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Abstract: Active stabilisation of the 2 and 3 degrees-of-freedom (DoF) aeroelastic wind sections
with structural nonlinearities led to various control solutions in the recent years. The paper
proposes a control design strategy to stabilise the 3 Dof aeroelastic model. It is assumed that
the aeroelastic model has uncertain parameters in the trailing edge dynamics and only one state
variable, the pitch angle is measurable, therefore, robust output feedback control solution is
derived based on the Tensor Product (TP) type convex representation of the aeroelastic model.
The control performance requirements include robust asymptotic stability and constraint on the
l2 norm of the control signal. The control performance requirements are formulated in terms of
Linear Matrix Inequalities (LMIs). As the first step of the proposed strategy, the TP type model
is obtained by executing TP transformation. As the second step, LMI based control design is
performed resulting in controller and observer solution defined with the same polytopic structure
as the TP type model. The validation and evaluation of the derived control solutions is based on
numerical simulations.

Keywords: aeroelastic wing, robust LMI-based multi-objetive control, TP model transformation,
qLPV systems

Nomenclature

The variables used in the paper are defined as below:

- a = non-dimensional distance from the mid-chord to the elastic axis

- b = semi-chord of the wing – m

- ch = the plunge structural damping coefficients – Nms/rad
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- clα = aerofoil coefficient of lift about the elastic axis

- clβ = trailing-edge surface coefficient of lift about the elastic axis

- cmα ,e f f . = aerofoil moment coefficient about the elastic axis

- cmβ ,e f f . = trailing-edge moment coefficient about the elastic axis

- cα = the pitch structural damping coefficient – Nms/rad

- h = plunging displacement – m

- Iα = the mass moment of inertia – kgm2

- kh = the plunge structural spring constant

- kα(α) = non-linear stiffness contribution

- L = aerodynamic force – N

- M = aerodynamic moment – Nm

- m = the mass of the wing – kg

- U = free stream velocity – m/s

- xα = the non-dimensional distance between elastic axis and the center of mass

- α = pitching displacement – rad

- β = control surface deflection – rad

- ρ = air density – kg/m3

1 Introduction

Stabilisation of aeroelastic wing section is an actively investigated research area by
aerospace and control engineers with a general overview given in [1]. The Nonlinear
Aeroelastic Test Apparatus (NATA) model with 3 degrees-of-freedom (DoF) and un-
steady aerodynamics was designed in [2, 3] with several control solution approaches
found in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] to name a few. These papers include
adaptive control, nonlinear backstepping adaptive control, neural network based ap-
proach, optimal infinite-horizon control law, full-state feedforward/feedback control
and other control design approaches. A mixed H∞/H2 scheduling control system
was presented in [16]. An improved 3 DoF NATA model with Linear Quadratic
Regulator (LQR) control solution was proposed in [17].

Tensor Product (TP) model transformation based approach was utilised with the ap-
plication of Linear Matrix Inequalities (LMIs) in several papers. Full state feedback
control for the 2 DoF NATA is proposed in [18], which was improved with output
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feedback control in [19]. The control performance was further improved by manip-
ulation of the convex hull of the polytopic model in [20]. The 2 DoF NATA was
modelled with nonlinear friction in [21], which was utilised for TP model based
control design in [22]. A TP model based output feedback control solution is given
in [23], which is based on the improved 3 DoF aeroelastic model presented in [17].

The aim of the paper is to propose a control design strategy to robustly stabilise the
NATA model given in [17] with uncertain parameters. Besides, the designed control
solution has to fulfil criteria of having bounded l2 norm of the control signal. It
is assumed that the only one state, pitch angle and the free-stream velocity are
measurable, therefore, output feedback control solution is utilised.

TP type convex polytopic representation of the quasi-Linear Parameter Varying
(qLPV) NATA model is obtained by TP model transformation, which is immedi-
ately applied for LMI-based control design. TP model transformation is capable of
determining various convex representations of the same qLPV model, as well as it
can allow the qLPV model to be defined by analytical equations, soft-computing
representation or given by numerical data sets. The control design and performance
criteria are formulated in terms of LMIs and the control solution results in controller
and observer defined by a common polytopic structure of the qLPV model.

