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Abstract: This paper proposes a method for multi-modal perception of human-friendly 
robot partners based on various types of sensors built in a smart phone. The proposed 
method can estimate human interaction modes by fuzzy spiking neural network. The 
learning method of the spiking neural network based on the time series of the measured 
data is explained as well. Evolution strategy is used for optimizing the parameters of the 
fuzzy spiking neural network. Several experimental results are presented for confirming the 
effectiveness of the proposed technique. Finally, the future direction on this research is 
discussed. 
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1 Introduction 
Recently, the rate of elderly people rises in the super-aging society in many 
countries. For example, the rate is estimated to reach 23.8% in Tokyo in 2015 [1]. 
In general, the mental and physical care is very important for elderly people living 
home alone. Such elderly people have little chances to talk to other people and to 
perform daily physical activity. Human-friendly robots can be used as partners in 
daily communication to support the care of elderlies. Furthermore, various types 
of human-friendly robots such as pet robots, amusement robots, and robot partners 
have been developed to communicate with people [2-4]. However, it is difficult 
for a robot to converse with a person appropriately even if many contents of the 
conversation are designed beforehand, because the robot must have personal 
information and life logs required for daily conversation. Furthermore, in addition 
to verbal communication, the robot should understand non-verbal communication, 
e.g., facial expressions, emotional gestures, and pointing gestures. We have used 
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various types of robot partners such as MOBiMac, Hubot, Apri Poco, palro, miuro, 
and other robots for information support to elderly people, rehabilitation support, 
and robot edutainment [5-9]. In order to popularize robot partners, the price of a 
robot partner should be as low as possible. Therefore, we have also been 
developing on-table small sized robot partners called iPhonoid and iPadrone 
[10,11]. In this paper, we focus on how to use sensors that a smart phone or a 
tablet PC equipped with.  

Various types of concepts and technologies on ubiquitous computing, sensor 
networks, ambient intelligence, disappearing computing, intelligent spaces, and 
other fields have been proposed and developed to realize information gathering, 
life support, safe and secure society [12-17]. One of the most important issues in 
the concepts and technologies is the structuralization of information. The 
structuralization of information means to give qualitative meaning to data and 
quantitative information in order to improve the accessibility and usability of 
information. We can obtain huge size of data through sensor networks, however 
useful, meaningful and valuable information should be extracted from such data.  

We have proposed the concept of informationally structured space to realize the 
quick update and access of valuable and useful information for people and robots 
[18,19]. The sensing range of both people and robot is limited. If the robot can 
obtain the exact position of the robot itself, people, and objects in an environment, 
the robot does not need any sensors for measuring such information. As a result, 
the weight and size of the robot can be reduced, since many sensors can be 
removed from the robot. The received environmental information is more precise 
because the sensors equipped in the environment are designed suitable to the 
environmental conditions. Furthermore, if the robot can share the environmental 
information with people, the communication with people might become very 
smooth and natural. Therefore, we have proposed methods for human localization 
[20,21], map building [22], and 3D visualization [23]. Various types of estimation 
method of human state have been proposed. We applied spiking neural network 
[24,25] for localizing human position, estimating human transportation mode [26], 
and learning pattern of daily life of elderly people [27]. 

In this paper the sensors of a smart phone is used for estimating human interaction 
modes. As the computational power of a smart phone is not so high compared to a 
standard PC, we should reduce the computational cost as much as possible. 
Computational intelligence techniques are able to find good compromise between 
computational cost and solution accuracy. In this paper fuzzy spiking neural 
network is proposed for estimating human interaction modes. Additionally, 
evolution strategy is used for optimizing the parameters of the fuzzy spiking 
neural network. The performance of estimation is analyzed by several 
experimental results.   

This paper is organized as follows. Section II explains the hardware specification 
of robot partners applied in this study, the interaction modes, and the sensory 
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inputs from a smart phone. Section III proposes the method of estimating human 
interaction modes. Section IV shows several experimental results. Finally, Section 
V summarizes this paper, and discusses the future direction to realize human-
friendly robot partners. 

