables the discovery of knowledge hidden

within data, such as association rule mining, ontology engineering, machine

learning. FCA actually provides support for processing large dynamic complex

data.

In FCA, data are represented by a formal context, which will contain objects and

attributes. From the context, formal concepts are generated by grouping objects

which have the same set of attributes. Each formal context is transformed into a

concept lattice, which forms the basis for further data analysis.

Definition 1. (𝐹𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). A formal context 𝐾 = (𝐺,𝑀, 𝐼) consists of two

sets 𝐺 and 𝑀 and a binary relation 𝐼 between 𝐺 and 𝑀. Elements of 𝐺 are called

objects while elements of 𝑀 are called attributes of the context. The fact (𝑔,𝑚) ∈
𝐼 is interpreted as "the object 𝑔 has attribute 𝑚".

Example 1. Consider the set of objects 𝐺 = {𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐶ℎ𝑎𝑟𝑖𝑜𝑡, 𝐵𝑜𝑎𝑡, 𝐶𝑎𝑟,
𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒}. Consider the set of attributes 𝑀 = {𝐻𝑎𝑠 𝑤𝑖𝑛𝑔𝑠, 𝐻𝑎𝑠 𝑒𝑛𝑔𝑖𝑛𝑒,
𝐻𝑎𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 𝐻𝑎𝑠 𝑤ℎ𝑒𝑒𝑙𝑠} that are properties that vehicles may have or not.

Table 1 gives an example of formal context (𝐺,𝑀, 𝐼), the X indicates that a certain

object has a certain attribute.

Table 1

An example of formal context 𝐾 = (𝐺,𝑀, 𝐼)

 Has wings Has engine Has windows Has wheels

Bicycle X

Chariot X

Boat X X

Car X X X

Airplane X X X X

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 232 –

Definition 2. (𝐹𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑝𝑡). A formal concept of a context (𝐺,𝑀, 𝐼) is a pair

(𝐴, 𝐵) with A ⊆ G, B ⊆ M, A' = B and 𝐵′ = 𝐴. 𝐴 is called the extent of the concept

(𝐴, 𝐵) while 𝐵 is called its intent. A' and 𝐵′ define a Galois connection between

the power sets of G and M. The set of all formal concepts of a context (𝐺,𝑀, 𝐼) is

written Ɓ(𝐺,𝑀, 𝐼). Concepts are partially ordered by (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) ⇔
𝐴1 ⊆ 𝐴2 (⇔ 𝐵2 ⊆ 𝐵1). (𝐴1, 𝐵1) is called sub-concept and (𝐴2, 𝐵2) a super-

concept.

Example 2. From the previous example, it directly follows that the pair

({𝐵𝑜𝑎𝑡, 𝐶𝑎𝑟, 𝐴𝑖𝑟 − 𝑝𝑙𝑎𝑛𝑒}, {𝐻𝑎𝑠 𝑒𝑛𝑔𝑖𝑛𝑒, 𝐻𝑎𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠}) is a formal concept. A

Galois connection implies that if one makes the sets of one type larger, they

correspond to smaller sets of the other type, and vice versa. Using this concept, if

𝐻𝑎𝑠 𝑤𝑖𝑛𝑔𝑠 is added to the list of attributes, the set of vehicles reduces to

{𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒}.

FCA organizes the information through concept lattices, which fundamentally

comprises a partial order, modeling the subconcept-superconcept hierarchy.

Concept lattice is the common name for a specialized form of Hasse diagram that

is used in conceptual data processing.

Definition 3. (𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝑙𝑎𝑡𝑡𝑖𝑐𝑒). The set of all formal concepts from a context

𝐾 = (𝐺,𝑀, 𝐼) ordered with the relation ≤ form a complete lattice called concept

lattice of (𝐺,𝑀, 𝐼) and denoted by Ɓ(𝐺,𝑀, 𝐼).

Figure 1

Concept lattice raised from Table 1

Figure 1 shows the concept lattice, associated with Table 1. A line diagram

consists of circles, lines and the names of all objects and all attributes of the given

context appearing as labels. Each node in the lattice corresponds to a formal

concept while a line denotes an order relation between two concepts. An object 𝑔

has an attribute 𝑚 if and only if there is an upwards leading path from the circle

named by 𝑔 to the circle named by 𝑚.