The paper shows that defining the uncertainties of qLPV models with various struc-
tures has a large influence of the LMI feasibility tests resulting in different control
performance solutions.

The paper is structured as follows: the equations of motion and the qLPV represen-
tation of the 3 DoF NATA model are given in the following section. The proposed
control design methodology is introduced in Section 3 followed by the control de-
sign results in Section 4. Section 5 provides numerical simulations with evaluation
and the conclusions are provided at the end of the paper.

2 qLPV Model of the 3 DoF NATA Model

The present investigation utilises the NATA model introduced by [16, 17]. The model
has three degrees of freedom: plunge h, pitch α and trailing-edge surface deflection
β and the equations of motion are the following:

 mh +mα +mβ maxab+mβ rβ +mβ xβ mβ rβ

maxab+mβ rβ +mβ xβ Îα + Îβ +mβ r2
β
+2xβ mβ rβ Îβ + xβ mβ rβ

mβ rβ Îβ + xβ mβ rβ Îβ mxα b Iα

 ḧ
α̈

β̈

+ (1)

ch 0 0
0 cα 0
0 0 cβservo

 ḣ
α̇

β̇

+

kh 0 0
0 kα(α) 0
0 0 kβservo

 h
α

β

=

 −L
M

kβservoβdes

 .
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Based on [17] kα(α) = 25.55−103.19α +543.24α2. The quasi-steady aerodynamic
force and moment is given as:

L = ρU2bClα

(
α +

ḣ
U

+

(
1
2
−a
)

b
α̇

U

)
+ρU2bclβ β (2)

M = ρU2b2Cmα,e f f .

(
α +

ḣ
U

+

(
1
2
−a
)

b
α̇

U

)
+ρU2bCmβ ,e f f .β .

L and M above are valid for the low-velocity regime. The trailing-edge servo-motor
dynamics based on [17] can be defined as:

Îβ β̈ + cβservo β̇ + kβservoβ = kβservouβ . (3)

With the combination of equations (1), (3) and (2) one results in:

 mh +mα +mβ maxab+mβ rβ +mβ xβ mβ rβ

maxab+mβ rβ +mβ xβ Îα + Îβ +mβ r2
β
+2xβ mβ rβ Îβ + xβ mβ rβ

mβ rβ Îβ + xβ mβ rβ Îβ mxα b Iα


︸ ︷︷ ︸

Meom

 ḧ
α̈

β̈

+ (4)

+

 ch +ρbSClαU
( 1

2 −a
)

bρbSClαU 0
−ρb2SCmα,e f f U cα −

( 1
2 −a

)
bρb2SCmα,e f f U 0

0 0 cβservo


︸ ︷︷ ︸

Ceom

 ḣ
α̇

β̇

+

+

kh ρbSClαU2 ρbSClβ U2

0 kα(α)−ρb2SCmα,e f f U
2 −ρb2SCmβ ,e f f U

2

0 0 kβservo


︸ ︷︷ ︸

Keom

 h
α

β

=

 0
0

kβservo


︸ ︷︷ ︸

Feom

u.

where: Meom is the mass matrix of the equation of motion, Ceom is the damping
matrix of the equation of motion, Keom is the stiffness matrix of the equation of
motion, Feom is the forcing matrix of the equation of motion.

The equation above was converted into qLPV state space formulation as:

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

=


ḣ
α̇

β̇

h
α

β

 and u(t) = uβ ,
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with the state and input matrices given as:

A(p(t)) =
(
−M−1

eomCeom(p(t)) −M−1
eomKeom(p(t))

−I 0

)
, B =

(
M−1

eomFeom
0

)
. (5)

In case x5(t) = α is the only measurable state the output and feed-through matrices
are the following:

C =
(
0 0 0 0 1 0

)
, D = 0. (6)

The system matrix can be constructed in the following way:

S(p(t)) =
(

A(p(t)) B
C D

)
(7)

The system parameters are taken from [17], and they are the following:

mh = 6.516 kg; mα = 6.7 kg; mβ = 0.537 kg; xα = 0.21; xβ = 0.233; rβ = 0 m;
a = −0.673 m; b = 0.1905 m; Îα = 0.126 kgm2; Îβ = 10−5; ch = 27.43 Nms/rad;
cα = 0.215 Nms/rad; cβservo = 4.182×10−4 Nms/rad; kh = 2844; kβservo = 7.6608×
10−3; ρ = 1.225 kg/m3; Clα = 6.757; Cmα,e f f =−1.17; Clβ = 3.774; Cmβ ,e f f =−2.1;
S = 0.5945 m.

