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Abstract: Demanding requirements on the circular economy, cost savings, the effectiveness 

of the power grids operation press the operators of large electrical machines and other 

equipment to search for new methods of equipment management, maintenance, and 

renewal. At present, the management of important electrical machines is mostly related to 

offline concepts. This paper brings a summary of the current management practices and 

represents an introduction of a modern approach - Condition Based Management as well. 

For the large high voltage, electric machines are here proposed method of using aging 

models as a part of online diagnostic systems to estimate machine state. An example of the 

modeled use of condition-based modeling and residual life of insulating material is here 

presented. This approach should be employed in the employment of new renewable energy 

resources as well. 
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1 Introduction 

Historically, important high voltage electrical equipment such as transformers, 

generators, and cables, has been operated and maintained using so-called Time-

Based Management (TBM). TBM has scheduled maintenance connected with 

diagnostics where the intervals of investigation are based on experience. These 

intervals can also be derived based on special requirements, e.g. by technical 

standards, etc. [29, 31, 32]. Of course since the modern electrical industry 

emerges, there have been ways to monitor or control some of the processes 

“online”. However, feedback control and monitoring of analog diagnostic signals 

cannot be considered as what is currently considered “Online Monitoring”.  

At present, operators need detailed information about current devices' status to 

optimize their use, use of overall resources, to make correct and economically 

efficient decisions. At the same time, it has to be stated that much electrical 
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equipment is not maintained within the meaning of this article, it means without 

scheduled or online diagnostics, maintenance, etc. Often the action takes place 

after a failure when the failed unit is repaired or replaced by a new one, which is 

called– Incident-Based Management. This procedure is used, for example, 

because of insufficient infrastructure, lack of funds for prophylaxis, or, for 

example, because of relatively inexpensive replaceable components or whole units 

compared to the cost of diagnostic investigations or equipment for it and/or lack of 

knowledge or qualified personnel. Of course, this solution can be applied if the 

failure of the equipment does not have a direct impact on other important 

processes or if the risk is acceptable. 

Asset Management is a term involving the general management of assets with 

maximum efficiency to generate added value. An asset is defined as a device 

generating economic profit. We then monitor the reliability of these assets. Asset 

management can be described as a recurring cycle of four activities: acquisition, 

operation, and maintenance, liquidation, and planning. 

From the time point of view we can divide the asset management into short-term 

(mainly monitoring of the reliable operation), medium-term (maintenance, 

shutdowns), and long-term (strategic planning and liquidation). 

From the diagnostic point of view, the most interesting is medium-term asset 

management, which mainly consists of maintenance and maintenance planning. 

The aim is to balance economic costs with some acceptable level of risk. 

Economic costs can be viewed from two angles. First of all, it is the cost of the 

maintenance intervention itself, including, for example, its design and preparation, 

etc. Furthermore, it is necessary to consider the costs associated with lost profit in 

the case that no substitution is available. The maintenance process is then planned 

for individual steps based on the recommendations of the manufacturers of the 

equipment (or according to special regulations) and the basis of the diagnosed 

equipment state. These diagnostic tests are performed when using TBM 

periodically with a given time interval. Due to the complexity of this issue and the 

variability of monitored objects, including the variability of their states, there are 

no simple schemes for general planning. Therefore, different sources of 

information (databases) are used, often unfortunately with different structures and 

without appropriate links. As a result, the monitored objects are diagnosed and 

therefore maintained at different intervals, which complicates the final decisions. 

Long-term Asset Management deals mainly with strategic development and 

investment planning. Investments must be preceded by a thorough analysis, in 

which the options are examined in detail, together with a risk analysis [1, 2, 4]. 

Individual terms used in Asset Management: 

- Incident-Based Maintenance (IBM) - there is no need for predictive 

diagnostics and therefore the cost of it, on the other hand, the length of repair 

and hence the shutdown cannot be planned, 
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- Time-Based Maintenance (TBM) - this system is usually used for important 

equipment, where off-line diagnostic procedures are developed, limit values 

of monitored parameters are normalized and reports on the status of 

monitored equipment are issued regularly with an outlook to the future status 

– e.g. estimation of remaining technical life, etc. The increase in reliability is 

measurable and can be verified. However, the staff evaluating diagnostic 

data must be experienced in the field and must be able to use various 

physical, empirical, and statistical procedures to determine individual results 

and propose follow-up actions, 

- Condition Based Maintenance (CBM) - is a modern method mainly 

implemented in the power energy sector, e.g. in Canada and China. 