Real-life data are often more complex than those given by a formal context. There

are several extensions of FCA to handle complex data, such as Conceptual scaling

[23] (where complex data are turned into binary contexts by using scales), Pattern

structures [24] (a general approach to conceptual scaling by giving a direct

method of knowledge discovery in complex data such as logical formulas, graphs,

strings, tuples of numerical intervals), Power Context Families [25], Relational

Concept Analysis [18] and Logical Concept Analysis (for analyzing arbitrary

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 233 –

relations between objects), Triadic Concept Analysis [26] (to analyze three-

dimensional data), Fuzzy FCA [23] and Rough FCA [16] (were developed to work

with uncertain data and approximations). These papers have proven that FCA is

feasible for Big Data. The approach in [16] makes FCA useful for analyzing

extremely large data. Also, FCA contributes to the analysis and mining of social

networks [27] such as affiliation and interaction networks and possibly more

complex structures using this theory and some of its extensions. [17] gives an

overview of several extensions of the main FCA model, and shows that FCA

algorithms are efficient from both theoretical and practical points of view [25]. Its

time complexity and performance proves its supremacy over concurrent methods

and allows us to use it for Big Data problems.

In this paper, to cope with complex data, we use the following FCA extensions:

conceptual scaling [23] and Relational Concept Analysis (RCA) [18, 19]. The

process of deriving a one-valued context from a many-valued context is called

conceptual scaling.

Definition 4. (𝑀𝑎𝑛𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). A many-valued context (𝐺,𝑀,𝑊, 𝐼)
consists of sets 𝐺,𝑀 and 𝑊 and a ternary relation 𝐼 between those three sets, i.e.

𝐼 ⊆ 𝐺 ×𝑀 ×𝑊, for which it holds that (𝑔,𝑚,𝑤) ∈ 𝐼 𝑎𝑛𝑑 (𝑔,𝑚, 𝑣) ∈ 𝐼 always

imply 𝑤 = 𝑣.

Elements of 𝐺 are still called objects. Elements of 𝑀 are called (many-valued)

attributes. Elements of 𝑊 are called attribute values. Accordingly, the fact

(𝑔,𝑚,𝑤) ∈ 𝐼 means "the attribute 𝑚 takes value 𝑤 for object 𝑔", simply written

as 𝑚(𝑔) = 𝑤.

Standard FCA is restricted to data sets that are either already represented as binary

relations or that can be easily transformed into such a representation [14].

Relational Concept Analysis (RCA) [18, 19] extends standard FCA by taking

relations between objects into account.

The objective of RCA is to build a set of lattices whose concepts are related by

relational attributes, similar to UML associations.

In RCA, data are organized within a structure composed of a set of contexts and a

set of binary relations.

Definition 5. (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑓𝑎𝑚𝑖𝑙𝑦). A relational context family 𝐹 is a

pair (𝐾, 𝑅), where 𝐾 is a set of contexts 𝐾𝑖 = (𝐺𝑖 , 𝑀𝑖 , 𝐼𝑖) - with objects 𝐺𝑖,
properties 𝑀𝑖 and a relationship 𝐼𝑖 between these objects and properties; and 𝑅 is a

set of Object-Object relations 𝑟𝑘 ⊆ 𝐺𝑖 × 𝐺𝑗 where 𝐺𝑖 and 𝐺𝑗 are the object sets of

the formal contexts 𝐾𝑖 and 𝐾𝑗. The structure (𝐾, 𝑅) can be compared to a

relational database schema, including both classes of individuals and classes of

relations.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 234 –

For example Table 2 shows two Object – Attribute contexts of some authors and

their papers presented in different conferences. Table 3 represents the Object-

Object context related to Table 2.

In RCA data tables are iteratively merged into one in the following way: in each

step all formal concepts are computed of one data table and these concepts are

used as additional attributes for the merged data table. After obtaining a final

merged data table, all formal concepts are extracted.

The RCA methodology is the following: given the RCF Object-Attribute contexts

and Object-Object contexts - the concept lattice is built for each Object-Attribute

context at first, then relational scaling is applied to all Object-Object contexts and

relational extension of each Object-Attribute context is built. Finally the concept

lattice for each relational extension is constructed, thus a concept lattice family is

obtained.

Table 2

RCF: Object-Attributes contexts

Author

L
ec

tu
re

r

P
h

D

S
tu

d
en

t

P
ro

fe
ss

o
r

Adam X

Tom X

Jack X

Lena X

Jim X

Sophia X

Lucia X

Mike X

Table 3

 RCF: Object-Object context

 FESTA RK ELKA OpenR XKENA

Adam X X X

Tom X X

Jack X

Lena X

Jim

Sophia X X

Lucia X

Mike X X

Paper
IC

F
C

A

A
D

B
IS

V
L

D
B

S
IG

M
O

D

K
D

D

FESTA X

RK X

ELKA X

OpenR X

XKENA X

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 235 –

3 Document Store Data Modeling using RCA

In this section we investigate the architectural challenges in document based

NoSQL database design. The Entity-Relationship diagram is the most common

tool for conceptual schema design. It is independent of the physical

implementation of the database. It can be transformed to any other data model:

relational, object oriented, hierarchical, semi-structured etc. In relational data

model design, the tables obtained from the E-R diagram can be analyzed for

different normal forms. If an E-R diagram is carefully designed, identifying all

entities correctly, the tables generated from the E-R diagram should not need

further normalization.

