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Abstract: The use of digital microscopy allows diagnosis through automated quantitative 

and qualitative analysis of the digital images. Often to evaluate the samples, the first step is 

determining the number and location of cell nuclei. For this purpose, we have developed a 

GPGPU based data-parallel region growing algorithm that is equally as accurate as the 

already existing sequential versions, but its speed is two or three times faster 

(implementing in CUDA environment), but this algorithm is very sensitive to the 

appropriate setting of different parameters. Due to the large number of parameters and due 

to the big set of possible values setting those parameters manually is a quite hard task, so 

we have developed a genetic algorithm to optimize these values. Our evolution-based 

algorithm that is described in this paper was used to successfully determine a set of 

parameters that compared to the results with the previously known best set of parameters 

means a significantly improvement. 
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1 Introduction 

Our work focuses on the segmentation of images containing hematoxilin-eosin 

stained colon tissue samples (Fig. 1). There are several procedures to identify the 

main structures in these images and a lot of them based on a reliable cell nuclei 

detection method (these procedures need the exact locations of the cells). 

There are several image processing algorithms for this purpose [1][2][3][4][5], but 

some factors could increase the challenge. The size of the images can easily reach 

the order of few 100 Megabytes, therefore the image processing speed plays an 

important factor. 
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Figure 1 

HE stained colon tissue 

One of the most promising alternatives is the region growing approach; it can 

correctly separate structures but it is too slow for practical usage. Parallelizing the 

region growing algorithm aims at providing better execution times, while 

delivering the similar outcome produced by the sequential version [4]. We have 

developed a GPGPU based region growing algorithm [6], and implemented it in 

CUDA environment. The new method is 25–65% faster than the CPU based 

implementations and its accuracy is the same. 

The different steps of the region growing algorithm (pre-processing, the region 

growing itself, separation of merged cells) require fairly much (in our 

implementation, twenty-seven) parameters which can be considered as 

independent variables since their effects on each other is unknown. Every 

parameter greatly affects the output of the algorithm, so to define an optimal set of 

parameters we have to treat all parameters simultaneously. Due to the large 

number of the parameters manual method is practically hopeless; we need an 

intelligent system [7] that finds the best values. Therefore we have developed a 

genetic algorithm, which tries to find the most optimum set of parameters from the 

available parameter collection.  

2 Description of the Parallel Region Growing 

Algorithm 

2.1 Detection of Seed Points 

In the first step of region growing, we have to find the most intensive point of the 

image that complies with some. In case of the GPGPU implementation this means 

multiple points, becase we can execute multiple cell nucleus searches parallel. The 

adjacent seed points can cause problems (we must avoid overlapping cell nuclei), 
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which would require a lot of computational time to administer. We know the 

maximum radius of a cell nucleus, so we can presume that the searches started 

from two seed points (that are at least four times further apart than this known 

distance) can be handled as independent searches; so they can be launched in the 

same time. 

A quick overview of our complex searching algorithm (full description about this 

algorithm is given in our previous paper [6]): 
1. The points that matches the starting condition and that have the biggest 

intensity must be collected into an Swaiting set (since we only store the 
intensity on 8 bits, it is likely that there will be more than one points). To 
achive this we can use the atomic operations of the GPGPU. 

2. One element is selected from the Swaiting set, and it is moved to the Sconfirmed 
set. We can use the GPGPU capabilities therefore every seed point is 
checked by a seperate thread. 

3. In the Swaiting set, we examine the next element: we check if any of the 
elements from the set Sconfirmed collide with the parallelized processing of 
this element (they collide, if the distance of the two points is below the 
critical threshold). If there is no collision, then this element is moved into 
the Sconfirmed as well, otherwise it stays where it is. We repeat step 3 until we 
run out of elements in the Swaiting set, or we find no more suitable points, or 
the Sconfirmed set is full (its size is the same as the number of the parallelized 
region growing runs we want to execute simultaneously). 

4. We launch the region growing kernel using the seed points that are in the 
Sconfirmed set. 

5. After the execution of the kernel, we store the results, we delete the 
contents of the Sconfirmed set, and the elements from the Swaiting set that no 
longer match the starting criteria. 

6. If there are still elements left in the Swaiting set, we continue with step 2. If it 

is empty, we continue the processing with step 1. 

This iteration is continued until the thread runs out of seed points, or the required 

amount of points is enough for the starting of the next region growing. 

