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Abstract: 
In this paper the applicability of an adaptive control based on a novel branch of 
Computational Cybernetics is illustrated for two different, imperfectly and 
inaccurately modeled particular physical sytems. One of them is a water tank 
stirring cold and hot water as input and releasing the mixture through a long pipe. 
The mass flow rate and the temperature are prescribed at the free end of the exit 
pipe while the taps at the input side can diretly be controlled. Due to the 
incompressibility of the fluid the variation of the mass flow rate of the output is 
immediately observableat the pipe’s end and is related to the control action at the 
input taps, while its effect on the temperature becomes measurable at the free end 
of the pipe only after a delay time needed for the fluid to flow through the pipe. 
This results in asymmetric and non-constant delay time. The other paradigm is the 
thermal decay of the molecular nitrogen during a throttling down process. As is 
well known chemical reactions hav very drastic non-linearities and it is not easy 
to construct their “exact” or satisfacorily avccurate model. The fundamental 
principles of this new branch of Computational Cybernetics are briefly presented 
in the paper. To some extent it is similar to the traditional Soft Computing, but by 
using a priori known, uniform, lucid structure of reduced size, it can evade the 
enormous structures so characteristic to the usual approach. Clumsy 
deterministic, semi-stochastic or stochastic machine learning is replaced by 
simple, short, explicit algebraic procedures especially fit to real time applications. 
The costs of these advantages may manifest themselves in the expected limitation 
of the applicabilityof this new approach. However, the simulation results 
exemplify the applicability of the new method in the control of systems of strong 
non-linearities and asymmetric delay time.  
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1 Introduction 

A new approach for the adaptive control of imprecisely known dynamic systems 
under unmodeled dynamic interaction with their environment was initiated in [1]. 
In the family of the adaptive control methods this new one lays between the linear 
PID/ST and the parameter identification approaches.  

Instead of the supposed analytical model's parameters the control is tuned as in the 
PID/ST, but it offers the possibility of using several parameters of some abstract 
Lie groups fit to the needs of the „non-linear control”. In the same time these 
parameters may be considered as that of the system model's, though they are not 
the part of its detailed analytical description. This „non-analytical modeling” is 
akin to the Soft Computing philosophy.  

In this approach adaptivity means that instead of the simultaneous tuning of 
numerous parameters, a fast algorithm finding some linear transformation to map 
a very primitive initial model based expected system-behavior to the observed one 
is used. The so obtained „amended model” is step by step updated to trace changes 
by repeating this corrective mapping in each control cycle. Since no any effort is 
exerted to identify the possible reasons of the difference between the expected and 
the observed system response, it is referred to as the idea of "Situation-Dependent 
Partial System Identification". This anticipates the possibility for real-time 
applications. 

Regarding the appropriate linear transformations several possibilities were 
investigated and successfully applied. E.g. the „Generalized Lorentz Group” [2], 
the „Stretched Orthogonal Group”, the “Partially Stretched Orthogonal 
Transformations” [3], and a special family of the „Symplectic Transformations” 
[4] can be mentioned. 

The key element of the new approach is the formal use of the „Modified 
Renormalization Transformation”. The „original” transformation was widely used 
e.g. by Feigenbaum in the seventies to investigate the properties of chaos [5-7]. Its 
useful property from our special point of view is that this (originally scalar) 
transformation modifies the solution of an x=f(x) fixed-point problem, since the 
adaptive control was formulated as a fixed-point problem, too [8]. The 
modification of the original transformation was necessary due to 
phenomenological reasons. Satisfactory conditions of the complete stability of the 
so obtained control for Multiple Input-Multiple Output (MIMO) systems were also 
highlighted in [8] by the means of perturbation calculation. This means the most 
rigorous limitation regarding the circle of possible application of the new method. 
To release this restriction to some extent “ancillary” but simple interpolation 
techniques and application of “dummy parameters” were also introduced in [8].  

