
Acta Polytechnica Hungarica Vol. 5, No. 2, 2008

 – 31 –

Computational Environment of Software
Agents1

Martin Tomášek
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
E-mail: martin.tomasek@tuke.sk

Abstract: Presented process calculus for software agent communication and mobility can
be used to express distributed computational environment and mobile code applications in
general. Agents are abstraction of the functional part of the system architecture and they
are modeled as process terms. Agent actions model interactions within the distributed
environment: local/remote communication and mobility. Places are abstraction of the
single computational environment where the agents are evaluated and where interactions
take place. Distributed environment is modeled as a parallel composition of places where
each place is evolving asynchronously. Operational semantics defines rules to describe
behavior within the distributed environment and provides a guideline for implementations.
Via a series of examples we show that mobile code applications can be naturally modeled.

Keywords: software agent, multi-agent system, mobile code, communication, process
calculus, mobile agent

1 Introduction

Mobile agent [1] is an autonomous program that decides which places of the
distributed application visits and what operations uses there. Distributed systems
based on mobile agents are more flexible than static ones: they support mobile
users and can reduce network bandwidth [2]. It means the user just sends an agent
then disconnects from network and finally receives the agent with result upon new
connection.

Formal description and specification of such systems is very important for
modeling and successful implementation of the application. If we think of most
important system characteristics, we identify communication and mobility as a
key point. There are a lot of techniques to describe mobile processes and

1 This paper was supported by the grant Nr. 1/0176/03 of the Slovak Grant Agency.

M. Tomášek Computational Environment of Software Agents

 – 32 –

communication in existence. Very powerful tools for describing parallelism,
communication and mobility are process algebras [3] and other formal techniques
[4].

In this paper we present process calculus to describe mobile agents and their
communication strategies. We provide basic abstraction of the distributed system
and its parts and we define syntactic and semantics rules for modeling mobile
applications. At the end we provide a formal description of three mobile code
paradigms to illustrate the flexibility and expressiveness of the presented
abstraction. Some very typical applications that implement code mobility are
showed too.

2 Abstraction of the Software Architecture

We can identify three main entities from the abstraction of distributed system
architecture: agents, interactions and places.

Agents are abstraction of the functional part of the system. They are evaluated in
distributed computational environment and they are performing basic actions in
their evolution.

Interactions are events presented between two agents or more agents in the
computational environment. Basic agent actions are communication and mobility.

Places are abstraction of distributed computational environment. Whole
distributed system is a set of places. Each place consists of agents and they are
evaluated there. Interactions between agents can rise within one place or between
two or more places.

3 Abstract Syntax of the System

We define terms of process algebra for modeling agents that can interact by
performing three basic actions (read, write and move). The agents are modeled as
process terms. The constructions for building agent terms are taken from Milner’s
CCS [5] and π-calculus [6, 7] and correspond to basic notions of process algebras
[3].

Distributed system is defined as a parallel composition of independent places
within a network. Each place is represented by its name and an agent term
defining agents located inside the place. We define operator || for parallel
composition of places and its notion is very similar to | operator for parallel
composition of agents.

Acta Polytechnica Hungarica Vol. 5, No. 2, 2008

 – 33 –

Abstract syntax of the calculus is following:
::α = (actions)
| x (perform name)

()| p xr (read name)

()| p yw (write name)

()| p Qm (move agent)

::P = (agents)

| 0 (inactivity)

.| Pα (action composition)

1 2|| P P (parallel composition)

1 2| P P+ (choice)

| A x〈 〉� (agent invocation)
::S = (system)

[]| pP (place)

1 2||| S S (system composition)

Symbols , , ,x y p … are called names and N is the set of all names. Names are an
abstraction of manipulated data within agent interactions. Abbreviation x� is a
sequence of names and { }x� is a set of names in x� .