2.2 Cell Detection with Parallel Region Growing 

The region growing itself iterates three steps until one of the stop conditions is 
met. A quick overview of the region growing iterations (full description about this 
algorithm is in our previous paper [6]): 

1. We have to check all the possible directions in which the contour can be 

expanded. This means the four-neighborhood of the starting point (in case of 

first iteration) or the pixels around the lastly accepted contour point (in case 

of further iterations). The examinations of these pixels are independent of 

each other, therefore we can process them in the same time: four threads 
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examine the different neighbors, whether they are suitable points for further 

expansion or not. 

2. All of the contour points must be evaluated to decide in which direction the 

known region should be expanded. For this, we have to evaluate a cost 

function [4] for every point. It is important to notice that some parameters of 

the cost function change at the insertion of every new point, so they have to 

be re-calculated in every iteration for every points. This is well parallelizable 

calculation, every thread counts the cost of a single contour point. 

3. The contour point with the smallest cost must be selected. We can use the 

atomicMin function to make the threads calculate the smallest cost. That 

contour point can be chosen to increase the region. 

After every iteration, a fitness function is evaluated that reflects the intensity 

differences between the region’s inner and outer contour, and the region’s 

circularity. The process goes until the region reaches the maximum size (in pixels 

or in radius), and its result is the state where the maximum fitness was reached [6]. 

We can start several region growing parallel. In this case we have to assign a 

single block to the processing of one single cell nucleus. 

3 Parameter Optimization Techniques 

It can be reasonably simple to create a model of the problem itself: we have 27 

mutually independent parameters with pre-defined target sets; we have a working 

region growing algorithm (and its implementation) that produces the list of cell 

nuclei (size, location, etc.) that can be found in a sample; and we also have an 

evaluation function [8] that determines an accuracy value that is defined by 

comparing the results of the aforementioned region growing algorithm with the 

slides that were annotated manually by qualified pathologists (further on, the 

“Gold Standard” or GS slides) available at our disposition. Our aim is to search a 

set of parameter values that gives us the best possible accuracy (which is a 

classical problem in the field of image segmentation [9]). This is a classic 

optimization task and as for such, we found several possible solution alternatives. 

3.1 Enumerative Methods 

The different search methods can be grouped into three distinct categories [10]: 

random, enumerative and calculus-based methods. The basic principle of the 

enumerative-based methods is to examine all possible solutions and then it selects 

the best from those [11]. This method could easily be adapted to our task; we 

should only list all possible combination of parameters, and then we could find the 
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best by using a simple linear search (thought it would be a good question that what 

resolution should be used to break up the different intervals into discrete values). 

It is guaranteed that this solution finds the best solution, but due to the large 

number of possible combinations, this method is practically useless for us. 

Thought we can influence the number of possibilities at some level (by arbitrarily 

narrowing down the target sets or decreasing the resolutions of the intervals); but 

in the case of a typical real-world configuration the evaluation could probably take 

years. And since we do not have exact information about the results of the various 

parameters and about their effects on each other, we cannot even reduce the search 

space using different heuristic methods either. 

3.2 Calculus-based Methods 

The other important group of methods contains the calculus-based methods where 

the reasonably large search space does not necessarily mean large computational 

needs, because there is no need to search through the whole problem space. In 

these cases, we start off an arbitrarily selected point, and then the algorithm (after 

every single evaluation) continues in the direction that at the given moment results 

in the greatest immediate positive advantage (the classical examples of this 

approach are the Greedy [12][13] and the Hill-Climbing [14] methods). 

Naturally we can implement this method to our problem as well: as a starting 

point, we can select any point in the parameter space, and then we can evaluate its 

immediate surroundings, and then we can move towards the point that has the 

biggest accuracy and continue our search from that place. These greedy 

algorithms can be reasonably fast in finding a result, but we can only guarantee 

that this result of parameter set will be a local optimum; however, we will have no 

clue about the relation of this local optimum with the global optimum. Since the 

parameters are loosely connected to each other, it is very likely that we will find 

many local maxima (points where the parameter set yields us reasonably good 

results but a slight modification will worsen these results).  

The disadvantage of this method is that there is no possibility for a backtrack, so 

once the search has ran into such a local maximum, we can only get to a different 

result by re-starting the whole process from a different starting point. 

The search is sensitive to its starting parameters, so of course it is possible to fine-

tune the results if we simply start several different search processes from different 

starting points, and then we compare the results of these. However, due to the 

large number of parameters, there can be many different possible starting points, 

and within a finite time, we can only examine a very small fraction of these. 

Furthermore, the large number of parameters poses another problem: because of 

this, the examination of the neighborhood of a single point can have very high 

computational needs if we want to test the outcome of all possible directions (what 
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is more, due to the large number of parameters, we would be forced to simplify 

this process, so we would lose the biggest advantage of the hill-climbing 

algorithm: that is, we risk that it will not find the local maximum as it originally 

should). 