This method utilizes online monitoring of the equipment, especially its 

carefully selected parameters, which can be used to obtain information about 

the status of the equipment and to plan maintenance based on online data, 

- Forecast Based Maintenance (FBM) – it is a system using CBM and aging 

models for planned interventions to increase the reliability of a whole, 

- Reliability Centered Maintenance (RCM) - the main goal here is reliability, 

- Risk-Based Maintenance (RBM) - the main goal here is safety, 

- Proactive Maintenance (PRM) - The term is substantially equivalent to the 

following, 

Sometimes following categories can be merged CBM, FBM, RCM, and RBM into 

one collectively called Condition Based Maintenance. To properly determine the 

state, it is necessary to diagnose it and to transfer online data, process it, and 

evaluate it in real-time. 

Diagnostic signals and their limits must be established to implement any of the 

modern methods of asset management. Moreover, aging models (may be based on 

different principles), sensors, measuring equipment capable of operating reliably 

in all circumstances, monitoring of loads, and various external influences on the 

equipment together with secure transmission and storage of this data have to be 

available. The system must be able to process and evaluate the data in real-time. 

This result is then finally reviewed by specialists. 

Through monitoring, for example, of the function of the cooling pumps and the oil 

temperatures before and after the cooler in case of liquid immersed power 

transformer, it can be stated surface contamination of heat exchanger remotely. 

Additionally, monitoring the increase of the composite value of dissolved gasses, 

it is possible to monitor the influence of the transformer load on the so-called 

“gassing” and thus to monitor the state of the insulation system. Also, by 

monitoring the water content in the oil, it is possible to observe either a 

thermalization disorder of the container or the gradual degradation of the 

cellulosic component of the electrical insulation system. Acidic hydrolysis of 

cellulose produces water molecules, which are then dissolved in the oil. Therefore, 
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correctly interpreted information about the amount of dissolved water in the oil 

measured as a function of time can reveal the degradation state of the solid 

component of the electrical insulation system [18]. 

In terms of online measurement itself, in recent years, technical developments 

have enabled the emergence of online measurement systems capable to measure 

most of the necessary parameters, and at the same time, the infrastructure for the 

transmission of large volumes of data has been built. Industrial computers already 

have sufficient durability, reliability, and performance to process and send data, 

and at the same time, these “big data” [4, 15] can be stored in network storage.  

All this enables the rapid development of online diagnostic systems. This new 

approach should be incorporated also in the new energetic strategies of the EU 

which are being proposed and built recently [3]. 

The authors have proposed and working on a relatively cheap solution for variable 

use in the area of the diagnostics of electrical equipment. The new idea is to 

connect all in previous gained experiences and results and connect it to calculate 

the residual life of the machine. The concept lays in the proper description of the 

aging process of the weakest part of the observed machine. The description could 

be through the empirical, statistical, or physical model of the time degradation 

process in the weakest part. This process of degradation is online monitored 

through sensors and an onsite monitoring unit. This unit is not only sending 

measured data to some cloud as is now usual, but using the data to continuously 

calculate the „cumulative load“ of the weakest part using the introduced aging 

model. The process of the calculation finishes with the current state identification 

and is sent to the operator or the owner of the observed machinery. 

The current situation is the measuring and storage of the data in the case of the 

large electric machinery a practical no data in case of smaller machinery (50-500 

kVA) [32, 34, 35, 36]. 

1.1 Residual Life Modeling 

One of the ways how to determine the current state of the monitored 

object/equipment is the use of aging models. These models can be of empirical, 

physical, or statistical nature and by their nature describe the time dependence of 

the monitored parameter up to the limit state. To use these models correctly, we 

need to know their parameters, which are either obtained experimentally by 

increasing degradation factor (accelerated tests) or from “experience” (e.g. 

statistical data) or based on the knowledge of the physical or chemical process 

taking place and leading to observed object gradual destruction. 

When estimating a machine state, we must take care of model validity limits, and 

aging in machine operation must match the model. This means that if we have, for 

example, a model of the behavior of electrically insulating material under thermal 
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stress and in practice this system ages mainly by temperature, then the estimation 

is accurate (assuming that the system accurately monitors the temperature). 