Symbol α denominates the actions provided by the agents. Action x performs an
operation represented by name x . Action ()p xr reads a name that was sent by
another agent to place p and stores it in name x . Action ()p xw outputs name x
in place named as p . Action ()p Pm moves agent term P to the place p and the
term P is computed there.

Agents are defined as process terms very similar way as in other standard calculi
and they are denominated as , ,P Q … symbols. The inactivity 0 defines an agent
with no activity. Term .Pα is an action composition and its notion is that when an
action α is performed the term continues as P . Parallel composition 1 2|P P
defines two independent agents 1P and 2P that can be computed in parallel. Agent
term 1 2P P+ is nondeterministic choice where an agent can be computed either as

1P or 2P .

We assume that each agent abstraction A is defined by equation ()
def

AA x P=�
where all free names of AP are contained in x� . Process abstraction is then a term

M. Tomášek Computational Environment of Software Agents

 – 34 –

without free names while ()A x� binds names of x� . Agent invocation A y〈 〉� is then
the use of AP term where all occasions of names from x� are substituted by y� .

The distributed system is composed of places. Place []pP is defined by its name
p and agent term P which is computed inside the place. System 1 2||S S is

parallel composition of independent places in 1S and 2S . Given a system S , we
assume the existence of function sites which returns the set of places of S . The
composition 1 2||S S is defined only if 1 2() ()sites S sites S∩ =∅ , thus we can
consider a system just as a set of disjunctive places.

4 Semantics of the System

Presented semantics describes possible evolution of agents, places and whole
distributed system without providing the actual allocation of processes and names.
We will define operational semantics of the system in a notion of evaluating of the
actions.

4.1 Semantics of Software Agents

The rules of agent semantics describe the evolution of an agent. We present
labeled transition P Pα ′⎯⎯→ where agent P′ is derived from agent P by
performing action α . Structural rules of the agent semantics are following:

()(). p x
p x P P⎯⎯⎯→rr (A1)

()(). p x
p x P P⎯⎯⎯→ww (A2)

()(). p Q
p Q P P⎯⎯⎯→mm (A3)

P P
P Q P

α

α

′⎯⎯→
′+ ⎯⎯→
 (A4)

P P
Q P P

α

α

′⎯⎯→
′+ ⎯⎯→
 (A5)

| |
P P

P Q P Q

α

α

′⎯⎯→
′⎯⎯→

 (A6)

| |
P P

Q P Q P

α

α

′⎯⎯→
′⎯⎯→
 (A7)

Acta Polytechnica Hungarica Vol. 5, No. 2, 2008

 – 35 –

{ / } ()
defP y x P A x P

A y P

α

α

′⎯⎯→
=

′〈 〉 ⎯⎯→
� � �
�

 (A8)

Rules (A1), (A2) and (A3) describe how the actions are evaluated by agents. Rules
(A4) and (A5) describe behavior of nondeterministic composition of agents, while
rules (A6) and (A7) describe semantics of parallel composition of agents. Last rule
(A8) describes invocation of agent named A .

We will use the standard notion { / }P y x� � to indicate the simultaneous of any free
occurrence of { }x x∈ � with corresponding { }y y∈ � in P .

4.2 Semantics of Distributed System

Semantics of the distributed system is defined by reduction relation (→) rules
which present basic computational paradigm for agent interactions within the
system and evolution of the system. In addition the structural congruence (≡) is
defined for the system semantics. Reduction rules are following:

()

[] [|]

p Q

p p

P P
P P Q

′⎯⎯⎯→
′→

m

 (S1)

2

1 2 1 2

()
1 1

1 2 1 2[] || [] [] || [|]

p Q

p p p p

P P
P P P P Q

′⎯⎯⎯→
′→

m

 (S2)

() ()
1 1 2 2

1 2 1 2[|] [|]

p px y

p p

P P P P
P P P P

′ ′⎯⎯⎯→ ⎯⎯⎯→
′ ′→

r w

 (S3)