3.3 Guided Random Search Techniques 

The third group of search methods is the random search group: in a strict sense it 

simply means that we examine randomly selected points within the problem space 

and we always store the one that yields the best results. On its own it will be less 

effective for us, for two reasons. Firstly, its execution time can get pretty high. 

Secondly, it gives us absolutely no guarantee of finding any kind of local or global 

optima within finite time. However, in practice, we can use the guided random 

search techniques [15]: they basically examine randomly selected points, but they 

try to fine-tune the selection method using various heuristics. 

Typical examples of these methods are the Tabu Search [16], the Simulated 

Annealing [17] and the Evolutionary Algorithms [15]. Out of these, the different 

evolution-based algorithms are the most interesting for us. The basis of these 

techniques is that various well-known biological mechanisms are used to execute 

various search and optimization algorithms. These algorithms share the same basic 

principle: newer and newer generations are calculated starting from an initial 

population (in our case, this means a starting set of parameters for the region 

growing algorithm); and the members of the new generations are expected to be 

more and more viable (in our case, this will represent parameter sets that yield 

more and more accurate results). In addition, we can define various stopping 

criteria as well, but this method can also be used even without those, because the 

individual generations can be checked on-the-fly, so the parameter set that 

actually yields the best results can always be accessed at any given moment. 

In our case, this technique seems the most suitable, because our task fulfills the 

following criteria where the usage of the genetic algorithm is considered 

favorable: 

 Search space with multiple dimensions, where the relations between the 

major variables are unknown. 

 The traditional solutions give us unacceptable execution times. 

 It is very difficult (or impossible) to narrow down the search space. 

 One solution can be checked quickly, but finding an optimal solution is 

difficult. 

 We do not necessarily need the global optimum, we merely want the best 

possible result. 



Acta Polytechnica Hungarica Vol. 10, No. 5, 2013 

 – 13 – 

 

Algorithm 1 

Typical structure of genetic algorithms 

In addition to this, the genetic algorithms have several more advantages: 

 They can be very well parallelized so they can be efficiently implemented in 

multi-processor environments. Since the method described above has 

reasonably big computational requirements (because of the fact that during 

the search process both the region growing itself and the evaluation too have 

to be executed for every set of parameters); it is essential that we can 

complete this process within the shortest possible time in a distributed 

environment. 

 Compared to the hill-climbing method, it is more likely that we find a global 

maximum because due to the nature of its operation a genetic algorithm 

continues the search even if a local maximum is found: due to the mutations, 

there are nonstop changes even with a stable population. In addition to this, 

even thought we cannot guarantee that it will find the global maximum 

within a finite time, but there are several papers that show that the search 

itself generally converges towards an optimal result [18], [19], [20]. 

 After reviewing the publications in this topic we examined several genetic 

algorithms for optimizing parameters and usually these algorithms met the 

previously stated requirements [21], [22]. 

4 Construction of the Genetic Algorithm 

4.1 Representation of Chromosomes 

A genetic algorithm usually contains the steps of Algorithm 1. When creating a 

genetic algorithm, a decision must be made that which encoding form should be 

used with the data of the different instances (in our case, an instance is represented 

by a single chromosome so we use the two terms as equals). For this, the search 

space must be somehow mapped to the chromosome space. To do that, we have 

several possibilities, but the following aspects must be taken into consideration: 

 We want to optimize a reasonably big set of parameters. 

Formulate the initial population() 

Randomly initialize the population() 

Repeat 

   Evaluate the objective function() 

   Find fitness function() 

   Apply genetic operators (reproduction, crossover, mutation) 

Until (¬Stopping_critera()) 
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 These parameters can be considered as being independent from each other. 

 Every parameter is a number; some of them are floating point numbers. 

 The target sets of the different parameters are different. 

 Most of the parameters can be surrounded with an upper and lower bound, 

but there are several parameters that have to comply with additional rules as 

well (e.g. only even numbers are allowed). 

It is a very common approach that the parameter set is simply converted into a 

vector of bits (using the values of the parameters in base-two form). However, 

several researchers suggest [23] that we should not encode the floating point 

numbers in bits; the chromosomes should contain real (floating point) numbers. 

The advantage of this method is that we can easily apply problem-specific 

mutations and crossovers. 