Documents using the semi-structured data model may contain redundant

information and may be prone to update anomalies. Such problems are caused by

some functional dependencies. XML Functional Dependency (FD) and normal

form XNF for XML documents were defined by Arenas and Libkin introducing

the so-called tree tuple approach [2]. Yu and Jagadish [13] show, that these XML

FD notions are insufficient and propose a Generalized Tree Tuple (GTT) based

XML functional dependency and key notion, which includes particular

redundancies involving set elements. Based on these concepts, they present the

GTT-XNF normal form. We offer some FCA based tools for finding functional

dependencies in XML documents and propose a correct XML scheme in [14, 5].

Our FCA based method gives a mapping of E-R diagrams to RCA, using a

graphical representation of binary relationships having two cardinalities. We

consider that carefully designed relationships using our method will produce a

document in XNF normal form. The method is simpler than the normalization

process of semi-structured data.

3.1 Conceptual Design of Semi-structured Data

We model the Entity-Relationship (E-R) schema as a Relational Context Family

as follows: The E-R schema consists of entity sets, attributes, and relationships

between entity sets. Since attributes are properties representative of real world

objects, they are many-valued, hence we can represent every entity set of the E-R

model as a many-valued context. Let 𝐸1, 𝐸2, … , 𝐸𝑛 be entity sets of an E-R

diagram. Every entity set 𝐸𝑖, 𝑖 = 1,… , 𝑛 will be modelled as a many-valued

context. The objects of the many-valued context modelled for entity set 𝐸𝑖 will be

the entities from 𝐸𝑖. Let us denote by 𝐴𝑖1 , 𝐴𝑖2 , … , 𝐴𝑖𝑘 the attributes of entity set 𝐸𝑖,

which will be the attributes of the many-valued context. Entity sets are connected

by relations. The relationship between entities from 𝐸𝑖 and 𝐸𝑗 will be represented

using their entity keys in a formal context.

Let 𝑅𝑖𝑗 be a relation between the entity sets 𝐸𝑖 and 𝐸𝑗. The Object-Object context

of 𝑅𝑖𝑗 is defined as the context having as object sets different key values of 𝐸𝑖 and

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 236 –

𝐸𝑗 . The relationship between objects of 𝐸𝑖 and objects of 𝐸𝑗 is given in the

incidence table.

The simplest form of a relationship is the binary relation. Relationships involving

more than two entity sets are called n-ary relations. Binary relationships have two

cardinality constraints [9] of the form (x; y), where x, y are natural numbers, x

specifies the minimum cardinality and y the maximum participation constraint. Let

us consider two entity sets 𝐸1 and 𝐸2 and a binary relation R between them with

left cardinality constraint (x1; y1) and right cardinality constraint (x2; y2) denoted

with: 𝐸1
(𝑥1,𝑦1)
↔ 𝑅

(𝑥2,𝑦2)
↔ 𝐸2.

Based on their maximum cardinality constraints binary relationships are:

(i) One-to-One, if both roles have maximum cardinality 1

(ii) One-to-Many, if one role has maximum cardinality 1 and the other one

has maximum cardinality N

(iii) Many-to-Many, if both roles have maximum cardinality N

The same E-R conceptual schema can be mapped into a different schema for semi-

structured data. We consider two alternative ways of mapping E-R conceptual

schemas into schema for semi-structured data: a relational-style (flat) design

methodology and a nesting (or embedding) approach. In the flat schema model

each entity is at the same level of the hierarchy and uses references to another

entity as foreign keys in relational databases, the schema never nests. The nested

schema embeds entities as much as possible. M. Franceschet et al. in [10] proved

that both validation of data and query processing are globally more efficient with

nested schemas than with flat ones. Highly nested XML schemas reduce the

number of expensive join operations.

To optimize application performance and reliability, a NoSQL schema must be

driven by the application’s intended purpose; it is about our data and how it is

used. In the design process one has to decide whether flat or nested structuring

optimizes one’s schema. Both designs have advantages and disadvantages. The

main advantage of the nested data model is that one can retrieve the complete

class master information with one query. The main disadvantage of it is that there

is no way of accessing the nested details as stand-alone entities.