The applicability of the method was investigated for electro-mechanical and 
hydrodynamic systems via simulation [9-10]. These systems were exempt of any 
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kind of delay or lag. In this paper a quite simple but lucid typical non-linear 
paradigm, a water tank of open outlet is chosen to be the subject of the new type 
adaptive controller. It contains continuous non-linearities due to the velocity-
dependent resistance of the pipelines, saturated (bounded) non-linearities set by 
the temperature of the „warm” and the „cold” input water to be mixed in the tank, 
and the open input of the tank making it impossible for the fluid to flow back in 
the input pipes. Further non-linear limitation is that the velocity of the flow 
leaving the tank is unique function of the density and full mass of the fluid exiting 
the tank, so it cannot be directly controlled: only the mass flow rate of the cold 
and warm input is controllable. Furthermore, since the mass flow rate and the 
temperature of the required output is defined and measured only at the end of the 
pipe serving as the outlet, while the input is directly controllable at the location of 
the tank, the temperature signal contains considerable lag. (Due to the 
incompressibility of the liquid the velocity signal of the flow doesn’t suffer from 
considerable delay.)  

In the sequel at first the basic principles of the adaptive control are described, then 
the models and the simulation results for the particular paradigms considered are 
given. Following the presentation of the typical simulation results the conclusions 
are drawn. 

2 The basic principles of the adaptive control 

From purely mathematical point of view the control task can be formulated as 
follows. There is given some imperfect model of the system on the basis of which 
some excitation is calculated to obtain a desired system response id as e=ϕ(id). The 
system has its inverse dynamics described by the unknown function  
ir=ψ(ϕ(id))=f(id) and resulting in a realized response ir instead of the desired one, 
id. Normally one can obtain information via observation only on the function f() 
considerably varying in time, and no any possibility exists for directly 
"manipulaing" the nature of this function: only id as the input of f() can be 
“deformed” to id* to achieve and maintain the id=f(id*) state. [Only the model 
function ϕ() can directly be manipulated.] On the basis of the modification of the 
method of renormalization widely applied in Physics the following "scaling 
iteration" was suggested for finding the proper deformation: 
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in which the Sn matrices denote some linear transformations to be specified later. 
As it can be seen these matrices maps the observed response to the desired one, 
and the construction of each matrix corresponds to a step in the adaptive control. It 
is evident that if this series converges to the identity operator just the proper 
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deformation is approached, therefore the controller „learns” the behavior of the 
observed system by step-by-step amendment and maintenance of the initial model. 
(The response arrays may contain a „dummy”, that is physically not interpreted 
dimension of constant value, in order to evade the occurrence of the 
mathematically dubious 0→0, 0→finite, finite→0 cases.) 

Since (1) does not unambiguously determine the possibly applicable quadratic 
matrices, we have additional freedom in choosing appropriate ones. The most 
important points are fast and efficient computation, and the ability for remaining 
as close to the identity transformation as possible. In the present paper an 
orthogonal transformation is created which transforms the realized vector into a 
vector parallel with the desired one while leaves the orthogonal sub-space of these 
two vectors unchanged. Then proper stretching/shrinking factor is calculated 
which makes the absolute value of the realized vector equal to that of the desired 
one. On this basis two linear operators are created which apply the appropriate 
stretches/shrinks in the “realized” one-dimensional sub-spaces, rotate them to be 
parallel to the “desired” directions, and leave the orthogonal sub-spaces 
unchanged [3]. This operation evidently equals to the identity operator if the 
desired response just is equal to the desired one, and remains in the close vicinity 
of the unit matrix if the non-zero desired and realized responses are very close to 
each other. In the application of the above method it was implicitly supposed that 
practically the „desired” and the „observed” responses were simultaneously 
observable/available. 