1 1

1 2 1 2

() ()
1 1 2 2

1 2 1 2[] || [] [{ / }] || []

p px y

p p p p

P P P P
P P P y x P

′ ′⎯⎯⎯→ ⎯⎯⎯→
′ ′→

r w

 (S4)

1 1

1 2 1 2

[] []
[|] [|]

p p

p p

P P
P P P P

′→
′→

 (S5)

1 1 1 2

1 2 1 2

() ()
|| ||

S S sites S sites S
S S S S

′→ ∩ = ∅
′→

 (S6)

1 1 2 2S S S S S S
S S

′≡ → ≡
′→

 (S7)

Reduction rules clearly distinct between local and remote interactions performed
by located agents and provide a formal model to guide the implementation.

Rule (S1) describes movement and evaluation of an agent. Agent P evaluates the
agent Q at the same place. Agent Q is running in parallel with agents located at

M. Tomášek Computational Environment of Software Agents

 – 36 –

place p . Rule (S2) is very similar to the rule (S1) while agent P moves the agent
Q to another place 2p where it is evaluated in parallel with existing agents (2P)
there.

Rule (S3) describes synchronous communication between two agents located at
the same place. The communication is synchronized when both peers want to
interact (read or write) within the same place. It means two communication
actions ()p xr and ()p y′w will interact when p p′= and then the name y will
be substituted for all occurrences of name x in term followed by ()p xr prefix.
Rule (S4) is very similar to rule (S3) while communicating agents are located on
different places.

Rule (S5) describes asynchronous evolution of subcomponents of the place. It
means each site of the system is working autonomously.

How the reduction behaves in presence of operator of parallel composition of
places is defined by rule (S6).

The reduction behaves with respect to structural congruence as we can see in rule
(S7). Structural congruence is defined following way:

1 2 2 1|| ||S S S S≡ (C1)

1 2 3 1 2 3(||) || || (||)S S S S S S≡ (C2)

The rule (C1) shows the operator || is commutative and rule (C2) shows the
operator || is associative.

5 Expressing Mobile Code Applications

According to the classification proposed in [8], we can single out three paradigms,
apart from the traditional client-server paradigm, which are largely used to build
mobile code applications:

• remote evaluation,

• code on demand and

• mobile agent.

However we think of distributed systems based on mobile agents, our model of
communication and mobility can describe all three programming paradigms. Now
we will show expression of the three mobile code paradigms and some practical
examples of mobile code applications.

Acta Polytechnica Hungarica Vol. 5, No. 2, 2008

 – 37 –

5.1 Mobile Code Paradigms

5.1.1 Remote Evaluation

Remote evaluation is performed when a client sends a piece of code to the server
and server evaluates the code and client can get the results back from the server.

We define term Client that sends a request for remote evaluation to the Server ’s
place s . Request consists of a code P and a name of the Client ’s place c . Then
the Client reads the result into the name y and continues as C .

Term Server reads the request from his local place s . The received code is stored
in name x and the name of Client ’s place is stored in name p . Then the code in
x is evaluated and the result r is sent back to the Client ’s place. The Server is
performing an independent work in S .

We define the following terms where the whole system defined by term System is
a parallel composition of Server ’s place and Client ’s place:

(,). ().

(,). . () |

[] || []

def

s c
def

s p

c s

Client P c y C

Server x p x r S

System Client Server

=

=

=

w r

r w

5.1.2 Code on Demand

Code on demand describes the situation where a client wants to perform a code
that is presented by the server. Client asks for a code and server sends it to the
client where it can be evaluated.

We define term Client that sends a request to the Server ’s place s . The request
consists of a name of the Client ’s place c Then the Client reads the code from
local place into the name x . Finally the code is evaluated and Client continues as
C .

Term Server reads the request from his local place s . The received name of
Client ’s place is stored in p . Then the Server sends a code P to the Client ’s
place. The Server is performing an independent work in S .