In our method we will first create the Object-Object context of our data, build the

concept lattice related to that context and read its background knowledge. From

the graphical representation of the built concept lattice, one can discover and

understand the conceptual relationships within a given set of data. Reading the

built concept lattice we can decide if nesting is feasible or not based on Algorithm

1. We distinguish between the nodes of the Object-Object lattice the top node, the

bottom node and intermediate nodes. The concept nodes of the Object-Object

lattice are labeled with the keys of the entities.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 237 –

Algorithm 1.
Input: a concept lattice

Output: nesting is possible or not

begin

if intermediate nodes are situated in one level then

 if intermediate nodes are labeled with utmost one key from 𝐸1

 and utmost one key from 𝐸2 then

 the relationship is One-to-One;

 if top node has labels and bottom node has labels then

 nesting is not possible;

 else

 nesting is possible;

 end;

 end;

 if intermediate nodes are labeled with more keys from 𝐸1

 and utmost one key from 𝐸2 then

 the relationship is Many-to-One;

 if top node has labels from 𝐸1 or bottom node has labels from 𝐸1 then

 nesting is not possible;

 else

 nesting is possible; // 𝐸1 nested in 𝐸2;

 end;

 end;

else
 the relationship is Many-to-Many;

 nesting is not possible;

end;

end;

Next, we will discuss in detail each of these three basic forms of relations: One-to-

One, One-to-Many and Many-to-Many.

3.1.1 One-to-One Relationship Mapping

In general, the nested data model is the most advantageous, but when modeling

One-to-One relationships, we have to carefully think through the structure of our

data. Let 𝑬𝟏 and 𝑬𝟐 be two entity sets and R a One-to-One relationship between

them. The question is how to nest them: 𝑬𝟏 in 𝑬𝟐 or 𝑬𝟐 in 𝑬𝟏? If we are using a

nested data model and there are elements of 𝑬𝟏 which are not related to any

element of 𝑬𝟐, or elements of 𝑬𝟐 which are not related to any element of 𝑬𝟏, then

we may lose some elements of 𝑬𝟏 or 𝑬𝟐. Our method, using RCA helps one to

decide if nesting is possible and provides the answer as how the entities should be

nested.

In order to decide which data model to use we will firstly create the Object-Object

context of our data and build the related concept lattice. The concept lattice will be

the basis of further analysis. (We will present the Object-Object contexts only in

case of One-to-Many relationships).

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 238 –

Depending on its cardinality the One-to-One relationship has four cases. Table 4

gives examples of these cases. We can observe, that for every concept (excepting

the top and bottom of the lattice) there exists one element from 𝑬𝟏 and one

element from 𝑬𝟐. The concept lattices vary only in bottom and top elements, but

these are decisive in the nested data scheme. The elements of 𝑬𝟏 and 𝑬𝟐, which

are not related to each other, will appear in the top or bottom of the lattice.

Table 4

Concept lattices of Object-Object context in case of One-to-One relationships

a) Men 𝒔𝒑𝒐𝒖𝒔𝒆 ↔
(𝟎,𝟏)

 ↔
(𝟎,𝟏)

Women

There are dangling entities in 𝑴𝒆𝒏 and

𝑾𝒐𝒎𝒆𝒏, the top and bottom of the lattice

contains non empty intent/extent, thus

nested design is not possible. The inclusion

of 𝑾𝒐𝒎𝒆𝒏 in 𝑴𝒆𝒏 would lead to the loss

of 𝑾𝒐𝒎𝒆𝒏 elements which are not related

to elements of 𝑴𝒆𝒏 and vice-versa.

b) Teacher 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒊𝒃𝒍𝒆 ↔
 (𝟎,𝟏)

 ↔
(𝟏,𝟏)

 Class

Every element of Class is related with one

element of 𝑇𝑒𝑎𝑐ℎ𝑒𝑟. The nested design is

possible, including Class in 𝑇𝑒𝑎𝑐ℎ𝑒𝑟, but

not the inverse.

c) Department 𝒎𝒂𝒏𝒂𝒈𝒆𝒅 ↔
(𝟏,𝟏)

 ↔
(𝟏,𝟏)

Manager

The intent of the top element and extent of

the bottom element of the concept lattice are

empty, thus both nesting is correct, we can

include 𝑫𝒆𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕 in 𝑴𝒂𝒏𝒂𝒈𝒆𝒓 or

𝑴𝒂𝒏𝒂𝒈𝒆𝒓 in 𝑫𝒆𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕.

d) Passport 𝒎𝒂𝒏𝒂𝒈𝒆𝒅 ↔
(𝟏,𝟏)

 ↔
(𝟎,𝟏)

 Person

This case allows the existence of elements

of 𝑷𝒆𝒓𝒔𝒐𝒏 not related to elements of

𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕, but every element of

𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕 is related to one element of

𝑷𝒆𝒓𝒔𝒐𝒏. The nested design is possible,

𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕 can be included in 𝑷𝒆𝒓𝒔𝒐𝒏,

but not the inverse.