In our case we have a multi-dimensional search space; and according to this we 

have to store several genes inside a chromosome (these genes actually represent 

the parameters of the region growing algorithm). Since the relations between the 

individual genes are hard to describe, it is more feasible to choose a representation 

where every parameter is separately encoded according to its target set and where 

we can establish that the functionality of the different genes do not depend on 

their location inside the chromosome. 

Of course, we can have chromosomes that are not viable (if not the crossovers, 

then the mutations will probably produce some of those). These instances are 

handled in a way so that they will have a fitness value of zero. This way (even 

thought they will be indeed evaluated) these chromosomes will most certainly not 

be included in the next generations. 

4.2 Initial Generation for Genetic Algorithm 

The initial generation is generated by randomly generated instances. There is a set 

of parameters that is already used in the live applications, but using this set as the 

initial generation came with no benefits at all, because the system found an even 

better set of parameters within only a few generations). 

Some of the parameters have known upper and lower bounds [24]. In case of these 

parameters the actual values for the different instances were chosen using 

Gaussian distribution within these intervals. The known intervals are: 

 Cell nuclei size: 34 – 882 pixels 

 Cell nuclei radius: 4 – 23 pixels 

 Cell nuclei circularity: 27.66 – 97.1 

 Cell nuclei average intensity: 36.59 – 205.01 (RGB average) 

 Seed point intensity: 0 – 251 (RGB average) 
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With some technical parameters it is not possible to perform such preliminary 

tests, in these cases the initial values of the parameters are distributed using the 

currently known best set of parameters. The intervals are generated in the ±10% 

surroundings of these aforementioned values using normal distribution. Of course, 

this does not guarantee that the optimal result will be within this interval, so it is 

advised to check both the final result of the optimization and the intermediate 

results as well: if the instances that yield good results have a parameter that is 

always around one of the arbitrarily chosen bounds, then it might be practical to 

further extend this interval. Despite this (due to the operation of the genetic 

algorithm, and due to the mutations) the genes can have values that are outside 

these starting intervals, so an initial generation generated with some unfortunate 

initial values can also find the good final result as well. 

Every instance in the first generation was created using random parameter values, 

so with a great probability there are a large number of non-viable instances in this 

generation, which is not feasible for the further processing. Firstly, it is necessary 

that we have the biggest number of usable instances for the next generations so 

that we can choose the best candidates from multiple possible instances. Secondly, 

there is a bigger importance on the first generation, because it would be better if 

there could be the biggest number of different values for a parameter so that these 

multiple values can be taken into the next generations and this way there is a 

bigger chance that the given parameter’s optimal value is carried along as well. 

For these reasons, the first generation is created with a lot more instances than the 

following ones, in our case that means 3000 chromosomes. The following 

generations will contain only 300 instances (both values were determined 

arbitrarily based on the experiences of the first test runs). 

4.3 Processing Generations 

We have to calculate the fitness value of all instances in the actual generation. In 

our case the fitness value is determined based on how well the parameters 

represented by the chromosome performs with the region growing algorithm. We 

need two main steps to calculate this: 

1. First we have to execute the region growing cell nuclei detector algorithm 

with the given set of parameters. Since the parameters can behave differently 

on different slides, the region growing is executed for several slides. 

2. The next step is the evaluation of the result of the region growing (the list of 

cell nuclei). For this, we compare these results (test result) with the manual 

annotations of the Gold Standard slides (reference result). By averaging the 

results of the comparisons we get the fitness value for the given 

chromosome. 
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4.3.1 Accuracy 

We use the evaluation algorithm described in our previous paper [8] for 

comparing test and reference cell nuclei sets. This is based on the confusion 

matrix [25] that can be constructed using comparison the two result sets hits 

(another approach can be a fuzzy based model [26], [27]). The accuracy of the 

region growing is a simply calculated measurement number [25]: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1) 

Where TP means the number of true-positive pixels; TN is the number of true-

negative pixels; FP is the number of false-positive pixels and FN means the 

number of false-negative pixels. 

The pixel-level evaluation itself will not give us a generally acceptable result, 

because it will only show a small error even for big changes in densities, and our 

task is not only to determine if a pixel belongs to any object or not, but we have to 

locate the objects themselves (because it is not acceptable to detect one big 

nucleus instead of a lot of small nuclei). 

4.3.2 Object Level Evaluation 

Our measurement number does not based only on a pixel-by-pixel comparison; 

instead it starts by matching the cell nuclei together in the reference and the test 

results. One cell nucleus from the reference result set can only have one matching 

cell nucleus in the test result set and vice versa. After the cell nuclei matching, we 

can compare the paired elements. 