3 Description of the water tank 

The water tank considered is an open vessel into which hot and cold water of fixed 
temperatures T1=10 °C, and T2=90 °C is purred from the top. The mass flow rates 
of the input components 21, MM  [kg/s] are directly controllable via electric 
valves. According to [11] the density of the water in the above temperature range 
is 999.7 kg/m3 within 3.4 % precision, so it is approximated with the mean value 
over this interval as ρ=982.48 kg/m3 as a constant. The cross-sectional area of the 
tank is A=1 m2, and it is supposed to be high enough to contain all the amount of 
the liquid occurring in the calculations. At the bottom level of the tank a pipe of 
diameter D=1.8×10-1 m, length L=10 m, and relative internal surface roughness of 
krel=1.5×10-2 is attached. The pressure increase with respect to the environmental 
pressure, that is the actual pressure difference driving the water flow in the pipe is 
Δp=M(t)g/A Pa if g=9.87 m/s2 is the gravitational acceleration, and M(t) in kg 
units denotes the actual mass of the fluid in the tank. By neglecting the minor 
pressure losses at the exit at the tank and the free end of the pipe, the velocity of 
the flow in the pipe, u is determined by the equation 
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in which f is the non-dimensional friction factor, and μ denotes the dynamic 
viscosity of the fluid. The viscosity mainly depends on the fluid temperature, and 
in the given range it varies within the range of [3.11×10-4, 1.3×10-3] kg/(m×s). The 
non-dimensional expression Re:=ρuD/μ defines the Reynolds Number. The 
f(Re,krel) function is given in the well-known Moody Diagram [12]. At the given 
numerical value of krel f practically is constant (1.21×10-2) if Re is greater than  
10-5. Allowing Mmin=100 kg minimum mass of water in the tank and supposing 
that f=1.21×10-2 (1) yields the minimum seeped of water flow as umin=0.86 m/s to 
which the Re≅1.16×105 values belongs if the maximum value of the viscosity in 
the given range is taken into account. Therefore, if the mass of the fluid in the tank 
remains over 100 kg, the flow in the pipe will be fully turbulent with a constant 
f=1.21×10-2 friction factor. For the given pipe length a delay time of about a few 
seconds can be expected for the temperature signal. 

Regarding the mixing of the cold and warm water, the heat capacity of the fluid 
mainly depends on the temperature and varies in the interval [4.193, 4.208] 
kJ/(kg×°K), that is it can also be considered to be constant. 

Under the above conditions the operation of the tank can be approximated by the 
following differential equations: 
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in which T denotes the temperature of the mixed fluid in the tank, and 3M  means 

the mass flow rate at the output. While T  can directly be controlled by the valves 
at the input, the output mass flow rate cannot. This gives the system a kind of 
„inertia”. Only the time-derivative of the output mass flow rate can be directly 
controlled due to the conservation of the mass of the fluid as 
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For the directly controllable quantities therefore the following pair of equations is 
obtained: 
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in the integration of which (4) and (6) can also be used. Regarding the problem of 
the delay of observation, the quantities in (4-7) are to be taken in common time 
instant if they are measured/observed immediately at the tank. However, if the 
temperature is measured at the outlet of the pipe, one has to distinguish between 
the actual values in the tank and in the outlet. It can be stated, that if t is the time 
of the observation, and the input valves are controlled by fast electronic signals, 
than 

 ( ) ( )( )ttTtT TankObs δ−=  (8) 

n which the lag δ(t) is determined by the equation 
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Due to the incompressibility of the liquid and the fast electric signals the mass 
flow rates are immediately observable and no such distinction has to be 
done.Principles of the adaptive control 

However, in the case of the present paradigm the effect of the control action 
immediately can be observed on the output mass flow rate, but its observation 
suffers from a lag δ(t) as far as temperature is concerned. This „asymmetry” is 
tackled in the control in the following way. If a P-type controller is applied, an 
exponentially asymptotic trajectory reproduction is prescribed by defining certain 
„desired” time-derivatives in the following manner: 
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where the indices D, N, and R refer to the „desired”, „nominal”, and the „realized” 
(actual) values, and α controls the speed of the desired error-relaxation. In the 
adaptive version, in the lack of any time lag, the matrices in (10) were constructed 
from the pair 
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where C denotes the „dummy” parameter introduced due to pure technical reasons 
only. In the „asymmetric” case, if t measures the time at the outlet of the pipe the 
error term fed back in (11) can be replaced by 
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expressing the fact that the actual response observable at the end of the pipe at 
time „t” can be related to a control action based on a desired derivative computed 
previously at t-δ(t), since the observed values at t correspond to the available 
„freshest” information on that control action. On the same basis, the S matrices of 
the adaptive law at time t are calculated from the pair of vectors 
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In similar way, if instead of a P-type a PI-type control becomes necessary to 
calculate the desired derivatives in the linear control approach, it is reasonable to 
compute the integrated error with the same delay as above, and the adaptive 
matrices have to be computed from the so obtained counterpart of (12). 