3 The Proposed Control Design Methodology

3.1 Reconstruction of the TP type polytopic model

TP model transformation with its mathematical background and application in LMI
based control design was introduced and elaborated in [24, 25, 26, 27, 23]. The
most important definitions corresponding to TP model transformation and TP type
polytopic representation are the following:

Definition 1 (Finite element TP type convex polytopic model - TP model): S(p(t)) in
(7) for any parameter is given as the parameter-varying convex combination of LTI
system matrices S ∈ RO×I .

S(p(t)) =
I1

∑
i1=1

I2

∑
i2=1

..
IN

∑
iN=1

wn,in(pn(t))Si1,i2,..,iN = S
N
�

n=1
wn (pn (t)) , (8)

where p(t) ∈ Ω. The coefficient tensor S ∈ RI1×I2×···×In×O×I has N +2 dimensions, it
is constructed from the LTI vertex systems Si1,i2,...,iN (8) and the row vector wn (pn (t))
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contains one variable and continuous weighting functions wn,in(pn(t)), in = 1 . . . IN . In
order to get convex representation the weighting functions satisfy the following criteria:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0,1]; (9)

∀n, pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (10)

Definition 2 (NO/CNO, NOrmal type TP model): The TP model is NO (normal) type
model if its weighting functions are Normal, that is if it satisfies (9), (10), and the largest
value of all weighting functions is 1. The convex TP model is CNO (close to normal) if
it satisfies (9), (10) and the largest value of all weighting functions is 1 or close to 1.

TP model transformation is a numerical method allowing the transformation of qLPV
models given as (7) to TP type polytopic model defined in (8) enabling the immedi-
ate application of LMI based control design. TP model transformation is also capable
to find TP type approximations of the original model with arbitrary accuracy. qLPV
models can be given as analytical equations based on physical considerations, as the
result of soft-computing based identification techniques, or as an outcome of black-
box identification. The transformation can be executed within a reasonable amount
of time and can replace the analytical conversions by a tractable numerical operation
carried out in a routine-like fashion.

3.2 Uncertainty structure

Based on the derivation presented in [28] it is assumed that the uncertain model
takes the following structure:

ẋ(t) =(A(p(t))+Da(p(t))∆a(t)Ea(p(t)))x(t)
(B(p(t))+Db(p(t))∆b(t)Eb(p(t)))u(t),

(11)

where the uncertain blocks ∆a(t) and ∆b(t) satisfy

‖∆a(t)‖ ≤
1
γa
, ∆a(t) = ∆

T
a (t), (12)

‖∆b(t)‖ ≤
1
γb
, ∆b(t) = ∆

T
b (t) (13)

and Da(p(t)), Ea(p(t)), Db(p(t)) and Eb(p(t)) are known scaling matrices.
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3.3 Control structure

The implementation of full state feedback control is not always straightforward since
in many cases the measurement of all states can lead to high sensor cost or measure-
ment difficulties and in some cases the states do not correspond to physical values.
In the present case it is assumed that only the pitch angle α of the NATA system is
measured, therefore output feedback control structure is utilised. The observer has to
be designed in such a way that it satisfies x(t)− x̂(t)→ 0 as t → ∞, where x̂(t)
denotes the state-vector estimated by the observer. Since parameter vector p(t) does
not contain values from the estimated state-vector x̂(t), the control design strategy
presented in [29, 28] was utilised:

ˆ̇x(t) = A(p(t))x̂(t)+B(p(t))u(t)+K(p(t))(y(t)− ŷ(t))
ŷ(t) = C(p(t))x̂(t),

where u(t) =−F(p(t))x(t).

The current investigation applies a control design strategy that yields a controller
and an observer, which have share the same polytopic structure of the model itself
as:

ˆ̇x(t) = A
N
�

n=1
wn(pn(t))x̂(t)+B

N
�

n=1
wn(pn(t))u(t)+K

N
�

n=1
wn(pn(t))(y(t)− ŷ(t))

ŷ(t) = C
N
�

n=1
wn(pn(t))x̂(t)

u(t) =−
(

F
N
�

n=1
wn(pn(t))

)
x(t).