Conversely, if we have the same model and the electrical insulation system ages 

dominantly by another degradation factor (e.g. by the impact of the surrounding 

environment) the estimation will not correspond to reality. For this reason, 

research and testing are still carried out on various degradation factors and 

especially on their combinations (direct and indirect interaction, Figs. 3 and 4).  

A schematic diagram of the procedure for implementing the online EIS residual 

life calculation system is shown in Figure 11. 

2 Aging Models 

Using aging models to estimate the condition of the equipment is one possible 

access to this problem. The whole diagnostic system using these models then 

works on the principle of monitoring the identified important degradation 

parameter (temperature, number of starts, mechanical stress, operating hours, etc.) 

and implementing measured values into an aging model. The calculation then 

results in the “model state” of the monitored object/device. This model state more 

on less corresponds to the actual state of the monitored object. The advantage is 

that we can estimate the condition of the monitored devices concerning the actual 

operating load and thus the actual “consumed” service life can be estimated.  

An example could be three identical machines designed 15 years of operation.  

The first is loaded at rated power, the 2nd is cyclically overloaded and the 3rd is 

operating at minimum power. Let's say that the temperature was chosen as the 

most relevant degradation factor. The online diagnostic system estimates the 

lifetime already used (corresponding to the designated technical life) of the first 

machine, 13 years after 13 years of operation. The second overloaded machine, 

even if it has been in operation for 3 years only, will have an estimated consumed 

technical life of “14 years” (often operating at elevated temperature) and is, 

therefore, at the end of its technical life and needs to be replaced. On the other 

hand, even after 18 years in operation, the third lightly loaded machine has only 

consumed 80% of the estimated life (operating at low operating temperatures). 

By employment of this process it’s possible to: 

1) detect equipment that is approaching the end of its technical life (be prepared), 

2) increase the reliability of a system operation, 

3) reduce maintenance costs by targeting it to objects that need it, 

4) reduce the costs by not decommissioning technically unused objects 

(otherwise they would be eliminated according to the schedule), 

5) reduce environmental impact by optimizing the use of equipment, 

6) enable central management of objects and thus increase the efficiency of a 

certain process. 
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2.1 Empirical Models 

The main advantage of empirical aging models is the fact that we do not need to 

know the degradation mechanism in detail. We need to know the parameter that 

can be measured, and which corresponds to the degree of degradation.  

The endpoint criterion needs to be determined. The model is then sufficient to 

monitor the degradation impact of the selected parameter, and when the end 

criterion is reached, the appropriate maintenance/ replacement command is issued. 

The power and exponential models are commonly used electrical aging models for 

monitoring, e.g. electrical insulating systems since EIS is usually the weakest part 

of the reliability chain in various high voltage equipment. 

The power or inverse power model is one of the most commonly used models for 

the description of, e.g. electrical aging (1) [10]. 

 
N

EkE


)(
 (1) 

where  is the estimated lifetime [h], E is the intensity of the electric field 

[kV.mm-1], and k and N are empirical constants. 

The second most used is the exponential model, which is given by (2) [20]. 

kE
ecE


)(   (2) 

where k and c are again empirical constants. The advantage of using such as 

simple model lays in the incorporation of the other aging mechanism, e.g. PDs 

(Partial Discharges) during electric aging with no need of understanding whole 

phenomena [16, 17]. 

Many processes can be described using empirical models, an example of a similar 

approach is the exponential model, based on the theory of the mechanism of crack 

growth at tensile stress according to Oding [20]. It is assumed that the vacant sites 

will move from the volume that is subject to elastic expansion to the less stretched 

ones. Calculates changes in vacancy concentration concerning crack formation 

due to tensile load. 

 
d

dN
V oc

  (3) 

Voc is the rate of coagulation and deposition of vacancies proportional to their 

number N per unit of time τ. 

                                                                                        (4) 

 

where τ is the time to fracture (h), 

σ is the mechanical stress (Pa), 
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m is an indicator characterizing the ability to accumulate vacancies, 

C, A, β are constants, 

α is a parameter when, e.q. (4) is derived using Nadie model [20]. 

Equation (4) corresponds to the exponential relationship between load and fracture 

time. This equation is, therefore, equivalent to the equations for thermal 

(Arrhenius, Montsinger, Büssing) and electrical aging (2). 