2 Robot Partners using Smart Phones 

2.1 Robot Partners 
Recently, various types of smart phone and tablet PC have been developed, and 
their price is decreasing year by year [28]. Furthermore, the embedded system 
technology enables to miniaturize such a device and to integrate it with many 
sensors and other equipments. As a result, we can get a mechatronics device 
including many sensors, wireless communication systems, GPU and CPU 
composed of multiple cores with low price. Furthermore, elderly people 
unfamiliar with information home appliances have started using tablet PC [29], 
because touch panels and touch interfaces have been popularized at ticket 
machines and information services in public areas. Therefore, we started the 
development project on on-table small sized human-friendly robot partners called 
iPhonoid and iPadrone based on smart phone or tablet PC to realize information 
support for elderly people (Figs.1 (a) and (b)). Since iPhone is equipped with 
various sensors such as gyro, accelerometer, illumination sensor, touch interface, 
compass, two cameras, and microphone, the robot itself is enough to be equipped 
with only cheap range sensors. The mobile base is equipped on the bottom, 
however the mobile base is not used on the table for safety’s sake. In order to 
control the actuators of a robot partner from the smart phone or tablet PC, wireless 
LAN and wireless PAN (Bluetooth) can be used in addition to a wired serial 
communication. 

 

(a) iPhonoid                                          (b) iPadrone 

Figure 1 
Robot partners using a smart phone and a tablet PC 
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(a) Voice recognition                (b) A gesture 

Figure 2 
Robot behaviors for social communication with people 

Basically, human detection, object detection, and voice recognition are performed 
by smart phone or tablet PC. Furthermore, touch interface is used as a direct 
communication method. The robot partner starts the multi-modal interaction after 
a smart phone is attached to the robot base. We use touch interface on the smart 
phone or tablet PC as the nearest interaction with the robot partner. The facial 
parts are displayed as icons for the touch interface on the display (Fig.2). Since the 
aim of this study is to realize information support for elderly people, the robot 
partner provides elderly people with their required information through the touch 
interface. The eye icon and mouth icon are used for providing the visual 
information and text information, respectively. 

 

 

Figure 3 
Interaction with robot partners from different view points 

The ear icon is used for direct voice recognition because it is difficult to perform 
high performance of voice recognition in the daily communication with the robot 
partner. If the person touches the mouth icon, then the ear icon appears, and the 
voice recognition starts. The voice recognition is done by Nuance Mobile 
Developer Program (NMDP). NMDP is a self-service program for developers of 
iOS and Android application [30]. In this way, the total performance of multi-
modal communication can be improved by combining several communication 
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modalities of touch interface, voice recognition, and image processing. The 
conversation system is composed of (A) daily conversation mode, (B) information 
support mode, and (C) scenario conversation mode [5-9]. 

2.2 Interaction Modes 
We can discuss three different types of robot partners using a smart phone or a 
tablet PC from the interactive point of view: a physical robot partner, a pocket 
robot partner, and a virtual robot partner (Fig.3). These modes are not independent, 
and we interact with the robot partner based on several modes. Interaction modes 
mean the ways how we interact with the robot partner. We can interact with a 
physical robot partner by using multi-modal communication like with a human. 
The interaction is symmetric. The other one is a virtual robot partner. The virtual 
robot partner exists in the virtual space in the computer and can be considered as a 
computer agent, but we can interact with it through the virtual person or robot by 
immersing him or her in the virtual space. Therefore, the interaction is symmetric. 
The pocket robot partner has no mobile mechanism, but we can easily bring it 
everywhere and we can interact with the robot partner by touch and physical 
interface. Furthermore, the pocket robot partner can estimate the human situation 
by using internal sensors such as illumination sensor, digital compass, gyro, and 
accelerometer. The advantage of this device is in the compactness of integrated 
multi-modal communication interfaces in a single device.  

Each style of robot partners is different, but the interaction modes depend on each 
other, and we interact with the robot partner with the same knowledge on personal 
information, life logs, and interaction rules.  