The final result is highly depends on that how the cell nuclei are matched against 

each other in the reference and the test result sets. Due to the overlapping nuclei, 

this pairing can be done in several ways, therefore it is important that from the 

several possible pair combinations we have to use the optimal (the highest final 

score). 

During the practical analysis [8] of the results we found out that on areas where 

cells are located very densely, we have to loop through a very long chain of 

overlapped cells, which results in groups that contain very much cell nuclei from 

the test and from the reference sets as well. We use a new backtracking search 

algorithm [28] to find the optimal pairings. This requires significantly fewer steps 

than the traditional linear search method. 

The sub-problem of the backtracking search is finding one of the overlapping cell 

nuclei from the test results and assigning it to one of the reference cell nuclei. It is 

possible that there will be some reference cells with no test cell nucleus assigned 

to them and it is also possible that there will be some test cells with no assignment 

at all. The final result of the search is the optimal pairing of all the possible 

solutions. Full description of this algorithm is given in our previous paper [8]. 
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Algorithm 2 

Backtracking core algorithm 

Inputs and utilized functions: 

 lv – The level currently being processed by the backtracking search. 

 R – The array that holds the results. 

 PTCL – An array for every reference cell with test cells from the group that 
overlap with the given reference cell. 

 LO – For every reference cell nucleus LO represents the local optimal result, 
if we choose the best overlapping test cell. During the search, the algorithm 
will not move to the next level if it is found out that the final result will be 
worse if we choose the most optimal choices on all the following levels. 

 Sc(X) – It returns the value for the pixel-level comparison using input X 

(which is a pair of a test and a reference cell nucleus). 

Algorithm 2 will search and return the optimal pairing of a group containing test 

and reference cell nuclei. The i
th

 element of the MAX array shows that the i
th

 

reference cell nucleus should be paired with the MAX[i] test cell nucleus. 

The above algorithm algorithm should be execued for every group to get the 

optimally paired cells. After that, we can calculate the above mentioned accuracy. 

This will be the fitness value of the given chromosome. 

4.4 Implementation of Genetic Operators 

4.4.1 Implementing Selection Operator 

The selection of the parent pairs can be performed using any available methods; 

the important feature is that instances with a bigger fitness value should be 

selected proportionally more times than the others. One of the best solutions for 
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this is the well-known roulette wheel selection method, where we generate an 

imaginary roulette wheel where every instance has a slot that is sized 

proportionally according to the fitness value of the given instance. When selecting 

the new parents, we spin the wheel and we watch which slot the ball is falling into 

[29]. 

The probabilities can be determined using the following formula: 

Pi = (Fi – Min(F)) / ∑k(Fk – Min(F)) (2) 

Where 

o Pi: the probability to select the instance #i 

o Fk: the fitness value for the instance #k 

o Min(F): the smallest fitness value for the current generation 

It is visible that by using this calculation method there is a side effect: the 

instances with the smallest fitness values are completely locked out from the next 

generation, but in the practical implementation this means absolutely no problem. 

However, this way we eliminate the biggest drawback of the roulette wheel 

method too that occurs if the fitness values for different chromosomes are too 

close. In addition, since it is possible that non-viable instances are in the 

generation as well (which means that after the evaluation there can be some 

chromosomes with the fitness value of zero) we have to remove these instances 

before calculating the probabilities so that these instances will not distort the 

minimum value in the equation. 

The search space is reasonably large, so the occasionally occurring instances with 

good fitness value can disappear in the next generation due to the random 

crossovers. For this reason we use elitism [30]: the instances with the highest 

fitness values are carried along into the next generation (10% of the generation is 

selected this way). This method slightly decreases the number of trial runs per 

generation, but this way we guarantee that the best chromosomes are kept. 

4.4.2 Implementing Crossover Operator 

The most typical step of a genetic algorithm is the crossover. There are several 

known methods for this step; the simplest one is the single-point crossover: we 

simply cut the chromosomes in half using a random cut-point and we exchange 

the chromosome parts that are after the cut point [18]. This can naturally be done 

using two or more cut points as well, the most generic case being the uniform 

crossover where we generate a random crossover mask that simply defines for 

every bit which parent is used for the given bit of the descendant instance. 

In our case the size of the population can be considered as reasonably small 

(because the evaluation of the single instances can be very time consuming, so we 

cannot use a large population); while the chromosomes are considered to be 
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reasonably large (27 parameters, several hundred bits altogether). Because of 

these we clearly have to use the uniform crossover method. 

In the strict approach, the uniform crossover could be performed for every bit; but 

in our case this is not feasible. The reason for this is that there are some 

parameters that have to comply with some additional rules (e.g. divisibility), and 

the bitwise mixture of those can easily lead us to values that do not belong to the 

target set. 