In previously mentioned models can be used for the description of the aging of 

any material that is exposed to the electric field. For empirical models, it is not 

necessary to know the degradation processes affecting the material. These models, 

however, fail when the aging mechanism is “far” from the condition during the 

test. This can be explained by the theory of a threshold intensity below which the 

electric field does not affect the aging of the material, see 2.4. 

2.2 Physical Models 

So-called “Physical” models refer to models that are based on the knowledge of 

the degradation process and thus reflect the actual processes in the object (not 

necessarily the physical nature). These models are potentially beneficial for the 

rapid development of technology because empirical models need to be 

parameterized by using accelerated aging, resulting in the usage of newly 

developed materials in the distant future. The disadvantage is in many cases 

limited knowledge of the degradation processes. 

As an example, a double potential well/energy barrier aging model proposed by 

Crine [12], [13] is based on the theoretical assumption of the double potential 

barrier model, Fig. 1. 
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Figure 1 

Double potential barrier used in the model presented in [6], [7] 
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where h is Planck's constant, 

kB is the Boltzman constant, 

ΔG is the free activation energy, 

λ is the distance between the two states, 

ep is the electrical charge of particles affecting the aging process. The parameters 

ΔG and λ are temperature functions and are not precisely specified by Crine. This 

parameter represents the aging process and aging factor. 

2.3 Statistical Models 

Statistical models are based on “historical” operation data, e.g. measured failure 

rate. This access has several disadvantages, e.g. the data as a general rule do not 

contain information about the degradation process, the actual state of a particular 

object, the cause of the failure, etc. However, if there is a large number of the 

same objects, operated in the same way the statistical access is valuable. 

Statistical and mathematical models based on statistical distributions create a good 

tool for the analysis of overall reliability. The distributions often used for 

calculation of reliability are, e.g. Weibull, Exponential, or Normal Distribution. 

The Weibull distribution is used in cases where the failure rate (FR) is not 

constant (Exponential distribution is employed where constant FR occurred).  

The Weibull distribution can be used for a description of the reliability of 

electrical devices in which the reliability of these systems and their subsystems 

depend on the number of operational hours, service age, or number of operational 

cycles. The probability density of the two-parameter Weibull distribution is given 

by equation (6). 
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where β is the shape parameter and η is the scale parameter. 

The β parameter, shape parameter - affects the resulting distribution shape. If β < 

1, then the instantaneous failure rate decreases, and if β > 1, then the 

instantaneous failure rate increases. A special case is β = 1, where the Weibull 

distribution is equivalent to the Exponential distribution and the instantaneous 

failure rate becomes constant. These limit values of the parameter β values are 

characteristic for the construction of the bathtub curve. 



Acta Polytechnica Hungarica Vol. 19, No. 9, 2022 

 – 93 – 

2.4 Physical-Statistical Models 

Newly introduced models that combine all of the above. The physical or empirical 

model describes individual degradation mechanism (of which model is known) 

and inserted as a parameter of statistical distribution, e.g. three-parameter Weibull 

distribution, which allows to model different phenomena in all parts of the bathtub 

failure curve. The model TAMRT (TAMRT - Thermal Aging Model Respecting 

the Threshold) using this principle was published [12, 10] (7). 
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where the constants A1 and A2 depend on the temperature, the properties of the 

system, and the number of particles; T is the thermodynamic temperature [K]; Ea1 

and Ea2 are the activation energies of thermal aging of the described EIS [J∙mol-1]; 

R is the universal gas constant [J·K-1·mol-1], and B (T) is the function defining the 

threshold value of the degradation factor TT  [19]. A graphical interpretation is 

presented in Fig. 2. 

This model was developed to describe and estimate a threshold TT of a 

degradation parameter, the temperature, in this case, a limit where a different 

aging mechanism appears. Above-mentioned models did not consider these 

limitations. 

 

 

Figure 2 

Thermal Aging Model Respecting the Threshold – threshold in the aging curve 
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2.5 Multifactor Models 

Of course, when using online diagnostic monitoring, several degradation factors 

need to be monitored at the same time since they act often and at the same time, 

e.g. temperature, mechanical stress, moisture, electric field, pollutants, etc. 