When one knows how to read a concept lattice, it can indeed provide valuable

information. In [14] we have shown that an XML database can be translated into a

power context family and that the functional dependencies of such a database

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 239 –

correspond to FCA implications in a certain formal context. We are also able to

visualize the structures of the different normal forms in a lattice. In Table 4 the

possibility of nested scheme design can be read from the lattices. At this point,

FCA proves to be a valuable tool for the design of such schemas. It gives an

expressive graphical representation of the relationships between entities. This

paper does not claim that these visualizations solve any computational problem or

create new means for practical implementations. Instead, the visualizations are

meant to serve as explanatory aids, to help us to decide which schema design to

choose. NoSQL data modeling often requires a deeper understanding of data

structures and algorithms than relational database modeling does. To the best of

our knowledge, currently there are no applications which help in choosing

between NoSQL data modeling techniques. Thus an FCA based visual aid is

beneficial.

3.1.2 One-to-Many Relationship Mapping

In general, the N-side of a relationship is nested, if there is no need to access the

embedded object outside the context of the parent object or one can use an array

of references to the N-side objects if the N-side objects must stand alone, but we

have to carefully think through the structure of our data.

In order to decide which data model to use we will first create the Object-Object

context of our documents and build the related concept lattice. Then we analyze

the obtained lattice, reading the background knowledge from it, using Algorithm

1, to determine if nesting is possible.

Depending on its cardinality the One-to-Many relationship has four cases. We

present three of them in Table 6. We denote 𝑬𝟏 the entities of the left hand side of

the One-to-Many relation and 𝑬𝟐 the right hand side respectively, as a working

example to generate the concept lattice, 𝑬𝟏 representing the N side of the One-to-

Many relationship. If we analyze the obtained lattices (Table 5) we can observe,

that for every concept (excepting the top and bottom) there exists one element

from 𝑬𝟐 and N elements from 𝑬𝟏. This illustrates the relationship between

elements of 𝑬𝟏 and elements of 𝑬𝟐.

For the sake of simplicity, in the following examples we have presented very

small concept lattices, but it has been shown in [3, 12] that readable lattices can be

produced from real data sets with a straightforward process of creating sub-

contexts.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 240 –

Table 5

Object-Object contexts and their concept lattices in case of One-to-Many relationships

e) Persons 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒅 ↔
(𝟎,𝟏)

 ↔
(𝟎,𝑵)

Employers

There are elements of 𝑷𝒆𝒓𝒔𝒐𝒏𝒔 which are not related to elements 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒓𝒔 being

displayed at the top of the lattice, as well as elements of 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒓𝒔 which are not

related to elements of Persons, appearing at the bottom of the lattice. Having elements in

𝑷𝒆𝒓𝒔𝒐𝒏𝒔 representing the 𝑵 side not related to a parent, hierarchical design is not

possible. There can be persons who are not employed and employers who have no

employed person.

f) Orders 𝑶𝒓𝒅𝒆𝒓𝒆𝒅 ↔
(𝟏,𝟏)

 ↔
(𝟎,𝑵)

 Customers

There are elements of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 which are not related to elements of 𝑂𝑟𝑑𝑒𝑟𝑠,
appearing in the bottom of the lattice, but every element of 𝑂𝑟𝑑𝑒𝑟𝑠 is related with one

element of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. Hierarchical design is possible, including 𝑂𝑟𝑑𝑒𝑟𝑠 in

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠.

g) Papers 𝑨𝒑𝒑𝒆𝒂𝒓𝒆𝒅 ↔
(𝟏,𝟏)

 ↔
(𝟏,𝑵)

 Proceedings

There are no dangling entities: every element of 𝑷𝒂𝒑𝒆𝒓𝒔 is related to one element of

𝑷𝒓𝒐𝒄𝒆𝒆𝒅𝒊𝒏𝒈𝒔, and also every element of 𝑷𝒓𝒐𝒄𝒆𝒆𝒅𝒊𝒏𝒈𝒔 is related with elements of

𝑷𝒂𝒑𝒆𝒓𝒔. Nested structure is possible.