We only combine whole genes: for every gene we use a random number to 

determine which parent’s gene is inherited.  

We use the following probabilities: 

Pa = (Fa – Min(F)) / (Fa + Fb – 2*Min(F)) (3) 

Pb = (Fb – Min(F)) / (Fa + Fb – 2*Min(F)) (4) 

Where 

o Pa: the probability of gene of parent A is inherited 

o Pb: the probability of gene of parent B is inherited 

o Fa: the fitness value for parent A  

o Fb: the fitness value for parent B 

o Min(F): the smallest fitness value for the current generation 

4.4.3 Implementing Mutation Operator 

The size of the mutation cannot be defined in a general form (for every 

parameter), because the values of the parameters can be very different. With some 

parameters small changes in the actual value can have great effects, while other 

parameters are much less sensitive. For this reason, we rejected the bit-level 

mutation, because in some cases this can result in too drastic changes. 

Some parameters are reasonably small integers, and we cannot use percentage-

based mutations with those, because neither the small nor the medium-sized 

mutations would be enough to change the value even to the closest integer. For 

this reason these values change with discrete values according to the ±ε method 

described in [31]: small mutation means a change with one, medium mutation 

means a change with two, and a big mutation means a change with three; and 

there is a 50–50% chance that the change will be positive or negative. 

During the mutation process we do not check if the new value complies with the 

given parameter’s target set. If a mutation causes the parameter to have a wrong 

value, then the chromosome will have a very bad fitness value (if the parameter is 

out of bounds, then a zero fitness value) after the next evaluation, so similarly to 

the rules of nature, these non-viable instances will fall out from the next 
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generations. The number of such instances is quite small, so this does not 

deteriorate the results of the search. 

By introducing an auxiliary verification step this could be resolved, but on one 

hand the development of an extra rule-set is difficult (since we do not know 

exactly the relations between the various parameters), on the other hand it would 

not be feasible to fix these rules. The reason behind this is that the mutations have 

an additional important role in the system: since in the starter generation we 

generated the parameter values between arbitrarily chosen interval boundaries, it 

is possible that due to a mistake in this process, the ideal gene was not even 

present in the initial generation. In this case, the mutation can help us so that the 

search continues to an undiscovered area that has great potentials and that was 

originally locked out due to a badly chosen interval (or an unlucky random 

number generation). 

The probability of a mutation is 10%. The size of the mutation is a random 

number based on the parameter (generally there is a 60% chance for small, a 30% 

chance for medium-sized, and a 10% chance for large mutation). 

5 Implementation Details 

The actual implementation was done according to the following criteria: 

 27 parameter values are searched. 

 The initial generation has 3000 chromosomes. 

 Every following generation has 300 chromosomes. 

 Every parameter set (every instance) is tested against 11 representative tissue 

samples. 

With the genetic algorithms, usually the execution time is the only barrier for the 

accessibility of the optimal results. This is true in our case as well, because the 

evaluation of a single instance needs quite a lot of time: based on the first 1550318 

evaluations, the average processing time for a single region growing is 1498ms, 

and it took another 8249ms to evaluate the results for a single image. Since we 

always have to examine 11 tissue samples, it takes about 107 seconds to examine 

a single chromosome, so the evaluation of a single generation takes about 8.93 

hours. 

Since we have to assume that we will process hundreds of generations, it is 

obvious that we have to speed up the whole process somehow; and an obvious 

method for this is a high-level parallelization. Out of these, the most basic method 

is the master-slave processing [29]. Since the testing of the single instances (the 

execution of the region growing and the evaluation of the results) can be 

considered as independent tasks, these can be efficiently parallelized in a 

distributed environment. In this case we work with a global population and the 



Acta Polytechnica Hungarica Vol. 10, No. 5, 2013 

 – 21 – 

parallelization is merely used only for the evaluation. To achieve this, a parallel 

execution environment was developed that uses client-server technologies to 

execute the genetic algorithm using the parallelized method described above. 

A single central server manages the whole process. Basically, this program stores 

the population itself and this is where the basic genetic operations are executed. 

The main tasks of this module are: 

 Generate an initial population. 

 Generate any following generations (selection of parents, crossover, and 

mutation). 

 Distribute the tasks towards the evaluator clients, then collect and process the 

results. 

The number of clients that can connect to the server is not limited; the clients do 

not see the whole population and they take no part in the genetic operations, they 

only perform auxiliary operations for the evaluation. Their tasks are:  

 Download the data that are necessary to process an instance (tissue images, 

parameters). 