If we do have and employ several models, this means for each monitored 

degradation factor a special aging model in the Asset management system, thus 

we obtain several parallel results of the object state estimation. Therefore, there is 

an ongoing effort to identify interactions of degradation factors and merge their 

effects into one multifactor model. However, this is even more difficult than 

addressing the issue separately. The individual degradation factors interact and the 

result need not necessarily be the algebraic sum of these degradation effects.  

The literature distinguishes mainly two basic types of interactions - direct and 

indirect. The direct interaction, shown schematically in Fig. 3, is the simultaneous 

interaction of all degradation effects that interact with each other to such an extent 

that their action is significantly different from the condition if these factors act 

individually. An example of direct interaction is, for example, oxidation at 

elevated temperatures. 

 

 

Figure 3 

Direct interaction 

Indirect interaction (Fig. 4) [20] is the simultaneous interaction of two or more 

degradation factors, the individual effects act in this case on the observed object 

separately. It is, therefore, a conditional influence on the parameters by 

degradation. An example of this interaction is the effect of electrical and 

mechanical stress. Mechanical stresses can cause cracks in the material, and in 

these inhomogeneities, partial discharges will occur, causing further material 

degradation. 
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Figure 4 

Indirect interaction 

Above-mentioned interactions must be taken into account when constructing a 

multi-factor aging model. Conversely, an empirical model may include these 

factors without fully understanding their synergies. 

3 Results and Contribution 

3.1 Establishing of Life Model 

An example of an aging test performed on slot insulation material used in high 

voltage rotary machines is presented in Fig. 5 and Table 1. The results are 

presented in the form of identified parameters of the exponential model. The three 

different stresses have been applied AC 50 Hz, high-frequency pulse voltage 

6 kHz with a pulse width of 10 μs, and combined pulse and thermal. Individual 

points in Fig. 5 represent time to BDV of individual samples of insulation. 

 

Figure 5 

Electrical and combined aging curves of polyester slot insulation 

Indirect Interaction 
Subsequently 
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Table 1 

Identified parameters based on equation (2) 

Aging Parameter c Parameter k 
Estimated Time to DBV for 

3 kV/mm (h) 

AC 2.106 0,1219 385 

Pulse 862347 0,5554 45 

Pulse + thermal 83061 0,4314 6 

This model is now usable for an introduced system of state estimation in the 

following text. 

3.2 Online Monitoring and Life Calculation Example 

The premise of an experiment: If an isolation system is exposed in operation to 

one permanently dominant degradation mechanism, other mechanisms can often 

be neglected, and only the most important one can be modeled. Samples of 

transformer board with dimensions of 100x100x1 mm were conditioned in 

laboratory conditions for 48 h and subsequently aged in hot air dryers equipped 

with a bushing for applying stress voltage. In this case, the electrical aging by 

increased value was applied to the samples up to the breakdown that occurred. 

The samples, Fig. 6 were placed between the circular electrodes. The number of 

samples at one voltage level was 6. The evaluation was performed by excluding 

outliers, determining confidence intervals at the required level of significance, and 

extrapolation for lower stress. The resulting regression model for this arrangement 

has the form: 

V

F
AF

e

R
R

.029,1.22650 
   (8) 

Where is RF resistance function of the insulation system (h) 

RAR relative aging rate (-) 

V is applied voltage (V) 

 

Figure 6 

Samples of the transformerboard used for model evaluation 
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The Compact DAQ module from National Instruments was used for data 

acquisition. This system consists of a chassis and measuring modules. The cDAQ-

9181 chassis, which has 1 slot for the measuring module, and the cDAQ-9184, 

with four slots, were used. Both chassis are equipped with an Ethernet output, 

which can be used to send the measured data over a local network, but also over 

the Internet. The NI9207 measuring module has a 24-bit converter, 8 voltage, and 

8 current inputs and enables measurement with a frequency of 500 S / s.  

The module processes voltages in the range of ± 10 V and currents in the range of 

± 21.5 mA. A four-channel NI 9211 module with 24 bit resolution and K-type 

thermocouples were used to measure the temperature. The measured values were 

stored in a TDMS (Technical Data Management Streaming) database. This data 

format is suitable for processing large volumes of data. TDMS files can also be 

opened in the MS Excel spreadsheet, so working with these files is comfortable 

for users. The measuring chain was composed of various sensors for the 

measurement of electrical and non-electrical quantities. The signal is further fed to 

the data acquisition device, either directly or via separating elements. 