(14)

The control design aims in determining gains F and K that lead to stable output-
feedback control structure. The LTI feedback gains Fi1,i2,...,iN and LTI observer gains
Ki1,i2,...,iN are stored in tensor F and K , which are called vertex feedback and
observer gains.

3.4 Control performance specifications formulated in terms of LMIs

A large number LMIs guaranteeing various control performance specification has
been developed for polytopic systems, which can be readily applied to design vertex
controller and observer gains. The control performance objectives of the present
investigation are the following:
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• Asymptotically stable controller and observer;

• Robust stability of the controller for parameter uncertainties.

• Constrain on the control value.

LMI theorems derived in [28] are selected for the control design.

Theorem 1 (Globally and asymptotically stable controller for uncertain qLPV sys-
tems) A controller stabilising the uncertain qLPV system (11) can be obtained by solv-
ing the following LMIs for P > 0 and Mr (r = 1, . . . ,R)

Srr < 0,

Trs < 0,

where

Srr =


(
PAT

r +ArP−BrMr−MT
r BT

r
)

Dar Dbr PET
ar −MT

r ET
br

DT
ar −I 0 0 0

DT
br 0 −I 0 0

EarP 0 0 −γ2
a I 0

−EbrMr 0 0 0 −γ2
b I

 ,

and

Trs =





PAT
r

+ArP
−BrMs
−MT

s BT
r

+PAT
s

+AsP
−BsMr
−MT

r BT
s


Dar Dbr Das Dbs PET

ar −MT
s ET

br PET
as −MT

r ET
bs

DT
ar −I 0 0 0 0 0 0 0

DT
br 0 −I 0 0 0 0 0 0

DT
as 0 0 −I 0 0 0 0 0

DT
bs 0 0 0 −I 0 0 0 0

EarP 0 0 0 0 −γ2
a I 0 0 0

−EbrMr 0 0 0 0 0 −γ2
b I 0 0

EasP 0 0 0 0 0 0 −γ2
a I 0

−EbsAr 0 0 0 0 0 0 0 −γ2
b I
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for r < s ≤ R, except the pairs (r,s) such that ∀p(t) : wr(p(t))ws(p(t)) = 0 and where
Mr = FrP.

The feedback gains can be obtained from the solution of the above LMIs as Fr =MrP−1.

Theorem 2 (Globally and asymptotically stable controller with constraint on the con-
trol value) The simultaneous solution of the LMIs of Theorem 1 and Theorem 2 in the
form of:

φ
2I≤ P(

P Mr
T

Mr µ2I

)
≥ 0

yields an asymptotically stable controller, where ‖u(t)‖2 ≤ µ is enforced at all time and
‖x(0)‖2 ≤ φ .

Theorem 3 (Globally and asymptotically stable observer) Assume the polytopic model
(8) and a control structure as given by (14). An asymptotically stable observer can be
obtained by solving the following LMIs for P > 0 and Nr (r = 1, . . . ,R):

AT
r P−CT

r NT
r +PAr−NrCr < 0,

AT
r P−CT

s NT
r +PAr−NrCs +AT

s P−CT
r NT

2 +PAs−NsCr < 0

for r < s≤ R, except the pairs (r,s) such that ∀p(t) : wr(p(t))ws(p(t)) = 0, and where
Nr = PKr. The observer gains can derived from the solution of the above LMIs as
Kr = P−1Nr.

4 Control Design Results

4.1 TP model transformation of the NATA model

The first step of the control design is to obtain a polytopic form of the NATA model.
This step was achieved by the execution of TP model transformation on the state
matrix of the NATA model given by (5). Prior executing TP model transformation
the transformation space Ω and the discretization grid M has to be defined. Ω was
defined in the interval U ∈ [8,20](m/s) and α ∈ [−0.3,0.3](rad) and the discretiza-
tion grid is defined as M1×M2, where M1 = 137 and M2 = 137. The HOSVD-based
canonical form for the discretized tensor S D ∈ RM1×M2×7×7 results in rank 2 in the
first dimension and rank 3 in the second dimension. The exact CNO type convex
representation of the NATA model can be given by 6 vertex LTI systems, the same
number as in the case of the HOSVD-based canonical form. The weighting functions
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w1,i(U), i = 1..2, and w2, j(α), j = 1..3 of the HOSVD-based canonical form and the
CNO type convex form are depicted in Figure 1.
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Figure 1
HOSVD-based canonical (left) and CNO type (right) weighting functions of the dimensions α and U .