3.1.3 Many-to-Many Relationship Mapping

Concepts of conceptual lattices which represent Many-to-Many relationships are

on more hierarchical levels. The top and bottom of the concept lattice are labeled

if there are dangling elements in the entity sets A and B.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 241 –

Example 3. Consider the Many-to-Many relation between Students and Courses:

Students Choose ↔
(0,𝑁)

 ↔
(0,𝑁)

 Courses. One course can be chosen by 0 or more students

and there can be students who choose 0 or more courses.

Figure 2

Concept lattice of Many-to-Many relationship

Nested design is not possible in this case.

In the case of Many-to-Many relationships, one can use bi-directional referencing

if you are willing to pay the price of not having atomic updates or use of

application-level joins, they are barely more expensive than server-side joins if

you index correctly and use the projection specifier.

4 Experimental Evaluation

In the following we will use MongoDB for our discussion as it is one of the

leading open-source NoSQL databases due to its simplicity, performance,

scalability, and active user base. It has to be emphasized that our aproach is

available in all semistructured datastores, not only in MongoDb.

We use the DBLP [6] bibliography dataset imported in MongoDB to test queries

on flat versus nested structure of the documents. Our experiments were conducted

on three computers, both with i7 processors and 4 GB RAM, running with a

Windows 7 (64bit) OS.

3.2 Data Structure of Experimental Data

The structure of DBLP data is described in [7], where the flat representation of

XML data is used. We import 1.559.572 conference proceedings and 1.232.729

journal articles from DBLP dataset. An inproceeding document is designed for the

paper and a proceeding document for the volume. The journals are also stored in

the proceeding collection with key value beginning with journal. We have 25593

proceedings and journal documents. Journal articles are also stored in the

inproceeding collection.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 242 –

The relationship between papers and proceeding is presented in Table 5 case g)

from 3.1.2. Using Algorithm 1 we can see that nesting is possible.

We import the DBLP XML data in MongoDB in flat style first. In case of flat

representation the key and crossref fields were used in order to map the one to

many relationship between proceeding and the papers published in it, see

Example 4. Then we constructed the nested representation in MongoDB using as

input the flat MongoDB data. We used indexes for crossref field of inproceeding

collection in flat style data to improve the retrieval of papers for one proceeding.

Example 4. Consider the flat structure: one conference proceeding and two

inproceeding documents:

PROCEEDING:

{ "_id" : ObjectId("54d61a311ba3b50d0c1f5a20"),

 "key" : "conf/cla/2007",

 "editor" : ["Peter W. Eklund", "Jean Diatta", "Michel Liquiere"],

 "title" : "Proceedings of the Fifth International Conference on Concept Lattices

 and Their Applications, CLA 2007, Montpellier, France, October 24-26, 2007",

 "booktitle" : "CLA",

 "publisher" : "CEUR-WS.org",

 "volume" : "331",

 "year" : "2008",

 "series" : "CEUR Workshop Proceedings",

 "url" : "db/conf/cla/cla2007.html" }

INPROCEEDING:

{ "_id" : ObjectId("54d61a311ba3b50d0c1f59e4"),

 "author" : ["Radim Belohlvek", "Bernard De Baets", "Jan Outrata", "Vilm

 Vychodil"],

 "title" : "Inducing Decision Trees via Concept Lattices.",

 "year" : "2007",

 "ee" : "http://ceur-ws.org/Vol-331/Belohlavek3.pdf",

 "crossref" : "conf/cla/2007",

 "url" : "db/conf/cla/cla2007.html#BelohlavekBOV07" }

{ "_id" : ObjectId("54d61a311ba3b50d0c1f59f4"),

 "author" : ["Laszlo Szathmary", "Amedeo Napoli", "Sergei O. Kuznetsov"],

 "title" : "ZART: A Multifunctional Itemset Mining Algorithm.",

 "year" : "2007",

 "ee" : "http://ceur-ws.org/Vol-331/Szathmary.pdf",

 "crossref" : "conf/cla/2007",

 "url" : "db/conf/cla/cla2007.html#SzathmaryNK07" }

Example 5. Consider the nested structure: two inproceeding documents nested in

a conference proceeding:

NESTEDPROCEEDING:

{ "_id" : ObjectId("54d61a311ba3b50d0c1f5a20"),

 "key" : "conf/cla/2007",

 "editor" : ["Peter W. Eklund", "Jean Diatta", "Michel Liquiere"],

 "title" : "Proceedings of the Fifth International Conference on Concept Lattices

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 243 –

 and Their Applications, CLA 2007, Montpellier, France, October 24-26, 2007",

 "booktitle" : "CLA",

 "publisher" : "CEUR-WS.org",

 "volume" : "331",

 "year" : "2008",

 "series" : "CEUR Workshop Proceedings",

 "url" : "db/conf/cla/cla2007.html",

 "inproceedings" :