In this paper, since we use the facial expression on the display for human 
interaction (see Figs.1 and 2), the robot partner should estimate the human 
interaction mode: (a) the physical robot partner mode (attached on the robot base), 
(b) the pocket robot partner mode (having removed from the robot base), or (c) 
other mode (on the table, in the bag, or others). In this paper 7 interaction modes 
are defined which will be detailed in the experimental section and depicted in Figs. 
9 and 10. 

2.3 Sensory Inputs from Smart Phones 
We can use several sensory data measured by a smart phone. As depicted in Fig. 4,  
since iOS 4.0 there has been a Core Motion framework to deal with obtaining 
sensory data. The acceleration of human movement is calculated by using a high-
pass filter for the measured data by the accelerometer. The angular velocity is 
calculated by using a low-pass filter for the measured data by the gyro sensor. The 
iPhone’s attitude is calculated by the measured data of accelerometer, gyroscope, 
and magnetometer. The specification of the measured data is presented in Table 1. 
The data are updated in every 100 ms. 
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Table 1 
Specification of iPhone’s sensors 

Sensor Name Accelerometer Gyro Attitude 
Acquired data ax, ay, az 𝜔x, 𝜔y, 𝜔z pitch, roll, yaw 
Range of data -/+2.3G -/+90, -/+180, -/+180, -/+90, -/+180, -/+180, 

Time interval 100ms 100ms 100ms 

                     

                                    Figure 4              Figure 5 

    iOS Core Motion Framework for obtaining sensory data            Acceleration data of iPhone 

             

                                     Figure 6           Figure 7 
                       Angular velocity data of iPhone                                           iPhone’s attitude data 

The acceleration can be calculated as (Fig. 5): 

𝑎 𝑡 = 𝑎!(𝑡)! + 𝑎!(𝑡)! + 𝑎!(𝑡)!,     (1)
 

where ax(t), ay(t), and az(t) are the components of the acceleration in the unit 
directions at time t. 

The angular velocity is computed as (Fig. 6): 

𝜔 𝑡 = 𝜔!(𝑡)! + 𝜔!(𝑡)! + 𝜔!(𝑡)!,     (2)
 

where 𝜔x(t), 𝜔y(t), and 𝜔z(t) are the angular velocities at time t in the X-axis, Y-
axis, and Z-axis, respectively. 

The iPhone’s attitude is (Fig. 7):  
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θ x (t) =
θ x (t)
90!

,θ y (t) =
θ y (t)
180!

,θz (t) =
θz (t)
180!

,     (3) 

where θx(t), θy(t), and θz(t) are the pitch, roll, and yaw Euler angles at time t, 
respectively. 

Since the measured data includes noise, we have to use some smoothing functions. 
Although there are many methods for decreasing the noise, in our application the 
computation complexity is an important issue. We realize our system in a smart 
phone which has limited computational power compared to a PC. Therefore, two 
simple weighted moving averages are applied as presented in Eqs. (4) and (5), 
where d is the window length. In Eq. (4) the weights increase from the smallest 
weight at time (t-d+1) to the current data point at time t. In Eq. (5) the weights 
increase first, from the smallest weight at time (t-d/2) to the current point at time t, 
after that they decrease till time (t+d/2-1). In Eqs. (4) and (5) j indicates the input.   
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3 Fuzzy Spiking Neural Network for Estimation of 
Human Interaction Modes 

3.1 Fuzzy Spiking Neural Network 
We estimate the human interaction modes by fuzzy spiking neurons. One 
important feature of spiking neurons is the capability of temporal coding. In fact, 
various types of spiking neural networks (SNNs) have been applied for 
memorizing spatial and temporal context [31-33]. A simple spike response model 
is used in order to reduce the computational cost. In our model the SSN has fuzzy 
inputs, it is a fuzzy spiking neural network (FSNN) [25-27]. Figure 8 illustrates 
the FSNN model. We use evolution strategy to adapt the parameters of the fuzzy 
membership functions applied as inputs to the spiking neural network. Figure 9 
depicts the detailed structure of the FSNN model. The inputs of the FSNN are the 
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sensory data, the outputs are the interaction modes. We use 7 interaction modes as 
presented in Fig. 9. 

