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Abstract: Offering human machine interfaces capable of handling cultural variation in 
speech is an exciting topic in cognitive info-communication. From a machine learning 
point-of-view, this paper examines Automatic Speech Recognition (ASR) with respect to 
transcribing interactions occurring in a language environment where a particular dialect 
of a pluricentric language is spoken. Conservative retraining, transfer learning, multi-task 
training, matrix factorization, i-vector based techniques as well as adversarial and teacher-
student training are all considered suitable approaches for the adaptation of deep neural 
acoustic models in ASR. Facing a problem of adaptation for accented speech, which 
method should be preferred? Comparing these techniques is often complicated, as different 
experiments are carried out on diverse datasets and within various frameworks. It is also 
worthwhile analysing possible combination of such techniques within complex systems.  
The objective of this work is to systematically compare and analyse a number of domain 
adaptation techniques for ASR using the same framework, in order to allow for a fair 
comparison on adapting US English acoustic models for particular accents. Our results 
indicate that, when properly hyperparametrized and carefully regularized, the easiest 
approaches, requiring less complexity and reduced computational power, can perform 
equally well as the more complex ones. 

Keywords: human-machine interaction; speech recognition; adaptation; dialect; 
conservative training 

1 Introduction 

In human-machine infocommunication [1, 2] Automatic Speech Recognition 
Systems (ASR) are often used to convert speech into text. Just like in most 
machine learning tasks, where data scarcity is not a hindering factor, the deep 
learning paradigm has infused ASR technology in the past 5-6 years, leading to 
formerly unseen low error rates, through neural hybrid or all neural (end-to-end) 
models [6, 7]. However, when shifting away from the former state-of-the-art 
Gaussian Mixture Model (GMM) approach in acoustic modelling, some 
capabilities and elegant engineering solutions [4, 5] were lost, which impact 
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personalization and social convenience of ASR in a negative way. More precisely, 
with GMM based acoustic models, adaptation of the acoustic models was a very 
easy and effective task [3, 4], which moreover, did not require much data in case 
of Maximum Likelihood Linear Regression (MLLR) based model refinement.  
The MLLR adaptation made it possible to customize ASR for interactions taking 
place in specific social and language environments, therefore covering various 
speech styles and language varieties spoken in different communities. 

With the neural network approach in acoustic modelling, no simple adaptation 
method is available, as the parameters of the acoustic model do not reflect direct 
spectral (or cepstral) phoneme mapping any more. This is a problem since 
variation in pronunciation [3, 4, 5, 8, 9] within the same language constitutes a so-
called domain mismatch as the acoustic model cannot cope well with data points 
which are different from the ones seen during the training. Given that, ASR for 
interactions occurring in an unfamiliar social or language environment lead to a 
considerable increase in Word Error Rates (WER). This motivated starting up a 
number of research activities targeting acoustic adaptation of neural acoustic 
models, which resulted in a multitude of techniques being proposed one after the 
other. In the following section, we overview some of these, but we also point out 
that we observe a general tendency for these techniques to became more and more 
complex, making questionable whether the obtained small performance 
improvement is worth the large effort required by the adaptation approach. 
Another problem consists in the large variety of experimental conditions, which 
makes a comparison close to impossible when various datasets are used for 
training and benchmarking, where often this experimental condition variety 
actually reflects different levels of mismatches related to socio-cultural 
environment. 

Unlike GMM acoustic models, which can be adapted by using some minutes of 
data, neural hybrid acoustic models usually require much more adaptation data to 
obtain a measurable performance improvement. This is understandable if one 
considers the relative data scarcity versus the number of parameters of the acoustic 
model. Training or retraining with low amount of data can lead to catastrophic 
forgetting or overfitting [10, 11], which means that the model may become 
corrupted and therefore incapable of generalizing in order to handle unseen cases. 
To avoid this, some adaptation approaches can apply a slightly different logic to 
minimize the risks of overfitting: either selecting a subset of the parameters to be 
updated by freezing all other network parameters (as part of a very conservative 
retraining with high emphasis on low learning rates) or adopting a more impactful, 
“aggressive” regularization. 

As acoustic model adaptation is unavoidable for model customization for language 
varieties spoken in different socio-cultural entities, in this paper we are going to 
review and evaluate several adaptation techniques for ASR with neural acoustic 
model [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. 
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Those entities use the same language in human-machine communication, but with 
slightly different acoustic and linguistic configurations. Our goal is to compare a 
number of adaptation paradigms within the same framework for the same task to 
get a clearer picture of their capabilities. As we already discussed, the multitude of 
baselines and benchmarking datasets makes this comparison close to impossible, 
despite the rich scientific literature on the acoustic model adaptation subject.  
Our approach will also allow us to analyse how specific paradigms and training 
techniques interact – especially those having a regularizing effect and looking at 
the available amount of adaptation data, both crucial for adaptation and whether 
the benefits they yield are additive to some extent (that is whether their 
combination leads to more improvement). We will use a standard English ASR 
acoustic model trained with the Kaldi toolkit [22] and adapt it for Indian English 
to demonstrate the results. We also compare adaptation for varieties being less 
different from the US baseline, including the UK, Canadian, Australian and 
specific US accents. Please note that the Indian accent itself is not uniform and 
could be further divided based on geographical consideration, but our datasets did 
not allow for such a fine grade evaluation in this work. 

