
Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 65 –

A Dynamic File Replication and Consistency

Mechanism for Efficient Data Center Operation

and its Formal Verification

Manu Vardhan, Dharmender Singh Kushwaha

Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology Allahabad, India

{rcs1002, dsk}@mnnit.ac.in

Abstract: Data centers are built to provide a highly available and scalable infrastructure

on which the applications run. As enterprises grow, so do their application need, along

with resources required for additional application-specific services. This increase in

bottom line expense heightens the overall resource requirement. This paper provides

solution to mitigate the impact of these expenses by proposing a file replication and

consistency maintenance mechanism that enhances the manageability, scalability, and high

availability of resource in these environments. To keep files consistent, changes made at

one replica of the file are reflected on other replicas in minimum possible time. File replica

is updated on-demand by only propagating the required partial updates. The results show

that as compared to Google File System (GFS), the proposed partial write rate shows an

improvement of 38.62% while updating the stale replicas. Time required for invalidating

the replicas decreases by 34.04% and the time required to update the replica on FRS

reduces by 61.75%. Process algebraic approach has been used to establish the relationship

between the formal aspect of the file replicating server and its architectural model.

Keywords: Cluster Computing; Consistency; File Replication; Process algebra

1 Introduction

Data centers are emerging and finding acceptability due to convergence of several

trends including the high performance microprocessors, high speed network,

standard tools and availability with economical commodity-off-the-shelf compo-

nents. This comprises of several servers and networking infrastructure. The server

portion of the infrastructure is now far down the road of commoditization, and

low-cost servers have replaced the high-end enterprise-class servers. Driven by the

PC commoditization economics, the operating theme is “scaling out instead of

scaling up”. Thus, data centers seem to gain popularity day by day. Data center

based distributed systems provide a cost-effective solution to applications intend-

ed for High Performance Computing (HPC) [1]. It leads to the evolution of power-

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 66 –

ful Computer Supported Cooperative Working (CSCW) [2] environment that ena-

bles improving availability of resources and load sharing.

Replication is a practical and effective method to achieve efficient file access, and

increasing the file availability. File replication is done to achieve high availability

of resources. It is achieved by replicating the file and redirecting the requests of

busy nodes to lighter ones. Optimal performance is achieved by replicating the

resource among different clusters. This helps in reducing file access latency, and

network congestion in order to enable the system to handle more requests. Repli-

cation of files and replica placement demand an effective and optimized replica-

tion approach so that neither remote nor local file request is dropped. Replicating

critical data serves as the basis for disaster recovery.

The proposed File Replication approach tries to resolve the following issues: (1)

Prevent the creation of file replica if a copy of the requested file is available on the

other node. (2) In case of node failure, file request is redirected to other FRS,

without any user intervention. (3) Limit the number of queries for a particular file

below the threshold. (4) New request for a particular file will never be served,

once the threshold value for that particular file has been reached. (5) Avoids un-

necessary file replication. (6) Maintains consistency of replicated files.

Every node has an optimal capability of handling file requests. If the file request

count for a particular file on any FRS reaches the threshold value, it replicates the

file on other FRS’s. The location of new replica is intimated to the requesting

node. This maximizes the resource utilization by minimizing the message ex-

changes overhead, thus increasing the overall system performance.

Replication becomes mandatory in cluster computing, whenever there is an in-

crease in number of requests (that a system can handle), for a particular resource.

Buyya [4], discusses the major performance issue in large-scale decentralized

distributed systems, such as grids, along with mechanisms to minimize latency in

the presence of resource performance fluctuations. Buyya [5] addresses the prob-

lem of transferring huge amount of data among federated systems, thus facilitating

a better way to support critical applications while minimizing the total number of

rejected requests. Google’s MapReduce [6] system runs on top of the Google File

System [7], within which data is loaded, partitioned into chunks, and each chunk

is replicated. Google by default replicates the data at three locations. The Google

File System (GFS) enables the files to be moved transparently in order to balance

the load that is in line with the proposed File Replication. Unlike GFS, proposed

approach avoids the creation of redundant replicas on the same node and con-

sumes less raw storage than GFS. By default GFS stores, three replicas of a file,

but proposed approach creates replicas as and when demand arises. Proposed

approach reclaims the physical storage only when the need arises, in case there is

not sufficient storage space to store a file being replicated. GFS does this lazily

during regular garbage collection. In contrast to the system like xFS [8], AFS [9],

Intermezzo [10] and Frangipani [11], GFS and the approach proposed in this pa-

per, does not provide any caching below the file system interface. Unlike GFS, in

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 67 –

order to increase reliability and gain flexibility proposed approach does not main-

tain any centralized master replica for maintaining file consistency and manage-

ment. Rather it uses a distributed architecture that manages the assignment of the

role of master replica to the latest updated replica dynamically and propagates the

same to the secondary replicas on-demand. This overcomes the issue of single

point failure. Scalability and high availability (for read) are achieved by adding

new servers as and when the need arises without affecting the current ongoing

processing. Like proposed approach, GFS also addresses a problem similar to

Lustre [12] in terms of delivering aggregate performance to a large number of

clients. Bigtable [13] relies on a highly-available and persistent distributed lock

service called Chubby [14]. A Chubby service consists of five active replicas, one

of which is elected to be the master and actively serve requests. The service is live

when a majority of the replicas are running and can communicate with each other.