 

Figure 8 
Fuzzy spiking neural network 

 

 

Figure 9 
Detailed structure of fuzzy spiking neural network 

On the sensory input fuzzy inference is performed by: 
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∏ ⋅µAi , j
(x j )                     (7) 
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where ai,j and bi,j are the central value and the width of the membership function 
Ai,j and vi,j is the contribution of the j-th input to the estimation of the i-th human 
interaction mode. The result of fuzzy inference, yi, will be the input of the spiking 
neurons. 

The membrane potential, or internal state hi(t) of the i-th spiking neuron at the 
discrete time t is given by: 

  hi (t) = tanh(hi
syn(t)+ hi

ext (t)+ hi
ref (t)),       (8) 

where hi
syn(t) includes the pulse outputs from the other neurons, hi

ref(t) is used for 
representing the refractoriness of the neuron, hi

ext(t) is the input to the i-th neuron 
from the external environment. The hyperbolic tangent function is used to avoid 
the bursting of neuronal fires.  

The external input, hi
ext(t) is calculated based on the fuzzy inference in Eqs. (6) 

and (7), and it is equal to yi as illustrated in Fig. 9, thus: 

hi
ext (t) = vi, j ⋅exp −

(x j − ai, j )
2

bi, j

⎛

⎝⎜
⎞

⎠⎟j=1

M

∏
     

(9) 

Furthermore, hi
syn(t) indicates the output pulses from other neurons presented by 

dashed arrows in Fig. 9 in the output layer: 

  
hi

syn(t) = wj ,i ⋅hj
PSP (t −1)

j=1, j≠i

N

∑ ,
     

(10)
 

where wj,i is a weight coefficient from the j-th to the i-th neuron; hj
PSP(t) is the 

presynaptic action potential (PSP) approximately transmitted from the j-th neuron 
at the discrete time t; N is the number of neurons. When the internal state of the i-
th neuron is larger than the predefined threshold, a pulse is outputted as follows: 

  
pi (t) =

1 if hi (t) ≥ q pul

0 otherwise

⎧
⎨
⎪

⎩⎪       
(11) 

where qpul is a threshold for firing. The outputs of FSNN are the pi values as 
presented in Fig. 9. Thus, the output is the interaction mode i which for pi=1. If 
there are more than one neuron with output pulse 1 (i.e., ∃i, j i ≠ j pi = pj =1 ), 
then the output will be that one which fired in the previous step, t–1. If none fired, 
then the output neuron will be selected randomly. 

Furthermore, R is subtracted from the refractoriness value as follows: 

  
hi

ref (t) =
γ ref ⋅hi

ref (t −1)− R if pi (t −1) = 1

γ ref ⋅hi
ref (t −1) otherwise

⎧
⎨
⎪

⎩⎪     (12) 

where γref  is a discount rate and R>0.  



D. Tang et al. Supervised Learning Based Multi-modal Perception for Robot Partners using Smart Phones 

 – 148 – 

The spiking neurons are interconnected, and the presynaptic spike output is 
transmitted to the connected neuron according to the PSP with the weight 
connection. The PSP is calculated as follows: 

  
hi

PSP (t) =
1 if pi (t) = 1

γ PSP ⋅hi
PSP (t −1) otherwise

⎧
⎨
⎪

⎩⎪      (13) 

where γPSP is the discount rate (0< γPSP <1.0). Therefore, the postsynaptic action 
potential is excitatory if the weight parameter, wj,i is positive, and inhibitory if wj,i 
is negative. In our case we set wj,i=-0.2 in order to suppress the firing chance of 
other neurons when a given neuron fires. 

In the equations describing the three components of the internal state simple 
functions are used instead of the differential equations proposed in the original 
model of spiking neural network [33]. By the proposed simple spike response 
model we can keep the computational complexity at low level.  