 Execute the region growing algorithm for every tissue sample using the 

downloaded parameter set. 

 Evaluate the results of the region growing algorithm, and then send back the 

results of the evaluation to the server. 

The system was designed with scalability in mind, because the number of 

available client computers greatly varies over time. In the worst case this can be as 

low as only a few clients, but sometimes (by taking advantage of the university’s 

capabilities and using the occasionally free computer laboratories) it peaked at a 

little more than one hundred. The server is continuously online and produces the 

data packets that require further processing; the clients can join at any time and 

can operate for any length of time. The smallest atomic unit is the processing of a 

single chromosome. 

Although there is no technical upper limit for the number of connected clients, we 

usually used 100 clients, which proved to be enough for our generation size of 300 

instances. Increasing the number of clients does cause an increase in speed, but 

this increase is far from linear. The cause behind this is that evaluating the 

different instances always requires a different amount of time, and in nearly every 

generation there are some clients that receive a task unit that requires a lot more 

computational time than the others. So by the time these clients are finished with 

their one instance, the other clients can process two or even three of them. So even 

if we increased the number of clients, the bottleneck would still be the single 

client that received the most difficult instance. 
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Diagram 1 

Best accuracy by generations 

The extensive description of our developed system (structure of the server and the 

client, description of the communication and the robust implementation) will be 

detailed in our next paper. In the followings, we present our results after 440 

generations (this took approx. 3948 working hours; thanks to parallel processing 

capabilities this was only a weekend in practice). 

6 Final Results 

6.1 Examination of Generations 

The best fitness values give us a monotonically increasing series of numbers 

because the chromosomes with the best fitness values are automatically carried 

along into the following generation as well. These values can contain useful 

information about the speed of our optimization. 

We did not have any specific goals for this task, so we cannot mention any 

expected results that we wanted to get (with the exception of the 100% accuracy; 

although, reaching this seems impossible, because we have to consider that the 

region growing itself does not guarantee a perfect result, even if we find the 

optimal set of parameters). For these reasons, our aim is to get the best possible 

results, compared to our possibilities. 

We can compare these values to the parameter set that was originally developed 

by Pannon University [4], which gave us the average accuracy of 78.1%. This can 

be considered as the acutally known best accuracy. Surpassing this value with any 

extent can be considered as a useful result. 

Diagram 1 shows the best results for every generation, the horizontal line shows 

the 78.1% level. In the first generation we even had an instance that reached this 
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level; and later we managed to even improve this accuracy. By generation #273, 

the best accuracy reached at 83.6%; this means an upgrade of 5.5% compared to 

the previous best result. 

We kept the algorithm running for even more time, but until we stopped it (at 

generation #440) it produced no generation that had better accuracy than this 

level. 

6.2 Examination of the Stopping Condition 

In the case of genetic algorithms it is usually very hard to determine an exact 

stopping condition. Our task is a great example for this as well, because we do not 

have a specific pre-defined final goal (final accuracy) that we wish to reach. It can 

be practical to examine the differences between the individuals of the consecutive 

generations; expecting that those will be more and more similar to each other, so 

by examining the deviation in the accuracy of the parameter sets represented by 

the various chromosomes, we could stop the search if it goes below a pre-defined 

limit. However, in our case this cannot be used, due to the fact that we use 

relatively big mutations. For this reason, we examined the parameters separately, 

and by checking the changes in their values, we made the decision whether to stop 

the algorithm or not. 

Due to lack of space we cannot give extensive details about all the 27 parameters, 

so we only describe some more interesting specific examples. The changes of the 

parameters over time are shown on a similar to the previous ones: horizontal axis 

represents the generations, vertical axis represents the values of a single parameter 

in the chromosomes of the generations using grey dots, so in this case as well, the 

darker areas obviously mean overlapping values (all referenced diagrams are 

available on the following website: http://users.nik.uni-obuda.hu/sanyo/acta835). 

It can be stated that we noticed three distinct patterns in the changes of the various 

parameters: 

Most of the parameters have settled to their respective ideal values reasonably fast 

(usually this happened around generation #100), and then their values did not 

change from this level. Obviously due to the mutations there were some values 

below or above this ideal level, but all of these turned out to exist only for a short 

period of time. Good examples for this pattern are parameters #1 and #2 (Diagram 

A.1 and A.2), and even thought the required time for the stabilization is a little 

higher, the same pattern is visible with parameters #3 and #6 (Diagram A.3 and 

A.4). 