Chubby uses the Paxos algorithm [15], Lamport [16] to keep its replicas consistent

in the face of failure. Each directory or file can be used as a lock, and reads and

writes to a file are atomic. The Chubby client library provides consistent caching

of Chubby files. Each Chubby client maintains a session with a Chubby service. A

client's session expires if it is unable to renew its session lease within the lease

expiration time. When a client's session expires, it loses any locks and open han-

dles. Chubby clients can also register callbacks on Chubby files and directories for

notification of changes or session expiration. The master is responsible for assign-

ing tablets to tablet servers, detecting the addition and expiration of tablet servers,

balancing tablet-server load, and garbage collection of files in GFS. Bigtable cli-

ents do not rely on the master for tablet location information; most clients never

communicate with the master. As a result, the master is lightly loaded in practice.

Primary-copy (master-slave) approach for updating the replicas says that only one

copy could be updated (the master); secondary copies are updated by the changes

propagated from the master. There is only one replica, which always has all the

updates. Consequently the load on the primary copy is huge. Domenici [17] dis-

cusses several data consistency solutions, including Eager (Synchronous) replica-

tion and Lazy (Asynchronous) replication, Single-Master and Multi-Master Mod-

el, and pull-based and push-based. Guy [18] proposes a replica modification ap-

proach where a replica is designated either a master or a secondary. Only master

replica is allowed to be modified whereas secondary replica is treated as read-

only, i.e., modification permission on secondary replica is denied. A secondary

replica is updated in accordance with the master replica if master replica is modi-

fied. Sun [19] proposes two coherence protocols viz., Lazy-copy and Aggressive-

copy. Replicas are only updated as needed if accessed by the Lazy-copy protocol.

For the aggressive-copy protocol, replicas are always updated immediately when

the original file is modified. Compared with Lazy-copy, access delay time can be

reduced by Aggressive-copy protocol without suffering from long updating time

during each replica access. However, proposed approach has simplified the prob-

lem significantly by focusing on the application needs rather than building a

POSIX-compliant file system. Most of the replication strategies are capitalized by

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 68 –

GFS, but there are some areas that leave ample scope for future work as discussed

in this work. The next section discusses the proposed approach.

In order to ascertain architecture and framework of the proposed model, modeling

and evaluation is necessary, before implementing a system to a large scale. The

dynamic but complex behavior of the proposed model is analyzed by underlying

communication protocol and characteristics of their components. The proposed

model is verified through Calculus of Communicating System (CCS).

CCS [3] is a formal language for describing patterns of interaction in the concur-

rent systems. It allows the description of system in terms of sub processes that

include primitives for describing composition and interaction among these,

through message passing. Therefore, the motivation for using process algebra is to

simplify the specification part and to verify the design structure of model while

meeting its ultimate goal, i.e., file replication.

2 Proposed Approach

A scenario of three participating Cluster is considered. These clusters could be

part of one organization or three different private clusters of a different organiza-

tion. It is assumed that the nodes in these different clusters trust each other. The

same is illustrated in Fig. 2. The proposed architecture is discussed below.

2.1 Architecture

A scenario is presented, though on a smaller scale where geographically disparate

clusters interact with each other for information sharing through replication. One

node in each cluster is designated as File Replicating Server (FRS). FRS can also

be replicated on some other node in the cluster for backup and recovery. It consists

of loosely coupled systems, capable of providing various kinds of services like

replication, storage, I/O specific, computation specific and discovery of resources.

Based on the application requirement, the resources are made available to other

nodes.

2.2 Architecture Description

Fig. 1 shows a mini data center where each server is catering its services to the

connected workstations. These workstations can be reorganized so as to form a

cluster of nodes as shown in Fig. 2; it shows a network of three clusters that are

connected to each other via intercommunication network. Each cluster consists of

a group of trusted Requesting Nodes (RN) and a File Replicating Server (FRS)

assigned to these nodes. Each node can presume the role of FRS. A FRS can be

local or remote.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 69 –

A file Replicating Server (FRS) assigned to a cluster having some nodes is known

as local FRS, and FRS positioned outside that cluster, will be called as remote

FRS. Each subset of nodes (denoted as requesting nodes) receives the list of IP-

address of remote FRS’s from the local FRS, but the nodes of a cluster will send

the file request only to the local FRS. In case, if the local FRS fails to serve the

request, it is automatically routed to a remote FRS in a transparent manner, and

the remote FRS fulfills the request of the requesting node. This makes the model

robust and capable of handling crashes in case local or even remote FRS fails.

Each FRS maintains two tables: (1) File request count table with the following

attributes: <file_id, file_name, request_count, metadata>. (2) FRS table with the

following attributes: <FRS_IP, FRS_PORT>.

Internet

Server

Workstation

Workstation

Workstation

Workstation

Workstation Workstation

Server
Server

Workstation

Workstation

Workstation
Workstation

Figure 1

An abstract view of data center

RN

FRS1

RN

RN

RN

RN

FRS2

RN

RN

RN

RN

FRS3

RN Cluster 2

Cluster 3

Cluster 1

Internet

Figure 2

Architecture of file replicating server

Each FRS is informed whenever a new FRS is added to the network, so as to up-

date its FRS table. FRS does not monitor the status of remote FRS periodically,

instead FRS requests for the current status of remote FRSs on-demand. FRS status

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 70 –

can either be busy, ready or File not available. Busy signifies that the request

count is greater than file threshold value. Request count is described in section 3.5.

Ready signifies that the request count is less than file threshold value. File not

available indicates that the requested file is not available on the cluster. Number

of thread a server can handle, and the server load balancing aspects are left on the

application developer and deployment environment.