Since amongst the conditions for which the convergence of the method was 
proved near-identity transformations were supposed in the perturbation theory, a 
parameter ξ measuring the „extent of the necessary transformation”, a „shape 
factor” s, and a „regulation factor” λ can be introduced in a linear interpolation 
with small positive ε1, ε2 values as 
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This interpolation reduces the task of the adaptive control in the more critical 
session and helps to keep the necessary linear transformation in the vicinity of the 
identity operator. 

4 Simulation results for the water tank 

In the simulations the non-adaptive and the adaptive controls’ results are 
compared to each other α=0.25 1/s proportional, and β=10-3×α s-2, that is with a 
very small integrating coefficient in Fig. 1. As a rough system model, as an 
analogy of (6), constant coefficients a, b, c, and d were used as 

( ) dMMcMMbMaT −+=+= 21321 , . 
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Figure 1. The operation of the simple PID (left column) and the adaptive (right 

column): prescribed and simulated mass flow rate [kg/s], prescribed and simulated 
temperature [°C], and the angle of the necessary step-by-step abtsract rotation (for 

the non-adaptive version it is calculated only without being used) vs. time [s] 

 



 34

In Fig. 2 the mass flow rate and temperature tracking error, the delaya time, and 
the regulating factor λ are given for the adaptive controller to reveal some details. 
It can be seen that adaptivity causes considerable amendment in the accuracy of 
the control. 

5 Thermal decay of the molecular nitrogen 

The simplest examples of the chemical reactions are the reactions taking place in 
the mixtures of ideal gases. The thermodynamic model of these gases can be 
reconstructed by the use of certain “basic data” belonging to the temperture 
dependence of the equilibrium constant, the stoichiometric coefficients of the 

 

 
Figure 2. The tracking error for the mass flow rate [kg/s] and the temperature [°C], 

the time delay [s], and the regulating factor λ of the adaptive controller vs. time 
[s]. 
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reaction and the chemical potential of the appropriate components in the mixture. 
If the chemical reaction is written in the form using positive or negative rational 
stoichiometric coefficients νi and symbolic notations for the components Ai as 

 ∑ ⇔
i

ii A 0ν , (15) 

and the model of the components is built up from the temperature-dependence of 
the molar heat of the gas cv(T) at constant volume by using the functions  
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(R denotes the universal gas constant, T denotes the actual temperature in [°K] 
units, and T0 is an arbitrary positive starting point of integration), the internal 
energy and the entropy of the mixture take the form as 
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It can clearly be seen that ii s00 ,ε  denote the molar internal energy and entropy of 
the components at temperature T0. The pair of equations (16) and (17) makes it 
possible to deduce all the thermal data of the mixture. Via applying the 2nd 
Postulate of Thermodynamics for the thermal equilibrium of the mixture we 
obtain the socalled “Mass Action Law” stating that the exclusively temperature-
dependent “equilibrium constant” K(T) and the full pressure of the system p 
imposes a restriction to the possible chemical composition of the mixture.  
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On one hand, by measuring the temperature, the pressure, and the chemical 
composition of the mixture validity of (19) can be verifyed and K(T) can be 
tabulated. On the other hand it is related to the model of the mixture in the 
following form: 
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The chemical potential of the “pure” components just are equal to their molar 
Gibbs potential also related to the model. By the use of tabulated data describing 
the molar Gibbs potential of certain components the individual model functions of 
these components can be found as, e.g. for the molecular nitrogen as 
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If our mixture consists of atomic and molecular nitrogen only (20) and (21) 
togeher determines ψN, too, for the atomic nitrogen. Since the entropy constants 
are built in in the ψ functions, and for since for the internal energy constants the 
relation 
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can be deduced, too, the energy constants of the atomic nitrogen can also be 
computed rom that of the molecular one. 