3.2 Evolution Strategy for Optimizing the Parameters of 
FSNN 

We apply (µ+λ)-Evolution Strategy (ES) for the improvement of the parameters 
of fuzzy spiking neural network in the fuzzy rules. In (µ+λ)-ES µ andλindicate 
the number of parents and the number of offspring produced in a single generation, 
respectively [34]. We use (µ+1)-ES to enhance the local hill-climbing search as a 
continuous model of generations, which eliminates and generates one individual in 
a generation. The (µ+1)-ES can be considered as a steady-state genetic algorithm 
(SSGA) [35]. As it can be seen in Equations (6), (7), (9) and Figure 9, a candidate 
solution will contain the parameters of the fuzzy membership functions which 
play role in the input layer of the spiking neural network. These parameters are the  
central value (ai,j), the width (bi,j), and the contribution value (vi,j): 

gk = gk ,1 gk ,2 gk ,3 ... gk ,l⎡⎣ ⎤⎦
= ak ,1,1 bk ,1,1 vk ,1,1 ... vk ,n,m⎡⎣ ⎤⎦      

(14) 

where n is the number of human interaction modes; m is the number of inputs; 
l = n ⋅m  is the chromosome length of the k-th candidate solution. The fitness 
value of the k-th candidate solution is calculated by the following equation: 

fk = fk ,i
i=1

n

∑
       

(15) 

where fk,i is the number of correct estimation rates of the i-th human interaction 
mode. We compare the FSNN’s each output in the time sequence with the 
corresponding desired output. If the FSNN’s output is the same as the desired 
output, then we count this as a matching. The number of matchings for the i-th 



Acta Polytechnica Hungarica                                                                                                       Vol. 11, No. 8, 2014 

 – 149 – 

interaction mode is fk,i. Thus, the evaluation of the individual and consequently the 
learning process is performed in supervised manner. 

In (µ+1)-ES, only one existing solution is replaced with the candidate solution 
generated by crossover and mutation. We use elitist crossover and adaptive 
mutation. Elitist crossover randomly selects one individual, and generates one 
individual by combining genetic information between the selected individual and 
the best individual in order to obtain feasible solutions from the previous 
estimation result rapidly. The newly generated individual replaces the worst 
individual in the population after applying adaptive mutation on the newly 
generated individual. In the genetic operators we use the local evaluation values of 
the human interaction mode estimation. The inheritance probability of the genes 
corresponding to the i-th rule of the best individual is calculated by: 

pi =
1
2
⋅(1+ fbest ,i − fk ,i )

       
(16) 

where fbest,i and fk,i are the part of the fitness value related to the i-th rule (i-th 
genes) of the best and the randomly selected k-th individuals, respectively. By Eq. 
(16) we can bias the selection probability of the i-th genes from 0.5 to the 
direction of the better individual’s i-th genes among the best individual and the k-
th individual. Thus, the newly generated individual can inherit the i-th genes (i-th 
rule) from that individual which the better i-th genes has. After the crossover 
operation, an adaptive mutation is performed on the generated individual: 

 gk,h ← gk,h +αh ⋅(1− t /T ) ⋅N(0,1)                (17) 

where N(0,1) indicates a normal random value; αh is a parameter of the mutation 
operator (h stands for identifying the three subgroups in the individual related to a, 
b, and v); t is the current generation; and T is the maximum number of generations. 

4 Experimental Results 
This section shows comparison results and analyzes the performance of the 
proposed method. In the spiking neural network there are 5 inputs in the input 
layer: acceleration, angular velocity, and attitude of pitch, roll yaw. In the output 
layer there are 7 outputs related to the following 7 robot interaction modes (Fig. 
10): (1) TableMode(front), (2) TableMode(back), (3) RobotMode, (4) HandMode, 
(5) BreastPocketMode, (6) JacketPocketMode, (7) TrouserPocketMode. The 
parameters of the neural network are as follows: the temporal discount rate for 
refractoriness (γref) is 0.88, the temporal discount rate for PSP (γPSP) is 0.9, the 
threshold for firing (qpul) is 0.9, and R is 1. Fourteen training datasets and 4 test 
datasets are used in the experiments. When obtaining the training set, in the case 
of BreastPocketMode, JacketPocketMode, and TrouserPocketMode the person 
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was walking for about 2 minutes, then standing for about 2 minutes. In the 
TableModes, RobotMode, and HandMode there was no motion. 