2.3 Description of File Replication Mechanism

Each local FRS is responsible for accepting the file request from the Requesting

Node (RN). Local FRS checks its status against the requested file and redirects the

request depending on its status in the following manner: (1) If the status of local

FRS is ready, the local FRS will fulfill the request. (2) If the status of local FRS is

file not available, the local FRS looks for remote FRS that can fulfill the file re-

quest as discussed below in 2(a) & 2(c). Otherwise, (3) In case, status of local FRS

is busy, it looks for a remote FRS that can handle the request, by one of the fol-

lowing manner, described as under:

(a) Local FRS sends a message only to those FRSs that are present in the replica

location field of the data structure for file request count table (Table 1) and re-

quests for their status against the requested file. The local FRS redirects the re-

quest to the remote FRS having the status as ready. This remote FRS fulfills the

request of the RN. (b) If not so, the local FRS contacts those remote FRS’s on

which the requested file is not available. In this case, file replication will be initi-

ated, by the local FRS of the cluster and the file replica is created on the remote

FRS having the status as file not available. (c) For both the cases mentioned

above, IP address of the remote FRS that can handle the request will be sent by the

local FRS to the requesting node. Now, the request is redirected to the remote FRS

and RN shall receive the file, without any user intervention. Thus, the overhead of

polling and broadcasting is reduced.

2.4 File Replication Strategy

Fig. 3 shows each FRS as a part of different cluster. To differentiate between the

remote FRS and local FRS, dotted and solid lines are used. All FRS are logically

interconnected with each other and update their FRS table as soon as a new FRS is

added. Node N1 is the Requesting Node (RN) that sends the file request to FRS.

Fig. 3 shows the replication scenario for a file replicating server S1.

FRS S1 on successfully connecting to N1 sends the list of remote FRS (S2, S3, S4

….Si-1, Si) to node N1. Now, node N1 sends file request to the local FRS, i.e., S1.

As FRS S1 has reached the threshold, it cannot handle this request. FRS S1 looks

for a remote FRS that can handle the request. While looking for a FRS that can

fulfill the request, some FRS’s send their status as busy, and the rest of the FRS

may not hold the requested file, i.e., file not available (fna). Now, local FRS will

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 71 –

initiate the replication process for the requested file on the remote FRS. Replica

will always be created on the FRS that does not contain the requested file. On

successfully creating the replica of the requested file on a remote FRS, local FRS

will send the IP-address of remote FRS to N1 and request gets redirected and ful-

filled by remote FRS.

Node

N1

FRS

Si

FRS

S2

FRS

S1

1

connect

3

(file) M2

2

(list) M1

FRS

Si-1

FRS

S3

4

(head) M1

Each FRS maintains

a table that contains

peer FRS

information

FRS for a

subset of

nodes

5

(busy)M4

6

(head) M1

FRS S1 is busy and

cannot

fulfill the request

7

(fna)M2

4,6 request updated

status and looks if

file can be replicated

on that peer FRS or

not

8

(replicate) M2

9

(rack)M5

10

(ip of

newFRS) M3

11

connect

12

(file received) M2

Figure 3

Replication scenario of a file replicating server

2.5 Data Structures Used

Each node maintains Table 1 to handle dynamic on-demand file replication and

consistency mechanism. Table 1 keeps the following information about the files

requested by the requesting nodes: (1) File ID: uniquely identifies the requested

file. (2) Filename: name of the file requested by the node. (3) Request Count: is

the number of request for a particular file that the FRS is currently handling. This

count is incremented by one, whenever the FRS initiates the file transfer operation

that is intended for the requesting node. As soon as the request is fulfilled this

count is decremented by one. (4) Metadata: stores the data that identify the vari-

ous file attributes. (5) Valid: It is a Boolean variable that signifies whether the file

is stale or updated. (6) Lock: It is an integer variable that signifies that a FRS has

acquired lock on the file and the file is being modified. (7) Owner FRS: It is a

string variable. This field contains the IP address of the FRS that has most recently

modified the file. (8) Replica Location: It is an integer variable. This specifies the

node ID (FRS and requesting node) on which the file replica is present. (9)

Timestamp (tf): It is a string variable. It stores the timestamps of the file that is

present on the node (FRS and requesting node).

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 72 –

Table 2 represents the format of the table maintained by each FRS, which contains

the <IP address and port number> of FRS. FRS IP denotes the IP address of the

FRS and FRS PORT denotes the port number of the FRS to which the network

messages are forwarded.

2.6 Message Definitions for Proposed Approach

The proposed approach consists of following messages viz., M1, M2, M3, M4 and

M5. M1 is request for sending or receiving a file. It consists of three tuples, which

include the following details: (1) Machine Type (either Requesting Node or FRS)

(a) Requesting Node requests a file from the file replicating server (FRS). (b) FRS

uses the head message to initiate the replication request. (2) Request Type (either

“get” or “put” or “list”), list will provide the IP address of the remote FRS. (3)

Filename. Message M2 Copies the file or list contents from FRS to Requesting

Node or other FRS, in accordance with the type of request, i.e., whether file re-

quest is made by FRS for file replication or by requesting node. M3 responds to the

request based on the local FRS current status, namely: (1) It informs the request-

ing node if the local FRS is ready to serve the request, i.e., Nready. Or, (2) If the

local FRS is busy, it sends the IP and port address of the remote FRS having the

requested file. M4 informs the local FRS about the current status of the remote

FRS, namely: (1) Busy: remote FRS is busy, so it cannot handle the current re-

quest. (2) Ready: file is present and remote FRS is ready to serve the request. (3)

File Not Available: if the file does not exist on the remote FRS, this remote FRS

will become the potential node for file replication. M5 is reply acknowledgement

message, i.e., “RACK” is sent to the local FRS, when file is transferred complete-

ly. M6 is a multicast message for sending a request for the modification file to

owner FRS. M7 sends the modification file to those FRSs that has the replica of the

modified file f. M8 is the ACK message send by remote FRSs to FRSi. M9 grants

permission to node Ni to modify the file.