Subsequently, the signal is processed depending on the nature of the quantity. 

These are mainly amplification, interference filtering, galvanic isolation, and 

digital signal conversion. The data acquisition device is connected by some type 

of bus to a computer, where the final signal processing takes place. 

The evaluation unit repeats two cycles in an infinite loop - computational and 

display. The calculation cycle is used to read the input data and for the calculation 

itself. After the input signals are read, these values are read into the input buffers 

of the evaluation unit. This then calculates RAR and residual life (RF) according to 

a predetermined model, in this example (8). The calculated data is stored in the 

database and at the same time in the output buffer, which is user-configurable 

while the program is running. In addition to the current status, the user can also 

monitor an arbitrarily long interval of previous records. These are displayed in a 

table but also graphically. Both are automatically updated when the new value of 

the input parameter is read. The second cycle reads the measured and calculated 

values from the database, compiles a CSV file from them, and sends them to a 

remote server. This ensures the transfer of data to the central repository, but at the 

same time, it is possible to provide data in this way, for example, to external 

experts for follow-up analyzes. These two cycles can be solved using two 

independent programs, which is especially suitable if the execution frequencies of 

the two cycles are very different. However, it is necessary to handle the situation 

when both cycles need to work with the database at the same time. Because the 

measured parameters are only slowly variable, these cycles have been integrated 

into a single computational loop, eliminating the complication of dual access to 

the same database. The disadvantage of this solution is the suboptimal use of 

system resources. The validity of the above-mentioned methodology for 

determining the residual life, the functionality of the measuring chain, and the 

correctness of the subsequent processing were verified es well experimentally 

using simplified models of insulating elements. Models obtained in previous tests 
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were used for verification. The same specimens were prepared for the construction 

of the aging model, and these specimens were placed in the same test space, where 

a variable AC voltage was applied to them. The voltage amplitude was increased 

and decreased at random time intervals, which was to simulate a variable material 

load in operation. It was necessary to choose the intensity of loading concerning 

the assembled aging models for the insulation system. Excessive load intensities 

would lead to skewed results due to different physical processes (or different 

degradation mechanisms). Too low load values would also affect the accuracy of 

the calculation, but especially in long-term monitoring. This is due to the 

exponential nature of the relative rate of aging. The relative aging rate and 

residual life were calculated from the measured stress by the prepared software 

tool. The values of applied stress, relative aging rate, and residual life were stored 

together with the time stamp in the TDMS database. This was then opened in an 

MS Excel spreadsheet and these data were plotted in graphs. 

Fig. 7 shows the time courses of the applied alternating voltage and the 

corresponding relative aging rate for transformerboard samples. Fig. 8 calculates 

the relative aging rate and residual life. 

The same graph shows the electric breakdowns of individual samples marked with 

numbers 1-5. 

Fig. 8 is proof of the proposed concept since individual tested samples aged by the 

voltage variated in time, according to Fig. 7, came to breakdown (end of technical 

life) as expected (RF line Fig. 8 close to time = 0). 

 

 

Figure 7 

Time courses of the applied alternating voltage and the corresponding relative aging rate 
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Figure 8 

Online calculations of the relative aging rate and residual life estimation RF 

Discussion and Conclusions 

Currently frequently discussed topics are Smart Grids, Industry 4.0, or recovery 

from Black Out from different points of view. A problem connecting these topics 

is the knowledge of the actual state of important elements of the whole of interest. 

Smart grids are power and communication networks that enable real-time 

regulation of power generation and consumption. Once implemented, power 

generation and consumption can be automated, which can be beneficial when 

deploying many decentralized sources. However, actual operating load/generation 

data must be in real-time available. This means including malfunctions and 

shutdowns, etc. of, e.g. distribution transformers. The use of decentralized 

resources can support but also worsen the stability of the network. Information 

network infrastructure for data communication has already been or is being 

created and can therefore also transmit device status data and online diagnostics 

data enabling calculations (model) that will lead to the forecast of the status of 

individual objects in such a network. 

The impact of the introduction of modern methods of Asset Management of 

electrical equipment lays in the increase in the reliability of monitored equipment, 

reliable energy transmission planning, and maintenance and replacement planning. 

Other indirect impacts include reduced environmental load and feedback to the 

production and design process of important electrical equipment leading to their 

further improvement. 
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