Whenever a well defined amount of mixture of N and N2 gases is in thermal 
equilibrium at a given temperature and pressure is throttled down to a prescribed 
pressure p, its full enthalpy H(T,p,NN2,NN), and its full mass M(NN2,NN) is 
conserved, furthermore the mixture has to satisfy the Mass Action Law at this 
lower pressure p. These three equations determine the new value of T, NN2, and NN 
at this lower pressure. Via applying various numerical fitting techniques no 
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Figure 3. The mole fraction of the atomic nitrogen [non-diemnsional] 

during the process of throttlin down at low pressure [Pa] and high 
temperature 



 37

detailed here, by the use of the MICROSOFT EXCEL’s SOLVER a third order 
polynomial was fitted to the xN(p) mole fraction of the atomic component of the 
mixture. The result is illustrated in Fig. 3. 

6 Adaptive control of the thermal decay 

In this case the controller’s task is to giarantee an appropriate p(t) function to 
produce a gas of nominal xN

N(t) composition. For this purpose the time derivative 
of the p(t) function can directly be controlled. As a rough system model a constant 
value serving as the estimation of the pxN ∂∂  derivative is used. Being a SISO 
system, for the control of this reaction scalar multiplication factors are used in the 
following form: 
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in which ε is a very small number of about 10-25 order of magnitude to avoid both 
division and multiplication by zero in the control algorithm. 

In Fig. 4 the nominal and simulated mole fraction values are described for the the 
non-adaptive and the adaptive approach, while Fig. 5 describes the tracking error 
in more details. It is evident that the adaptive completion of the control 
significantly increases the quality of the control. 

To reveal details in Fig. 6 describes the desired and simulated speed of change in 
the pressure for the non-adaptive and the adaptive control. The differences are 
quite significant in the non-adaptive case. 

Finally, in Fig. 7 the variation of the adaptive parameter (the scalar s(n) 
multiplication factors) are described for the non-adaptive [not used but calculated 
only] and the adaptive cases. It is evident that the consecutive corrections of the 
adaptive control are very close to 1, while the similar graph pertaining to the non-
adaptive case conveys information on the modeling errors and inaccuracies. 

5 Conclusions 

In this paper the behavior of the conventional PID and that of an adaptive control 
based on a novel branch of Computational Cybernetics were compared to each 
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other in the case of controlling an approximately modeled non-linear system 
having considerable and non-constant delay time.  

The simulation results made it clear that a simple increase in the integrating 
coefficient can cause considerable improvement in the control but cannot 
approach the accuracy of the adaptive control when the delay time is important.  

The here presented approach evades the sizing and learning problems having 
central significance in the rather traditional branch of soft computing [e.g. 14-20] 
by applying simple uniform operations in finite number of algebraic steps. The 

 

 
Figure 4. The nominal and the simulated mole fraction of atomic nitrogen in 

the non-adaptive and the adaptive case 

 



 39

size of the vectors and matrices used by it is simply determined by the modeled 
number of the degree of freedom of the system to be controlled. The “costs” of 
these advantages appear in the relatively limited class of problems for which the 
novel method can be applied.  

The critical point is the proper convergence of the series of the linear 
transformations.  

However the here-investigated paradigms suggests that from practical point of 
view the class of problems for which the new approach can be applied may be 
quite wide and may have drastic non-linearities, and time lag, too. 

 

 
Figure 5. The tracking error of the non-adaptive and the adaptive control 

 

 

 
Figure 5. The tracking error of the non-adaptive and the adaptive control 
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Figure 6. The desired and simulated speed of change in the pressure for the 

non-adaptive and the adaptive control  
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Figure 7. The adaptive variable in the case of the non-adaptive and the 
adaptive control (calculated only but not used in the non-adaptive case) 
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