File Replication approach discussed in section 3.4, 3.5 and 3.6 ensures that, im-

plicit addressing is used, to fulfill the nodes request, for a logical resource and

maintains the access, migration and performance transparency of the system.

Analyze
Connected

connection_

request

 all_FRS_busy / file_not_available/remoteFRS_IP / file_send

file_request_received /

list_request_received

Initial/

Final

remoteFRS_IP

Replicating

create_replica

Receiving

replication_request_received

file_received /

file_not_received

 remoteFRS_list_send

replication_failed

FRSi

remoteFRS_status

_request_send

/

remoteFRS_status

_received

Figure 4

File replicating server (FRS) model

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 73 –

The various states of the file replication model are shown in Fig. 4. Here, the state

Connected represents the state after the connection has been established between

the Requesting Node (RN) and FRSi. FRSi can change its state either to Receiving

or Analyze as follow: (a) In Connected state FRSi accepts the file request, request-

ed by RN and changes its state from Connected to Analyze. Also, FRSi becomes

the destination FRS if a remote FRS needs to replicate a file on this FRSi. FRSi on

receiving the replication request changes its state from Connected to Receiving.

After the state Receiving has been reached, the transition will only be made to

Final state, which indicates that the connection has been closed. (b) FRSi on

changing its state from Connected to Analyze, depending on the FRS (local and

remote) status the transition will take place either to Final state or Replicating

state. In the state Replicating, if failure signal is received, the transition will be

made to Analyze state, and other remote FRS will be selected for replication.

When no failure signal is received, transition will be made to Final state.

The process algebraic approach is used to verify the correctness of proposed file

replication model. It is a mathematical technique used for the verification of soft-

ware and hardware systems. This is required, to confirm whether the proposed

model is meeting the specifications or not.

2.7 Hybrid Consistency Mechanism Using Partial Update

Propagation

The proposed consistency mechanism is called hybrid because the replica of the

modified file is updated on FRS using partial update propagation and the write

invalidate message is send to the requesting nodes having the replica of the modi-

fied file, as shown in Fig. 6. A Requesting Node (RNi) requests to modify a file (f)

present on File Replicating Server (FRSi). It is assumed that the clocks of all FRSs

are synchronized with each other, and all RNs synchronize their clocks with local

FRS. In partial update propagation, write update is performed using modification

file on FRS’s and these FRS’s perform write invalidate on RN’s. During write

update using modification file, owner FRS sends the modification file only to

those FRSs that has the replica of the modified file. Now, each FRS on which the

replica has been updated, will send an invalidate message to those requesting

nodes that have the replica of the modified file.

Owner node is any FRSJ that has most recently modified the file (f) and contains

the latest updated (valid) copy of file f, and FRSJ is not a centralized entity. A

modification file contains the changes that have been performed on the original

file. These changes include the line number on which the change has been made

and the content of that line.

When a file on any FRSi has to be modified by a RN, this FRSi generates a request

to acquire the lock on file (f). If FRSi is the owner of file (f), it performs a check

whether or not file (f) is locked by any other RN on FRSi. If yes, it waits for the

write operation to get completed. Once the write operation is completed, lock is

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 74 –

released and the write permission is granted to the requesting node RNi. If FRSi is

not the owner of file (f), FRSi multicasts a message for acquiring the lock on file

(f) called RW(f) message, to other FRSs. FRSi multicasts the message only to

those FRSs that are present in the replica location field of the data structure. On

receiving this message if FRSJ has not locked file (f) it sends an acknowledgement

for acquiring lock to FRSi. If FRSJ has locked file (f), it waits for completion and

responds by sending modification files. FRSi updates the stale copy of (f) by

patching it with the modification file. FRSi acquire write lock on file (f) and gives

write permission to requesting node RNi. After modifying the file, the RN will

update the file on its local FRSi by sending the modification file. Now FRSi will

update the file using Hybrid consistency mechanism and becomes the owner of the

file. Other FRSs makes an entry in the Owner field of the data structure that new

file owner of file (f) is FRSi. Now, these FRSs in turn send an invalidate message

to the RN’s having the replica of the modified file. If any of the RN’s have to use

the file later, these RN update their replica by sending a request for modification

files to its local FRS as and when the need arises. Flow diagram is shown in Fig.

5.

 FRSi

Is FRSi

owner of f

No

Yes

Multicast message & send

request for modification

files to FRSJ

File f

locked on

FRSJ Yes

No

Yes

Release lock & generate

modification file M(f1, timestamp)

Send modification file

M[f1, timestamp] to those

FRSs having replica of file f

Send ACK for acquiring lock on file f

to FRSi

File f

locked on

FRSi

No

Yes

Lock acquired by

FRSi on file f and

write permission is

granted to node Ni

No

Is FRSJ

owner

of file f

Yes

File f

locked on

FRSJ

No

Yes

Write

operation on file f

completed before

timeout

No

Release lock &

discard changes

Figure 5

Flow diagram for acquiring lock by FRS on the file and replica update & consistency maintenance

mechanism on FRS using modification files

As discussed above, in case the file is modified, the replica is updated or invali-

dated on other nodes (FRSs and requesting nodes) using the above discussed hy-

brid consistency mechanism. Depending on the number of FRS on which the rep-

lica is updated, and the number of requesting nodes on which the replica is invali-

dated there arises two cases as follow: Best case: When only few FRS and re-

questing nodes have the replica of the file that has been modified file. Worst case:

When all the FRSs and the requesting nodes have the file replica of the modified

file, this is considered as the worst case scenario.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 75 –

Consider a scenario as shown in Fig. 6, in which the file replica is present on

FRS1, FRS2, FRS3, RN3, RN6 and RN9. Now, RN9 makes a request to modify a file

present on FRS3. FRS3 checks whether or not the requested file is locked by some

other RN using the file locking mechanism, as discussed above. Fig. 6 shows the

hybrid consistency mechanism in which the file is updated on those FRSs having

the replica of the modified file by using the modification file and these FRSs in

turn send the invalidate message to the requesting nodes having the replica of the

file that has been modified.