4.2 LMI-based output feedback controller design

4.2.1 Defining the uncertainty in the trailing-edge servo-motor dynamics

The trailing-edge servo-motor was investigated in [17] resulting in dynamics as given
in (3) with parameters kβservo and cβservo . However, it can be assumed that the values
of these parameters have some uncertainty, therefore the aim of this section is to
define the uncertain structure of the trailing-edge servo-motor dynamics based on
(11) in order to design a control system, which can asymptotically stabilize the
uncertain qLPV system.

Parameter kβservo appears in elements A16(p(t)), A26(p(t)) and A36(p(t)) of state
matrix A(p(t)) and in elements B11, B21 and B31 of input matrix B while parameter
cβservo appears in elements A13, A23 and A33 of state matrix A(p(t)) based on which
the uncertain blocks ∆a(t) and ∆b(t) can be defined as:

∆a(t) =
(

∆kβservo
(t) 0

0 ∆cβservo
(t)

)
(15)

and

∆b(t) =
(

∆kβservo
(t)
)
, (16)

where functions ∆kβservo
(t) and ∆cβservo

(t) are bounded functions representing the
discrepancy between the actual and nominal values of parameters kβservo and cβservo
respectively.

In order to match the uncertain parameters with the corresponding elements of the
system matrix S(p(t)) scaling matrices Da(p(t)), Ea(p(t)), Db(p(t)) and Eb(p(t))
have to be defined.
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Proposition 1 There are two basic possibilities in constructing the scaling matrices
which results in the same overall uncertain structure of (11), however, the different
structures can highly influence the LMI feasibility tests (see results in the following
section).

Uncertainty structure 1

Da =



−M−1
eom13

cβservo −M−1
eom13

kβservo

−M−1
eom23

cβservo −M−1
eom23

kβservo

−M−1
eom33

cβservo −M−1
eom33

kβservo

0 0
0 0
0 0

 , Ea =

(
0 0 1 0 0 0
0 0 0 0 0 1

)
(17)

and

DT
b =

(
M−1

eom13
kβservo M−1

eom23
kβservo M−1

eom33
kβservo 0 0 0

)
, Eb = 1. (18)

Uncertainty structure 2

Da =



−M−1
eom13

−M−1
eom13

−M−1
eom23

−M−1
eom23

−M−1
eom33

−M−1
eom33

0 0
0 0
0 0

 , Ea =

(
0 0 cβservo 0 0 0
0 0 0 0 0 kβservo

)
(19)

and

DT
b =

(
M−1

eom13
M−1

eom23
M−1

eom33
0 0 0

)
, Eb = kβservo . (20)

4.2.2 Control design results

The CNO type convex polytopic representation on the NATA model can be immedi-
ately applied for LMI-based control design. The following controllers and observers
were designed based on various control performance specifications for both Uncer-
tainty structure 1 and Uncertainty structure 2.
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Proposition 2 Defining the maximal allowable difference between the nominal and ac-
tual values of parameters kβservo and cβservo for a given control solution can be done in
the following way:

Recall that the uncertain blocks ∆a(t) and ∆b(t) were defined as

∆a(t) =
(

∆kβservo
(t) 0

0 ∆cβservo
(t)

)
, ∆b(t) =

(
∆kβservo

(t)
)

and they satisfy

‖∆a(t)‖ ≤
1
γa
, ‖∆b(t)‖ ≤

1
γb
.

Since ∆a(t) is a diagonal matrix it has a norm that equals the absolute value of its
largest element; ∆b(t) is a scalar value having a norm equal to its absolute value. Ma-
trix ∆a(t) contains ∆b(t), therefore γa can be set to equal γb. The maximal discrepancy
of the two parameters are given as

∆
max
kβservo

=
1
γa
≥ |∆kβservo

(t)|;

∆
max
cβservo

=
1
γa
≥ |∆cβservo

(t)|,

where superscript "max" stands for the maximal allowable difference.