 [{ "author" : ["Radim Belohlvek", "Bernard De Baets", "Jan Outrata", "Vilm

 Vychodil"],

 "title" : "Inducing Decision Trees via Concept Lattices.",

 "year" : "2007",

 "ee" : "http://ceur-ws.org/Vol-331/Belohlavek3.pdf",

 "url" : "db/conf/cla/cla2007.html#BelohlavekBOV07" },

 { "author" : ["Laszlo Szathmary", "Amedeo Napoli", "Sergei O. Kuznetsov"],

 "title" : "ZART: A Multifunctional Itemset Mining Algorithm.",

 "year" : "2007",

 "ee" : "http://ceur-ws.org/Vol-331/Szathmary.pdf",

 "url" : "db/conf/cla/cla2007.html#SzathmaryNK07" }] }

3.2.1 Testing the Queries

We test ten queries for a single server MongoDB configuration and the same

queries for three servers. In the case of three servers the queries were executed by

one and three different users. The queries were executed with different parameters

in different order more times. In the graphic representation we consider the

average of the execution times.

The first five queries do not involve both proceeding and inproceeding type

documents, only one of them. In the last five queries both - proceeding and papers

needs to be accessed. In the case of nested design, the paper documents are

embedded in the containing proceeding document. We create index on crossref

field of inproceeding collection in case of flat representation to improve the 'join'

operation, which has to be solved programmatically.

The queries were:

Query 1: Select the conference papers and journal articles for one author.

Query 2: Select the journal articles written by author1 and written by author2 in a

given year or articles written by author1 and not written by author3 in a given

year.

Query 3: Select the conference papers and journal articles in 3 given year.

Query 4: Select conference proceeding or journal information given a booktitle

value. The booktitle is the same for a series of conferences which are held every

year or a journal which appears more times in a year.

Query 5: The same as Query 4 complemented with a condition excluding a given

year.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 244 –

Query 6: Select conference or journal from proceedings collection given a

booktitle value and a year value, together with papers from the selected

proceeding.

Query 7: Given a paper title finds the paper and the proceeding where the paper

was published.

Query 8: Given a part of a paper title finds the papers and the proceedings where

the papers were published.

Query 9: Given a part of a proceeding title finds the corresponding proceedings

and the papers published in these proceedings.

Query 10: Select journal articles of a given author in a given journal, in a given

volume, for a given year and the corresponding journal.

Figure 3

Execution time of queries on a local machine

The execution time for every query in nested design mode of data is between 0.01

and 0.02 sec in every case, using local machine or 3 servers. The execution time in

flat structure of data for queries 6-10 is between 0.04 and 1.89 sec. Queries 1-5 are

executed nearly at the same time in embedded and non-embedding cases.

In Figure 3 we can see the average execution time on a local machine for the ten

queries in flat (Example 4) and nested (Example 5) structure of the data. The

experiments for queries 6-10 show that the nested design mode of data is more

suitable. The execution of the first five queries on one machine does not depend

on the structure of the data.

Figure 4 presents the results of query execution on three servers with one user. In

this case, the results are nearly the same, for queries 1-5 the structure of the data is

not relevant, but for queries 6-10 the nested design of the data is more appropriate.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 245 –

Figure 4

Execution time of queries on three servers one user

Figure 5 illustrates the execution time of the same queries on three servers by

three different users concurrently. The results are nearly the same, nested structure

of data is superior in this case as well.

Figure 5

Execution time of queries on three servers with three users

Figure 6 presents the execution times for the three different architectures in the

case of flat data structure. The differences are not relevant between the local

machine and distributed architectures.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 246 –

Figure 6

Execution time of queries for flat data structure

Figure 7 compares the query execution time for the nested structure of the data on

different system architecture.

Figure 7

Execution time of queries for nested data structure

Our method of using RCA helps us to decide if nesting is feasible or not. We

tested all queries in flat and nested versions and the results show that if we choose

the design method, which is suggested by our algorithm, the execution time will

be more efficient. Results of experiments using our method have proven that

decisions affecting the modeling of data can affect application performance and

database capacity.

Conclusions

In this paper we have proven that the more knowledge we have concerning a

target domain, the better that certain tools can support the domain's analyses.

Decisions that affect how we model data, can affect application performance and

database capacity. We have covered the basics of data modeling for document

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 247 –

based data stores. The three basic types of relations were discussed and illustrated

with the help of examples.

We used FCA methods to visually analyze the schema of large-scale data. We

proposed an RCA based approach to document based NoSQL database design.

The possibility of nested scheme design can be read from the lattices. Results of

experiments using our method have validated the feasibility of our approach.