RN2

FRS1

RN3

RN1

RN9

RN8

FRS3

RN10

RN11

RN5

RN7

RN4

FRS2

RN6

Cluster 3

Cluster 1

Cluster 2

 4. Once the

changes

are committed,

RN9 updates the

file replica on

FRS3

 2. RN9 request

permission to

modify the file f

1. FRS1, FRS2, FRS3, RN3, RN6 &

RN9 has same replica of file f

 5. Update

replica of file f

 5. Update

replica of file f

3. After ensuring the

file locking mechanism

permission is granted to RN9

 6. Invalidates the

replica of file f

 6. Invalidates

 the replica

of file f

Internet

Figure 6

Hybrid consistency mechanism

If the owner FRSJ is down, FRSi selects a remote FRS from the Replica location

field of Table 1 as described in section 3.5 and checks the validity of file on that

remote FRS. File validity is checked from the Valid field of Table 1. As soon as

validity of file on the remote FRS is confirmed, that remote FRS becomes the new

owner of that file.

3 Stability Analysis

Stability analysis of File Replication Model (FRM) using a process algebraic ap-

proach is carried out in this section.

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 76 –

3.1 Transition System Definition

Transition systems [20] are considered to perform external and internal actions.

External actions are defined as observable actions, which are seen by the observer.

However, an unobservable action is considered as an internal action which the

observer cannot see. According to Milner [21], an agent C is a cell which may

hold a single data item. It has two ports; an empty cell may accept an item or value

from its left hand port labeled in; while it may deliver a value from its right hand

port labeled [22] as shown in Fig. 7.

C
in out

Figure 7

Labelled transition

3.2 File Replication Model (FRM) in Process Algebraic

Framework

In the proposed formal model, the components of a system are identified as com-

municating agents. In the flow diagram as shown in Fig. 8, circle represents the

communicating agents, i.e., Requesting Node (RN), i.e., Nfr and file replicating

server (FRS). These are considered as communicating agent. The communication

between agents is represented through transition graph. Transmission line (trans)

is used to transfer messages from one node to other. The FRS receiving the file

request (M1) is termed as File Replicating Server (FRS), i.e., Nfrs and is denoted by

Si. FRS Si
r
or Si-1

r
is the server on which file replica is either created or previously

available. The RN, i.e., Nfr raises a file requisition via message M1
̅̅ ̅̅ and receives its

corresponding reply via M2 or M3, depending on the FRSs status. M4/M4
̅̅ ̅̅ shows

the status of FRS as busy (Nbusy) or ready (Nready). Status of FRS depends on the

number of request a FRS is currently serving for a meticulous file. FRSs having

the status as busy cannot fulfill the file request. Ready FRS (Nready) represents that

FRS is ready to handle the file request. In case FRS Si is busy, it requests the status

information of remote FRSs and redirects the request to the FRS having the status

as ready (Nready) that can handle the request. If no such FRS is present, replica is

created on FRS Si
r
or Si-1

r
that has the status as Nfna, i.e., file not available.

After the file is replicated on FRS Si
r

or Si-1
r

an acknowledgement message

M5 or M5
̅̅ ̅̅ is sent by FRS Si

r
or Si-1

r
to FRS Si, the file request gets redirected and

fulfilled by FRS Si
r
or Si-1

r
.

The value of file threshold index prohibits the behavior of nodes as busy and

ready. Similarly, the file availability index gives information about the file availa-

bility on that node. Here arise two scenarios, discussed as below: (1) Replica

available (2) Replica created.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 77 –

Requesting

Node

Nfr

FRS Si-1
r

FRS Si
r

FRS

Si

M2

M2

M2

M5

M4

M
1

M2

M
5

M
4M

1

M3/M2

M3/M2

M
2

M
2

M
1

M1

M2

M5

M5

M4

M
4

M1M1

trans

Figure 8

Flow graph for file replication model in process algebraic approach

Replica Available: FRS Si, which receives the file request from the requesting

node, fulfills it if and only if, its status is ready, i.e., Nready. This means that, the

requested file is present on Si and it can handle the file request. If Si is not able to

fulfill the request, it looks for any Si
r
 or Si-1

r
that

has the requested file and status as

Nready. In this case, there is no need to create a replica of the requested file. Replica

created: if all FRS, i.e., Si, Si
r
 or Si-1

r
 having the copy of the requested file are

busy, then its replica needs to be created. Replica will always be created, on the

FRS Si
r
 or Si-1

r
 whose status is Nfna, i.e., file not available. The formal specification

of two scenarios is described below:

Set of agents can be denoted by ϑ. Hence,

ϑ∈ {N, Nfr, Nfrs, S, D, FRS}

Equ. (1) shows different status of FRS:

Nstatus ≝ (Nbusy | Nfna | Nready) (1)

FRS status depends on the number of requests a FRS is currently serving for the

requested file known as file request load. If the file request load >= the file thresh-

old value, the requested file is replicated on remote FRS, i.e., Si
r
 or Si-1

r
.