We define the following terms where the whole system defined by term System is
a parallel composition of Server ’s place and Client ’s place:

M. Tomášek Computational Environment of Software Agents

 – 38 –

(). (). .

(). () |

[] || []

def

s c
def

s p

c s

Client c x x C

Server p P S

System Client Server

=

=

=

w r

r w

5.1.3 Mobile Agent

Mobile agent is a paradigm where an autonomous code (agent) is sent from the
client to the server. By autonomous we mean that the client and server do not need
to synchronize the agent invocation and the agent is running independently and
concurrently within the server’s place.

We define an abstraction ()Agent x� of a mobile agent and term Client is moving
the agent to the Server ’s place s .

Term Server is performing its independent work S and it is able to receive the
agent which is then running in parallel with other Server ’s actions in its local
place s .

We define the following terms where the whole system defined by term System is
a parallel composition of Server ’s place and Client ’s place:

()

().

[] || []

def

def

s

def

c s

Agent x P

Client Agent z C

Server S
System Client Server

=

= 〈 〉

=
=

m

�

�

5.2 Examples

5.2.1 Remote Procedure Call

This example shows that we are able to model very traditional mobile code
application that is performing remote procedure call.

A client sends a request to a server and waits for response. The request consists of
procedure name and its real parameters that should be performed by a server and
the address of the client’s place where to send a result.

Term Client sends the request with name of the procedure Proc , its real
parameters z� and the name of the Client ’s place c to the Server ’s place s .
Term Server reads from its local place s the request into the x (name of the

Acta Polytechnica Hungarica Vol. 5, No. 2, 2008

 – 39 –

procedure), y� (parameters of the procedure) and p (name of the Client ’s place).
Then in parallel it runs the Server recursively and continues as procedure stored
in x with y� parameters. When procedure x is finished the result r is sent back
to the Client ’s place which name is stored in p .

The whole distributed system is defined in term System where Client ’s place
and Server ’s place are computed in parallel:

()

(, ,). ().

(, ,).(| . ())

[] || []

def

def

s c
def

s p

c s

Proc x P

Client Proc z c y C

Server x y p Server x y r

System Client Server

=

=

= 〈 〉

=

w r

r w

�

�

� �

5.2.2 Dynamic Data Gethering

This example shows the model of simple mobile agent system. We define a
mobile agent, which travels from place to place and searches for information.

A user defined by term User needs additional information on a data represented
by name z . User launches mobile agent Seeker that dynamically travels among
nodes looking for result information r in distributed database and stores it in y .
If the information is found it is sent back to the User otherwise the Seeker
continues in next place. User is waiting for the result and in parallel it continues
with other independent work U .

Agent (, ,)Seeker x h l , where x is searched information, h is home place of the
User and l is local place of the agent, is reading the data from the local place l .
It reads either searching result or the name of the next place where to search. In
the first case it sends the result stored in y back to the User . In he second case it
moves a new instance of the agent to the new place p and ends

The whole system is defined in term System where each independent place is
sending either result information or the next place for searching:

1

1 1 1

1(, ,).(() |)

(, ,) (,). ()
(,). (, ,)

[] || [(,) (,)] ||

|| [(,) (,)]
n n n

def

p u

def

l h

l p

u p p i p

p p i p

User Seeker z u p y U

Seeker x h l x y y
x p Seeker x h p

System User z r z p

z r x p

= 〈 〉

= +
+ 〈 〉

= +

+

m r

r w
r m

w w

w w

"

"

M. Tomášek Computational Environment of Software Agents

 – 40 –

Conclusions and Future Work

Modeling rules presented in the paper seem to be very suitable tool for formal
description of distributed systems based on agent technology and technology of
mobile code. The formal semantics is useful for discussing the design of modeled
application and provides guidelines for its implementations in programming
languages.