References

[1] V. Abramova, J. Bernardino, NoSQL Databases: MongoDB vs Cassandra,

Proceedings of the International C* Conference on Computer Science and

Software Engineering, ACM, 2013, pp. 14-22

[2] M. Arenas, L. Libkin, A Normal Form for XML Documents. TODS 29(1),

2004, pp. 195-232

[3] S. Andrews, C. Orphanides, Analysis of Large Data Sets using Formal

Concept Lattices, CLA 2010, pp. 104-115

[4] R. Cattell, Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record

39.4, 2011, pp. 12-27

[5] K. T. Janosi Rancz, V. Varga, XML Schema Refinement Through Formal

Concept Analysis, Studia Univ. “Babeş-Bolyai” Cluj-Napoca, Informatica,

vol. LVII, No. 3, 2012, pp. 49-64

[6] M. Ley, DBLP Computer Science Bibliography. http://dblp.uni-trier.de/

[7] M. Ley, DBLP — Some Lessons Learned, Proc. VLDB Endowment, Vol.

2, Nr. 2, 2009, pp. 1493-1500

[8] Ecma International. The JSON Data Interchange Format, 2013, www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf

[9] R. Elmasri, S.B. Navathe: Fundamentals of Database Systems, Addison

Wesley (2010)

[10] M. Franceschet, D. Gubiani, A. Montanari, C. Piazza: A Graph-Theoretic

Approach to Map Conceptual Designs to XML Schemas, ACM

Transactions on Database Systems, 2013, Vol. 38, pp. 6-44

[11] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations,

Springer, 1999

[12] D. V Gnatyshak, D. I. Ignatov, S. O. Kuznetsov, L. Nourin, A One-Pass

Triclustering Approach: Is There any Room for Big Data?, Proceedings of

the 11
th

 International Conference on CLA, 2014, pp. 231-242

[13] C. Yu, H. V. Jagadish, XML schema refinement through redundancy

detection and normalization. VLDB J. 17(2), 2008, pp. 203-223

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 248 –

[14] K. T. Janosi-Rancz, V. Varga, T. Nagy, Detecting XML Functional

Dependencies through Formal Concept Analysis, ADBIS 2010, Novi Sad,

Serbia, LNCS 6295, pp. 595-598

[15] M. Klettke , U. Störl, S. Scherzinger: Schema Extraction and Structural

Outlier Detection for JSON-based NoSQL Data Stores, 16
th

 Conference

on Database Systems for Business, Technology, and Web (BTW), 2015

[16] B. Ganter, C. Meschke, A Formal Concept Analysis Approach to Rough

Data Tables. Trans Rough Sets 2011, 14:37–61

[17] S. O. Kuznetsov, J. Poelmans, Knowledge Representation and Processing

with Formal Concept Analysis, Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, Vol. 3, Issue 3, pp. 200-215, 2013

[18] M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev, A Proposal for

Combining Formal Concept Analysis and Description Logics for Mining

Relational Data, ICFCA'07, France. Springer, LNAI 4390, pp. 51-65

[19] M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev, Relational

Concept Analysis: Mining Concept Lattices from Multi-Relational Data,

Annals of Mathematics and Artificial Intelligence 67, 1, 2013, pp. 81-108

[20] S. Tiwari, Professional NoSQL, O’Reilly, 2013

[21] S. Václav, H. Zdenek, A. Ajith, Understanding Social Networks Using

Formal Concept Analysis, Proc. WI-IAT '08, Volume 03, pp. 390-393

[22] V. Varga, Ch. Sacarea, An FCA Driven Analysis of Mapping Conceptual

Designs to XML Schemas, Studia Univ. “Babeş-Bolyai” Cluj-Napoca,

Informatica, Vol. LIX, No. 1, 2014, pp. 46-57

[23] R. Belohlavek, Fuzzy Galois Connections. Math Logic Q 1999, 45:497–

504

[24] B. Ganter, S. O. Kuznetsov, Pattern Structures and their Projections. Proc.

of 9
th

 ICCS’01. LNAI, 2120; July 30-August 3, 2001; Stanford University,

CA. Berlin, Heidelberg: Springer 2001, 129-142

[25] D. Gnatyshak, D. I. Ignatov, S. O. Kuznetsov, L. Lourine: A One-pass

Triclustering Approach: Is There any Room for Big Data?, CLA 2014, 231-

242

[26] F. Lehmann, R. Wille, A Triadic Approach to Formal Concept Analysis.

ICCS; August 14-18; Santa Cruz, CA. Berlin, Heidelberg: Springer; 1995,

32-43