It is less common, but it does happen with some parameters that can also be 

known as a “typical example” of genetic algorithms, which is when different 

parameter values (alleles) compete with each other. In these cases, a few different 

parameter values remain viable for a reasonably long period of time, sometimes 
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even for 40–50 generations. During this time, some of them can get stronger 

(sometimes even two or three different values can remain dominant 

simultaneously). But eventually, some stable state was achieved with these 

parameters as well; good examples for this pattern are the parameters #13, #19 

and #24 (Diagram A.5, A.6 and A.7). 

In addition, we can find some examples for genes whose values did not settle, not 

even in the last generation (#400) when we stopped the algorithm. Examples for 

this pattern are the parameters #9 and #12 (Diagram A.8 and A.9).  

It is visible that in these cases there were usually only two values in the end, and 

these cases are usually next to each other, so it basically does not matter which 

one we choose. For this reason, we should not continue the search just for the sake 

of these parameters. 

6.3 Examination of the Number of Non-Viable Instances 

Although this factor is less important for us, but it is practical to examine the 

number of non-viable instances inside the different generations. 

During the creation of the first generation and later during the execution of the 

crossovers and the mutations we performed no verification whether or not the 

newly created instances’ parameters are valid or not. This is because we had the 

assumption that the newly created non-viable instances will fall out at the next 

selection for parents, so hopefully there will be less and less non-viable 

chromosomes as the generations evolve.  

Diagram 2 seems to verify this assumption: the first (initially created) generation’s 

data is not shown, because there were 1879 (from 3000) non-viable instances in 

that generation. This number drastically decreased in the following 5 generations, 

and then it was stabilized around 13.2 items.  

 
Diagram 2 

Number of invalid chromosomes 
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Since the crossovers and especially the mutations can still create non-viable 

instances in the subsequent generations as well, we cannot expect that this number 

will furthermore decrease; but this is a tolerable amount, and the evaluation of 

those instances does not require too much resources. 

6.4 Examination of the Control Group 

Since the region growing and the evaluation have both high computational needs, 

we have to decrease the number of necessary processing steps as much as 

possible. One possible way of doing so is that we do not run the evaluation for 

every possible tissue samples (which would be altogether 41); instead we selected 

11 tissue samples so that they reflect all different kinds of sample images and 

there is at least one example for every sample type (e.g. a lot of cell nuclei or only 

a few; sharp or blurred contours). 

We executed the search only for this narrowed list, which (in addition to the faster 

evaluation of the instances) has the additional benefit that we could use the 

remaining sample images as control group. According to this, by executing the 

cell nuclei search algorithm for all possible samples, we got the following results: 

 Average accuracy using the old (best known) set of parameters: 76.83% 

 Average accuracy using the parameter set found by our evolution-based 

algorithm: 81.15%  

Since these samples were not used during the optimization process, we can very 

well use them to estimate the improvement of accuracy with unknown samples, 

and in our case this improvement was 4.32%. In addition to this, it is clearly 

visible from both results that the selected 11 samples reflected the whole set of 41 

samples reasonably well (76.83% – 78.1%). 

Conclusions 

We have developed a data-parallel GPGPU based region growing algorithm with 

improved seed point search and region growing iteration that is equally as 

accurate as the original sequential version, but it is suitable to process more than 

one cell nucleus at the same time, therefore its speed is 25–65% faster than the 

original CPU implementation. We have implemented the algorithm in CUDA 

environment (using Nvidia Fermi based GPGPUs). A possible improvement could 

be to implement the parallelization on a higher level, and develop the system so 

that it can be executed simultaneously on multiple GPUs (and in addition, on 

multiple CPU cores). 

In the next step we have developed an evolution-based algorithm to find the 

optimal parameters for this new data-parallel version of the region growing 

method. This genetic algorithm was used to successfully determine a set of 
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parameters that could be used to achieve 81.15%, which means an improvement 

of 4.32% compared to the previously known best set of parameters. 

One direction for further developments could be towards the specialized search 

techniques, because it is possible to arbitrarily select which tissue samples the 

clients should use for the evaluation and verification; so it might be feasible to 

narrow down this selection to include only the tissue samples of a given type, and 

this way it might be possible to find an even better set of parameters for the 

developed algorithms. 

We have developed a new method (based on pixel level and object level 

comparisons) which is suitable to evaluate the accuracy of cell nuclei detector 

algorithms. In the next step we have successfully implemented this using an 

improved backtrack search algorithm to process high number of overlapping cells, 

which requires significantly fewer steps than the traditional linear search methods. 

We have already developed a distributed framework for the execution of the 

genetic algorithm. The framework have lived up to our expectations, the execution 

time of 440 generations was fully acceptable. 
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