            

Figure 10 
Robot interaction modes 

Figure 11 illustrates the experimental example of the measured smart phone mode. 
The cyan line is the high-pass filtered data measured by the accelerometer. The 
green line depicts the angular velocity calculated by the low-pass filtered data 
measured by the gyro sensor. The red line is the attitude of pitch data. The blue 
line is the attitude of roll data. The pink line is the attitude of yaw data. The 
second part of Fig. 11 shows the target output (blue line) and the estimated output 
by FSNN (red line). The number of spiking neurons is 5. These neurons are used 
for measuring the 7 robot interaction modes. 

In the first experiment the sensor’s raw data are used as input to the FSNN. Figure 
11 shows experimental results by using the raw data of the second training dataset. 
In this case the phone is put on the table by the front side (a), and the person takes 
it in hand (b). Thereafter he/she puts the phone in jacket pocket (c) and takes out 
the phone putting it on the robot base (b,d). After that the person puts the phone in 
trouser pocket (b,e). Then he/she takes out the phone putting it on the table by the 
back side (b,f), and finally he/she takes the phone putting it in breast pocket (b,g). 
The number of fitting data is 16911 from 19213 training data in the case of second 
dataset. There are 14 training datasets, the total number of fitting data is 64936 
from 72638 training data, and the running time is 4410 ms. The fitting rate is 
89.4%. Figure 12 shows experimental results by using the raw data of second test 
dataset. The number of fitting data is 5966 from 7974 test data. There are 4 test 
datasets, the total number of fitting data is 31377 from 40096 test data, and the 
running time is 1688 ms. The fitting rate is 78.3%. 
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Figure 11 
Experimental results by using the raw data for training dataset 2 

 

Figure 12 
Experimental results by using the raw data for test dataset 2 

In order to reduce the noise we have to use some smoothing functions as 
mentioned in Section 2. We apply two different kinds of weighted moving 
averages. In the second experiment we present results by using smoothing 
function described in Eq. (4). Figure 13 depicts the result for second training 
dataset. The number of fitting data is 18234 from 19213 training data. The total 
number of fitting data using all training datasets is 63659 from 72638 training data, 
the running time is 4445 ms, and the fitting rate is 87.6%. Figure 14 shows 
experimental results by using smoothing function in Eq. (4) for test dataset 2. The 
number of fitting data is 6911 from 7974 training data. The total number of fitting 
data using all test datasets is 34327 from 40096 test data, the running time is 1609 
ms, the fitting rate is 85.6%. 
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Figure 13 
Experimental results by using the smoothing function in Eq. (4) for training dataset 2 

 

 

Figure 14 
Experimental results by using the smoothing function in Eq. (4) for test dataset 2 

In the third experiment, we present experimental result by the other smoothing 
function defined by Eq. (5). Figure 15 illustrates the results for second training 
dataset. In the case of second training dataset the number of fitting data is 18507 
from 19213, and for all training datasets the total number of fitting data is 69356 
from 72638, the running time is 4438 ms, the fitting rate is 95.5%. Figure 16 
shows experimental results by using smoothing function in Eq. (5) for test dataset 
2. The number of fitting data is 7499 from 7974 test data. The total number of 
fitting data for all test datasets is 36842 from 40096 test data, the running time is 
1610 ms, the fitting rate is 91.9%. 
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Figure 15 
Experimental results by using the smoothing function in Eq. (5) for training dataset 2 

 

Figure 16 
Experimental results by using the smoothing function in Eq. (5) for test dataset 2 