In the following the differentiation for Control solution n.1 and n.2 stands for Un-
certainty structure 1 and 2 respectively.

Control solution 1.1 and 1.2

Control solutions 1.1 and 1.2 were designed with the aim to find the minimal value
for γa = γb allowing the maximal uncertainties in parameters kβservo and cβservo the
controller can asymptotically stabilize. The feedback gains were designed by ap-
plying the LMIs from Theorem 1 and the observer gains by applying LMIs from
Theorem 3.

Control solution 1.1 achieved γamin = γbmin = 1.44 while control solution 1.2 resulted
in γamin = γbmin = 1.77.

Control solution 2.1 and 2.2

The aim in designing Control solutions 2.1, 2.2, 3.1, 3.2, 4.1 and 4.2 was to find
a trade-off between the maximal allowable parameter discrepancy and keeping the
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control signal as low as possible. The feedback gains were derived by applying the
LMIs from Theorems 1 and 2 with the initial state condition bound set as φ = 0.002
for each design. The observer gains for each solution were derived by applying
LMIs from Theorem 3.

In case of Control solution 2.1 and 2.2 the maximal allowable discrepancy between
the nominal and actual parameter was set to 50% resulting in γamin = γbmin = 2.
The minimal values for the control constrain µ that leads to feasible controller was
µmin = 44 for Control solution 2.1 and µmin = 13286 for Control solution 2.2.

Control solution 3.1 and 3.2

γamin = γbmin = 5 was set for Control solution 3.1 and 3.2 yielding feasible solutions
with µmin = 26 for Control solution 3.1 and µmin = 3672 for Control solution 3.2.

Control solution 4.1 and 4.2

The minimal value of µmin = 22 for Control solution 4.1 and µmin = 3595 for Con-
trol solution 4.2 was achieved by setting γamin = γbmin = 10.

5 Simulation Results and Evaluation

5.1 Simulation

The responses of the control solutions were verified by numerical simulations. The
base free stream velocity is chosen to equal U = 14.1m/s for two reasons; first, it
belongs to the critical free stream velocity range where the NATA model exhibits
limit cycle oscillations, second, to be comparable with the results of several previ-
ous papers, which used the same speed in their measurements or simulations. The
controller was turned off for five seconds at each simulation to let the oscillations
develop, but the figures bellow show only that part of the responses where the
controller is turned on.

Each controller was tested in two simulation cases:

• Simulation case 1 represents the response without any perturbations. In or-
der to fully test the allowable uncertainty ranges, functions ∆kβservo

(t) and
∆cβservo

(t) were set as:

– ∆kβservo
(t) =

1
γamin

sin

(
6πt +

π

2

)
;

– ∆cβservo
(t) =

1
γamin

sin(10πt);
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where γamin takes the minimal value corresponding to each control solution.

• Simulation case 2 represents system that has several perturbations that can
occur during physical implementation. Simualtion case 1 was extended with
the following perturbations:

– the computational delay is represented by 1 ms constant time delay;

– the control signal is saturated at ±2[rad/s];

– the sensor noise is represented by normally distributed random noise with
10% variance;

– the free stream velocity varies as U(t) = 14.1+5sin(2πt);

– input disturbance ud(t) =
30

180
π is added to the control signal 1 second

after the controller is turned on;

Figures 2 and 3 show the time response of the closed loop system for Control solu-
tion 2.1 and 2.2 for Simulation case 1, Control solution 2.1 and 2.2 for Simulation
case 2, Control solution 3.1 and 3.2 for Simulation case 1 and Control solution 3.1
and 3.2 for Simulation case 1 respectively.

5.2 Evaluation

Each control solution can asymptotically stabilise the NATA model, however, it is
important to note that the control solutions guarantee stability within the domain Ω.
The control performance of each control solution is evaluated based on the maximal
allowable parameter uncertainty, maximal control signal and settling time.