Equ. (2), a node requesting for a file, hence called as Requesting Node (Nfr) de-

noted by S.

Nfr ≝ S (2)

Equ. (3), FRS Si receives file request. Si responds to the requesting node via mes-

sage M3
̅̅ ̅̅ or M2

̅̅ ̅̅ , depending on the FRSs status, the state transition will take place.

𝑁𝑓𝑟𝑠 ≝ (𝑓𝑖𝑙𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑). (𝑓𝑟𝑠_𝑠𝑡𝑎𝑡𝑢𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑓𝑖𝑙𝑒_𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 𝑁𝑓𝑟𝑠 (3)

Equ. (4), FRS that affirms its status as Nready will fulfill file request and is denoted

by D.

Nready ≝ D (4)

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 78 –

𝐷 ≝ 𝑓𝑖𝑙𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑. 𝑓𝑖𝑙𝑒_𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 𝐷 (5)

𝑆 ≝ 𝑓𝑖𝑙𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑓𝑖𝑙𝑒_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑. 𝑆 (6)

According to Robin Milner [21] a labeled transition system can be thought of as

an automaton without any Initial/Final state.

3.2.1 Language Specification for Replica Available (FRMra) Scenario

Now, a scenario of file replication model, i.e., replica available is discussed. Here,

the file request is fulfilled by the available copy of the requested file on a remote

FRS. Thus, unnecessary replica creation is avoided.

3.2.1.1 Language Specification for Local FRS

The language specification for the local FRS that can be described as follow: (1)

State transition takes place from one state to the other depending upon the inter-

rupt received by the current state. (2) After receiving the file request from the

requesting node, the local FRS Si fulfills the request if and only if its’ status is

Nready. Otherwise, Si checks with the remote FRS, i.e., Si
r
 or Si-1

r
 that can handle

the request. (3) If a remote FRS is busy, it will not accept the file request and

sends its status as busy to the local FRS Si. (4) If Si status is not marked as ready,

this means, either Si status is Nfna or Nbusy, refer to equ. (8). In case, those FRSs

having the replica of the requested file are busy, requested file is replicated on that

remote FRS having the status as Nfna. (5) State LocalFRS` is reached after the

connection with requesting node is closed.

𝐿𝑜𝑐𝑎𝑙𝐹𝑅𝑆 ≝ (𝑙𝑖𝑠𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 + 𝑓𝑖𝑙𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑). 𝐴𝑛𝑎𝑙𝑦𝑧𝑒 (7)

 Analyze ≝

remoteFRS_status_request̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Analyzing + send_remoteFRS_list̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. LocalFRS +

(all_FRS_busy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + file_not_available̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + file_send̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). LocalFRS' (8)

 Analyzing ≝

(remoteFRS_busy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + remoteFRS_fna̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅). Analyze + remoteFRS_IPaddress̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . LocalFRS'

 (9)

3.2.1.2 Corresponding Language Specification for Requesting Node

The behavior of the requesting node that sends the request to FRS for a file is

represented by equ. (10). Requesting node after sending the file request to FRS,

changes its state from Nfr to Nfr’. In this state, the requesting node will wait for the

reply from the FRS Si. Once the response is received the transition is made to state

Nfr
’’
.

Nfr ≝ (list_request_send̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + file_request_send̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅). Nfr
' (10)

Nfr
' ≝ (list_received + file_received). Nfr + (remoteFRS_IP + all_FRS_busy + file_not_available +

remoteFRS_list_not_received). Nfr
'' (11)

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 79 –

Nfr
'' ≝ (requesting_node_crashes + no_remoteFRS_available). Nfr

'' (12)

FRM(ra) ≝ RequestingNode ∥ FRS ∥ Destination (13)

3.2.2 Language Specification for Replica Created (FRMrc) Scenario

Now, second scenario of file replication model, i.e., replica creation will be dis-

cussed. It symbolizes a communicating system that consists of Replicate and Re-

ceiving agents, which represents the replication mechanism of file replicating

server. Replicate agent is the FRS that creates the replica of the file on remote

FRS. This remote FRS is known as receiving agent. Replicate (F): A file request is

sent through the transmission line (Trans) by the requesting node and it is received

by FRS. On receiving the request, FRS changes its state to Replicate, which de-

notes that the FRS is busy, and the requested file needs to be replicated, refer to

(14) & (15). Receiving (F): The receiving agent, i.e., remote FRS that receives file

request through the transmission line (Trans) and reaches the state FRS’, on suc-

cessful completion of file transmission. FRS’: state FRS’ is the final state after the

file transfer is complete.

FRS ≝ replication_request_received. Receiving + file_request_received. Replicate (14)

 Replicate ≝ replication_request_send̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Replicating (15)

 Receiving ≝ replica_created. FRS' (16)

 Replicating ≝ replication_failed. Replicate + replica_created̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . FRS' (17)

FRM(rc) ≝ Replicate ∥ Trans(ɛ) ∥ Replica_created (18)

Where Trans (ɛ) denotes initially empty transmission line and ∥ denotes restricted

composition. From equation (13) and (18), it is proved that replication mechanism

of file replication model meets its specification with FRM(ra) and FRM(rc). Hence,

FRM(ra) ≈ FRM(rc).

3.2.3 Bisimulation Proof for FRM(ra) and FRM(rc)

The transition graph for local FRS and requesting node, refer to equ. (5) and (6).