In the fourth experiment we use evolution strategy for optimizing the parameters 
of FSNN. The population size is 100, the number of generations is 6000, and the 
evaluation time step is 1000, αa=0.01, αb=0.005, αv=0.05. Figure 17 illustrates the 
best results by ES for the raw data of second training dataset. The total number of 
fitting data using all training datasets is 68933 from 72638. The application of ES 
has an additional computational cost. The running time is 684259 ms, the fitting 
rate is 94.9%. Figure 18 shows the result for second test dataset after using 
evolution strategy for optimizing the parameters of FSNN based on training 
datasets. In the case of test datasets the total number of fitting data is 34842 from 
40096 test data. The running time is 1810 ms, the fitting rate is 86.9%. 
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Figure 17 
Experimental results by using ES for parameter optimization for training dataset 2 (for raw data) 

 

Figure 18 
Experimental results by using FSNN for test dataset 2 after parameter optimization (for raw data) 

Figure 19 depicts the best results by ES for training dataset 2 when using 
smoothing function in Eq.(4). The total number of fitting data using all training 
datasets is 69441 from 72638. The running time is 683293 ms, the fitting rate is 
95.6%. Figure 20 shows the result for second test dataset when using smoothing 
function in Eq.(4) after using evolution strategy for optimizing the parameters of 
FSNN based on training datasets. In the case of test datasets the number of fitting 
data is 35805 from 40096 test data. The running time is 1743 ms, the fitting rate is 
89.3%. 

Figure 19 
Experimental results by using ES for parameter optimization for training data set 2 (using smoothing 

function in Eq. (4)) 

 

Figure 20 
Experimental results by using FSNN for test dataset 2 after parameter optimization (using smoothing 

function in Eq. (4)) 

Figure 21 presents the best results by ES for training dataset 2 when using 
smoothing function in Eq.(5). The total number of fitting data using all training 
datasets is 70604 from 72638. The running time is 654505 ms, the fitting rate is 
97.2%. Figure 22 shows the result for second test dataset when using smoothing 
function in Eq.(5) after using evolution strategy for optimizing the parameters of 
FSNN based on training datasets. In the case of test datasets the number of fitting 
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data is 37730 from 40096 test data. The running time is 1586 ms, the fitting rate is 
94.1%. 

 

Figure 21 
Experimental results by using ES for parameter optimization for training data set 2 (using smoothing 

function in Eq. (5)) 

 

Figure 22 
Experimental results by using FSNN for test dataset 2 after parameter optimization (using smoothing 

function in Eq. (5)) 

Table 2 summarizes the experimental results. The best results were obtained by 
evolution strategy. 

Table 2 
Summary of experimental results 

Sensor Name Experiment Number of 
data 

Number 
of fitting 

data 
Fitting 

rate 
Running 
time(ms) 

Raw data 
traning 72638 64936 89.4% 4410 

test 40096 31377 78.3% 1688 

Smoothing function Eq.(4) 
traning 72638 63659 87.6% 4445 

test 40096 34327 85.6% 1609 

Smoothing function Eq.(5) 
traning 72638 69356 95.5% 4438 

test 40096 36842 91.9% 1610 

ES for raw data 
traning 72638 68933 94.9% 684259 

test 40096 34842 86.9% 1810 

ES for Smoothing function Eq.(4) 
traning 72638 69441 95.6% 683293 

test 40096 35805 89.3% 1743 

ES for Smoothing function Eq.(5) 
traning 72638 70604 97.2% 654505 

test 40096 37730 94.1% 1586 
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5 Summary 
In this paper, we proposed a method for estimating human interaction mode using 
accelerometer, gyro, and magnetometer. First, we introduced the robot partners 
applied in this paper. Next, we proposed an estimation method of human 
interaction modes using evolution strategy and fuzzy spiking neural network 
based on a simple spike response model. In the experimental results we showed, 
that the proposed method is able to estimate human interaction modes based on 
iPhone’s sensors.  

As a future work, we intend to improve the learning performance according to 
human life logs, and extend the method by combining it with the estimation of 
human transport modes which has been presented in [26] . 
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