• Control solution 1.1 and 1.2 - maximal allowable parameter uncertainty (70%
for solution 1.1 and 56.5% for solution 1.2); very high control signal (umax
is in the order of magnitude of 105); settling time approximately 1s for Sim-
ulation case 1. Control solutions 1.1 and 1.2 were not able to stabilize the
NATA system as the high feedback gains lost stability due to the time delay
in Simulation case 2. Difficult for practical implementation due to high control
signals.

• Control solution 2.1 and 2.2 - high allowable parameter uncertainty (50%),
high control signal magnitude (umax = 150 for Control solution 2.1 and umax =
250 for Control solution 2.2); settling time approximately 1s for Simulation
case 1 and approximately 1.5s for Simulation case 2. High allowable parame-
ter uncertainty for acceptable control signal magnitude.

• Control solution 3.1 and 3.2 - acceptable allowable parameter uncertainty
(20%), low control signal magnitude (umax = 35 for Control solution 3.1 and
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Figure 2
Time response of Control solution 2.1 and 2.2 for Simulation case 1 (first row) and Simulation case 2

(second row).

umax = 7.8 for Control solution 3.2); settling time approximately 1s for Simu-
lation case 1 and approximately 1.5s for Simulation case 2. Low control signal
magnitude for acceptable parameter uncertainty.

• Control solution 4.1 and 4.2 - minimal allowable parameter uncertainty (10%),
smallest control signal (umax = 15 for Control solution 4.1 and umax = 7 for
Control solution 4.2); settling time approximately 1s for Simulation case 1 and
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Figure 3
Time response of Control solution 3.1 and 3.2 for Simulation case 1 (1. and 2. row) and Simulation case 2

(3. and 4. row).

approximately 1.5s for Simulation case 2. Further decrease in the allowable
uncertainty does not decrease the control signal significantly.

Generally, it can be concluded that maximising the allowable parameter uncertainties
without a constrain on the control value leads to unacceptably high control signals.
On the other hand, it is possible to find a trade-off between the maximal acceptable
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uncertainty and the limit of the control signal magnitude. In this term, Control
solution 3.2 achieved the best results in the simulations. Control solution 2.1 can
be a chosen in case higher uncertainty is a requiremed. Decreasing the allowable
uncertainty to very low levels however, does not results in significant decrease in the
control signal magnitude.

It can be noted that it is worth to test various uncertainty structures (Uncertainty
structure 1 and 2 in the present case), as it highly influences the LMI feasibility
results. Uncertainty structure 1 led to better control performance at higher allowable
uncertainties, while Uncertainty structure 2 was more favourable at lower parameter
uncertainties.

There is no significant difference in the settling time in any control solution.

The LMIs defining the constrain on the control signal lead to large differences
between the smallest control signal bounds in case of Uncertainty structure 1 and 2,
which imply high conservativity of bound µ , however, within the same uncertainty
structure it can indicate the control signal magnitude effectively.

The control performance of the derived solutions can be compared to results found in
other publications dealing with the same NATA model. LQR controller was designed
in [17] with somewhat longer settling time and lower control signals, however,
the model has nonlinearity only in the dimension of U and full state feedback is
utilised instead of output feedback. Similar control performance was achieved in
[23] and in [18], which was expected as the same control design methodology was
utilised. However, [18] designed controller for the 2 DoF NATA model, while there
is no robustness involved in the control design of [23]. LQR based output feedback
controller is designed in [30] with similar control performance as Simulation case 1
in the present investigation.

6 Conclusions

The proposed control design strategy based on Tensor Product model transforma-
tion can be executed systematically in a routine-like fashion and can include various
forms control performance specifications formulated in terms of Linear Matrix In-
equalities. The paper gives a robust stabilising output feedback control solution for
the three degrees-of-freedom Nonlinear Aeroelastic Test Apparatus that can involve
parameter uncertainties. Finding an acceptable trade-off between maximal allowable
uncertainties and the upper bound of the control signal value was straightforward
based on the systematic execution of the numerical control design. It was shown
that varying the structure of the same uncertainty of quasi-Linear Parameter Vary-
ing systems can highly influence the feasibility tests of Linear Matrix Inequalities
and thus the resulting control performance. Both, out of the two possible uncertainty
structures available, can lead to good control performance depending the actual spec-
ifications, meaning it is worthwhile to investigate both structures for the given task.
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