Equation shows the different FRS states (14), Replicate (15), Replicating (16) and

Receiving (17). Fig. 9 shows the bisimulation graph by linking the related states of

both the models on a state transition graph. Observations show that bisimulation

graph represents the one to one transition of different state as per above mentioned

equations.

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 80 –

Figure 9

Bisimulation graph by linking the related states on a transition graph

Requesting node (Nfr) sends a file request to the local FRS (Si), refer equ. (10) and

receives the status from Si followed either by the requested file or the IP address of

the remote FRS having the copy of the requested file, refer equ. (11). In this case,

the request is fulfilled by the available copy of the requested file either by the

local FRS itself (8) or by remote FRS having a copy of that file (9). Remote FRS

discards the file request in case the status of remote FRS against the requested file

is Nbusy or Nfna, refer equ. (9). If the status of any FRS is marked as ready, i.e.,

Nready, the request gets redirected and fulfilled by this FRS, equ. (8).

State ‘Replicate’ represents that, the file replication is required as the status of the

FRSs that have the replica of the requested file is busy Nbusy. Intermediate state is

represented by Replicating and FRS’ represents the final state after the replication

has been done, i.e., file has been transferred completely, and the connection has

been closed. State FRS represents that the connection has been established be-

tween two nodes. State Receiving represents the intermediate state. The output

would be sent from the transmission line (Trans).

4 Simulation and Results

The proposed model is simulated on JAVA platform. Threshold is fixed in accord-

ance to the constraints and demands, depending on the application requirement.

Experimental system configuration is illustrated in Table 4. Table 3 shows the

request completion time in seconds for replicating the file of size 64.1 MB. Table

3 shows the worst case scenario, in which 100 requesting nodes send request for

the file f simultaneously.

The first few requests handled by FRS takes more time because this time is inclu-

sive of replication overhead from FRS1 to FRS2, and FRS1 to FRS3, but subse-

quently the service time taken by FRSs drops from 281.62 seconds to 245.62 sec-

onds. The average request completion time decreases by 12.78%.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 81 –

Table 3

Average request completion time (seconds)

Number of FRSs/

Number of Request-

ing Nodes

1-20 21-40 41-60 61-80 81-100 Average

2 FRS 400.75 265.86 220.67 300.15 220.67 281.62

3 FRS 292.21 251.55 148.51 252.35 283.51 245.62

In replication scenario, all available FRS’s are utilized to fulfill the request. As

shown in Table 3, service time for requesting node 41-60 in case of 3 FRS is very

less, this is because, by the time FRS receives this request, some of the previous

requests gets completed, same is shown in Fig. 10. When the local FRS reaches

the file threshold value and replicates the file on some other FRS, the replication

overhead is compensated by the following benefits: (1) Avoid retransmission of

request by the requesting node. (2) Reduces latency in case of load above thresh-

old.

Figure 10

Request Completion Time for 64.1MB file

Fig. 11 shows the time taken by the local FRS, to invalidate the replica available

on the Requesting Nodes (RNs) that are connected to this local FRS. Size of inval-

idate message is 15 bytes. The invalidate message to RNs is sent by the local FRS.

Two cases are shown in the figure viz., Best case and Worst case. In the best case,

replica does not exist on all the RNs. It is considered that out of 30RNs connected

to the local FRS, 70% of the RNs have the replica of the modified file. In the

worst case, replica of the modified file is available on all the RNs.

The average time required for invalidating the replicas using hybrid consistency

approach in the best case is 13.43 msec and in the worst case is 20.36 msec. For

some RNs, it is observed that there is a delay in the message delivery, due to

which there is the formation of the crest as shown in the figure.

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 82 –

Figure 11

Time required for invalidating stale replica on requesting node

Fig. 12 shows the time required to update the replica on the FRS for file size of

128 kb, 677 kb, and 3.1 mb. Two cases that are shown in the figure are Complete

File Transfer (CFT) and Hybrid approach. In CFT, complete file that has been

modified is sent to the FRS having the replica of that file. In case of hybrid ap-

proach, only the modification that has been done is sent to the FRS having the

replica of that file. Time required for updating replicas using hybrid consistency

approach reduces from 153.33 msec to 58.64 msec.

Figure 12

Time required for updating stale replica on FRSs

4.1 How Proposed Approach Weighs against Existing

Approaches

The configuration used by the Google File System (GFS), and the proposed

scheme in shown in the Table 4.

Table 4

Experiment configuration table

 Processsor Memory Hard Disk Ethernet

Connection

Switch

GFS Dual 1.4 GHz

PIII

2 GB Two 80 GB

5400 rpm

100 Mb/s

full-duplex

1 Gb/s link

Proposed 3.6 GHz P IV 1 GB 80 GB 5400

rpm
-

100Mb/s

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 83 –

In case, N clients write simultaneously to N distinct files. Fig. 13 shows that with

GFS the average write rate reaches 21.8 MB/s for 10 clients and with the proposed

Partial Write scheme the average write rate is 35.52 MB/s. The proposed partial

write rate shows the improvement of 38.62% as compared to GFS write rate.

Figure 13

Write rate as the number of replicas to be updated increases (MB/s)

Fig. 14 shows that when N clients read simultaneously from a file, GFS average

read rate reaches 44.5 MB/s for 10 clients and with the proposed scheme the aver-

age read rate is 14.57 MB/s. GFS read rate is 67.23% better than the proposed

scheme. This is due to the system configuration as described in Table 4.