Primitive actions defined in the model present communication and mobility as key
interactions for mobile agents. Abstraction of places, their parallel composition
and performing interactions within places are very natural for distributed system
architectures. These approaches in our model differ from very general π-calculus
and ambient calculus [9].

Security properties of distributed system are also very important area and research
on presented apparatus continues in this field [10, 11]. For example, presence of
typing information [12, 13] within the names can provide privacy and security
properties. In addition implementation of spi-calculus [14] primitives can add
usage of secure communication protocols to the model.

We also work on multi-agent system platform [15] where mobile agents can work
together to solve the common tasks. We use these models to define and to make
verification of communication schemes [16, 17] for mobile agents coordination
and cooperation within the multi-agent environment.

References

[1] Jennings, N. R., Wooldridge, M. J.: Applications of Intelligent Agents. In
N. R. Jennings, M. J. Wooldridge (eds.): Agent Technology: Foundations,
Applications, and Markets, Springer, Berlin, Heidelberg, New York, 1998,
pp. 3-28

[2] Harrison, C. G., Chess, D. M., Kershenbaum, A.: Mobile Agents: Are They
a Good Idea? Technical report, IBM Research Division, T. J. Watson
Research Center, March 1995

[3] Baeten, J. C. M., Weijland, W. P.: Process Algebra. Cambridge University
Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1990

[4] Šimoňák, S., Hudák, Š.: Petri Net Semantics for ACP Terms. Vol. 4, No. 1,
Košice, 2004, pp. 55-59

[5] Milner, R.: Communication and Concurrency. Prentice Hall, 1989

[6] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I
and II, Information and Computation, 100, 1992, pp. 1-77

[7] Milner, R.: Communicating and Mobile Systems: the -Calculus. Cambridge
University Press, Cambridge, New York, Melbourne, 1999

Acta Polytechnica Hungarica Vol. 5, No. 2, 2008

 – 41 –

[8] Fuggetta, A., Picco, G. P., Vigna, G.: Understanding Code Mobility.
Software Engineering, 24(5), May 1998, pp. 342-361

[9] Cardeli, L., Gordon, A. D.: Mobile ambients. Theoretical Computer
Science 240, 2000, pp. 177-213

[10] Tomášek, M.: Specification Issues of Communication and Code Mobility.
Acta Electrotechnica et Informatica, Vol. 4, No. 3, pp. 56-60, Košice, 2004

[11] Tomášek, M.: Vyjadrenie dynamiky mobilných programov. PhD. Thesis,
Technical University of Košice, Košice, 2004 (in Slovak)

[12] Pierce, B., Sangiorgi, D.: Typing and Subtyping for Mobile Processes. In
Proceedings of LICS '93, IEEE Press, 1993

[13] Kobayashi, N., Pierce, B., Turner, D.: Linearity and the -Calculus. In
Proceedings of POPL '96, 1996

[14] Adabi, M., Gordon, A. D.: A Calculus for Cryptographic Protocols: the
Spi-Calculus. In Proceedings of the Fourth ACM Conference on Computer
and Communications Security, ACM Press, April 1997, pp. 36-47

[15] Krokavec, M., Paralič, M., Andričík, M., Tomášek, M.: Mobile Agent
Based Distributed Programming. In D. Kocur, A. Filasová, J. Šaliga (eds.):
3rd Internal Scientific Conference of the Faculty of Electrical Engineering
and Informatics (3rd ISC'2003), pp. 37-38, Košice, Slovakia, May 28, 2003

[16] Tomášek, M.: Concepts for Mobile Agents Interaction. In M. Jelšina, J.
Kollar (eds.): Proceedings of Scientific Conference with International
Participation Computer Engeneering and Informatics '99 (CEI '99), Košice
- Herľany, Slovakia, October 14-15, 1999, pp. 259-264

[17] Tomášek, M.: Distributed System Based on Technology of Mobile Agents.
Acta Electrotechnica et Informatica, Vol. 1, No. 1, Košice, 2001, pp. 55-60