Figure 14

Read rate with an increasing number of readers (MB/s)

Conclusion

This paper makes an attempt to propose and establish the threshold based file

replication approach in the distributed cluster computing environment, having a

mini data centric view. Proposed file replication and consistency maintenance

mechanism, autonomously determines the need for file replication based on the

file threshold and availability of files on the nodes of cluster environment. The

decentralized architecture for the proposed model eliminates the possibility of

single point failure. Proposed approach ensures automatic retransmission of re-

quest to the remote FRS, in case the local FRS fails. The hybrid consistency

mechanism that reduces the time for updating multiple replicas of a file by using

modification propagation is also proposed. Experimental results show that as

compared to Google File System (GFS), the proposed partial write rate shows an

improvement of 38.62% while updating stale replicas. Time required for invalidat-

ing the replicas decreases by 34.04% and the time required to update the replica

M. Vardhan et al. A Dynamic File Replication and Consistency
 Mechanism for Efficient Data Center Operation and its Formal Verification

 – 84 –

on FRS reduces by 61.75%. The replication overhead is compensated by the bene-

fits like avoiding retransmission of request by the requesting node, and reducing

file access latency.

Finally, a relationship between the formal aspect of file replication server and its

architectural model, i.e., proposed file replication model is established through

process algebraic approach. The stability and reliability analysis ensure that the

system will run in the finite sequences of interaction and transitions. On the basis

of these properties, a transparent, reliable and safe file replication model is built.

References

[1] R. Buyya, High Performance Cluster Computing, Vol. 1, Pearson Educa-

tion, 2008

[2] J. Grudin, "Computer-Supported Cooperative Work: History and Focus".

Computer 27 (5), 1994, pp. 19-26

[3] R. A. Milner, Calculus for Communicating System, in: Lecture notes in

Computer Science, Vol. 272, Springer, 1980

[4] Rajkumar Buyya and Rajiv Ranjan, Federated Resource Management in

Grid and Cloud Computing Systems, Future Generation Computer Systems,

Volume 26, No. 8, ISSN: 0167-739X, Elsevier Press, Amsterdam, The

Netherlands, Oct. 2010

[5] Ivona Brandic and Rajkumar Buyya, Recent Advances in Utility and Cloud

Computing, Future Generation Computer Systems, Volume 28, No. 1,

ISSN: 0167-739X, Elsevier Press, Amsterdam, The Netherlands, Jan. 2012

[6] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Pro-

cessing on Large Clusters, In Sixth Symposium on Operating System De-

sign and Implementation (OSDI'04), San Francisco, CA, Dec. 2004

[7] S. Ghemawat, H. Gobioff and S. T. Leung, "The Google file system," SI-

GOPS Oper. Syst. Rev., Vol. 37, pp. 29-43, 2003

[8] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David Patterson, Drew

Roselli, and Randolph Wang. Serverless networkfil e systems. In Proceed-

ings of the 15
th

 ACM Symposium on Operating System Principles, pages

109-126, Copper Mountain Resort, Colorado, Dec. 1995

[9] John Howard, Michael Kazar, Sherri Menees, David Nichols, Mahadev

Satyanarayanan, Robert Sidebotham, and Michael West. Scale and perfor-

mance in a distributed file system. ACM Transactions on Computer Sys-

tems, 6(1):51-81, February 1988

[10] InterMezzo. http://www.inter-mezzo.org, 2003, accessed on 20 July 2012

[11] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangi-

pani: A scalable distributed file system. In Proceedings of the 16
th

 ACM

Symposium on Operating System Principles, pp. 224-237, Saint-Malo,

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 85 –

France, October 1997

[12] Lustre. http://www.lustreorg, 2003, accessed on 20 July 2012

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed storage sys-

tem for structured data,” in Proceedings of OSDI 2006, Seattle, WA, 2004

[14] M. Burrows, “The Chubby Lock Service for Loosely-coupled Distributed

Systems,” in Proceedings of OSDI’06: Seventh Symposium on Operating

System Design and Implementation, Seattle, WA, November 2006

[15] Jun Rao, Eugene J. Shekita, and Sandeep Tata. 2011. Using Paxos to Build

a Scalable, Consistent, and Highly Available Datastore. Proc. VLDB En-

dow. 4, 4 (January 2011), pp. 243-254

[16] Lamport, L. The part-time parliament. ACM TOCS 16, 2 (1998), 133-169

[17] Andrea Domenici, Flavia Donno, Gianni Pucciani, Heinz Stockinger, Kurt

Stockinger, “Replica Consistency in a Data Grid,” Nuclear Instruments and

methods in Physics Research Section A: Accelerators, Spectrometers, De-

tectors and Associated Equipment, Volume 534, Issues 1-2, pp. 24-28, 21

November 2004

[18] L. Guy, P. Kunszt, E. Laure, H. Stockinger and K. Stockinger “Replica

Management in Data Grids”, Technical report, GGF5 Working Draft, Edin-

burgh, Scotland, July 2002

[19] Yuzhong Sun and Zhiwei Xu, “Grid Replication Coherence Protocol”, The

18
th

 International Parallel and Distributed Processing Symposium

(IPDPS'04) - Workshop, Santa Fe, USA, pp.232-239. April 2004

[20] A. Y. Zomaya (Ed.), Parallel and Distributed Handbook, McGraw Hill

Professionals, pp. 60-68, 1995

[21] R. Milner, Communication and Concurrency, Prentice Hall 1989

[22] S. Mishra, D. S. Kushwaha, A. K. Misra, “Hybrid Reliable Load Balancing

with MOSIX as Middleware and its Formal Verification using Process Al-

gebra,” Future Generation Computer Systems, Volume 27, Issue 5, pp. 506-

526, May 2011