2 Adaptation Paradigms 

Considering adaptation of neural acoustic models, ideas were initially driven by 
trying to adopt the Maximum Likelihood Linear Regression (MLLR) adaptation 
framework to non-neural Gaussian Mixture Model (GMM) based acoustic models 
for ASR. Imposing similar linear or non-linear transformations on one or more 
network layers [12, 13] was proposed in the so-called Learning of Hidden Unit 
Contributions (LHUC) model [14]. When LHUC transformation is applied to 
bottom-wise layers of the neural model, a normalizing effect is produced which 
makes the model domain invariant, as bottom-wise layers are thought to perform 
mostly the feature extraction part of the processing. If we use LHUC in the upper-
wise (topmost) layers prior to the softmax, we adapt the model in the classical 
sense, as top layers act as classifiers [15] especially in networks with 
convolutional alike bottom layers and feed-forward (or eventually recurrent) top 
layers such as Time Delay Neural Networks (TDNN) [23]. 

A similar reasoning leads to another adaptation technique based on transfer 
learning [15], optionally coupled with multi-task training. The idea here is to 
transfer a feature extractor trained on a large out-of-domain dataset, and train only 
the classifier from scratch on an in-domain dataset. This approach, referred to as 
transfer learning hereafter, reduces the number of parameters to be trained and 
hence allows for using less data keeping the risk of overfitting under control.  
As basic speech features tend to be less language dependent, usually the bottom 
layers are transferred, and the top layers are removed or re-initialized (trained 
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from scratch). Multi-task training [16] is a technique often used in such transfer 
learning setups, as it allows for an intrinsic normalization of the features, 
producing less domain dependent bottom layers. A drawback of multitask training 
is that it takes longer to train, but the most disturbing constraint is that the in-
domain adaptation data is required already for the training, which moreover has to 
be abundant enough to avoid heavy imbalance between the datasets associated 
with the multiple tasks. 

Another popular method exploits matrix factorization from linear algebra in order 
to adapt some neural model’s weight matrices. Factorizing the weight matrix can 
be regarded as equivalent to adding a linear bottleneck layer between the two 
specific layers [24]. As the dimension of this bottleneck layer can be configured in 
a wide range, adaptation is highly scalable and hence allows to adjust the number 
of parameters to be adapted to the amount of the available data. Some works use 
factorized neural models by default for acoustic modelling, which has been shown 
to slightly improve overall performance in [24]. Another often used factorization 
approach is called Low Rank Plus Diagonal (LRPD) decomposition [17]. 

Embedding alike vectors, better known as i-vectors, x-vectors [18, 25] or d-
vectors [19], can also help in acoustic model adaptation. Hereafter we will use the 
term i-vector, but thereby referring to other similar embedding vectors such as x- 
or d-vectors. We can demonstrate their usage if we think like adding a bias in the 
first hidden layer of the network through the i-vectors [26]. Even if they are 
tipically used to describe speaker characteristics, they can also be used to capture 
domain specific variation. Please note that once i-vectors are used in the acoustic 
model (which is often the case), these intrinsically may already capture part of the 
variation resulting from domain variance. Eventually, i-vectors can be piped into 
lightweight auxiliary networks which perform an attention alike rescaling or add 
bias to the respective parameters in the acoustic model network [17], similar to the 
LHUC paradigm [14]. 

Adversarial learning can also be considered for training domain invariant models 
[20]. Its advantage that it supports unsupervised adaptation. However, as high 
amount of data is required for various accents during training, it should be 
regarded as a training method for obtaining invariant models, but the framework 
cannot be applied to classical adaptation scenarios with small amount of in-
domain data. In [27] the authors claim that within the Kaldi ASR toolkit, no 
benefit was observed in terms of ASR performance when considering adversarial 
training techniques. The reason for this may be that such methods [20] may be 
beneficial with very high amount of training data. 

Last, but not least, the teacher-student paradigm has also been demonstrated to be 
leveraged by the Kaldi toolkit for acoustic model training in [21]. Despite being an 
interesting approach, teacher-student learning requires a parallel corpus for in 
domain and out of domain data, which is a criterion hard to fulfil in practice, as far 
as ASR is considered. 
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3 Material and Methods 

3.1 Baseline 

For this work we have chosen widely used open-source tools and open-source data 
to allow for reproducibility of the results. The ASR was trained with the Kaldi 
toolkit [22], following the Librispeech [28] TDNN [24] standard `1c' recipe on 
960 hours of `cleaned' data. For decoding, we simply adopted the open source 
`tgsmall' grammar, associated with Librispeech data and widely used for 
benchmarking ASR trained on the Librispeech recipe. We did not consider the 
adaptation of the language models, but focused exclusively on the acoustic 
models, which we think have to cope with higher variance in case dialect 
adaptation is required for human-ASR interactions. 

Adding i-vectors to the input was part of our baseline, and it is also part of the 
default Kaldi Librispeech recipe. This means that part of the variation related to 
the accent mismatch may therefore be captured by i-vectors, even if the i-vector 
extractor is trained on only source domain (e.g. Librispeech) data. 

3.2 Accented Data 

We use the Mozilla Common Voice speech corpus [29] for providing adaptation 
data in the target domain. In the Common Voice corpus for English, 15 varieties 
of English are represented, out of which the variants labelled as Australian, 
Canadian, British (England) and US datasets contain at least 8 hours of good 
quality transcribed data. For each of these 5 varieties, we created c.a. 1.5 hours 
test sets to be discarded from training for adaptation. 

3.3 Regularization 

Regularization and conservative training are very important when performing 
model adaptation, as we usually work with a low amount of in-domain data, and 
by typically at least two orders of magnitude difference in dataset sizes (i.e. 
adapting a baseline trained on 1000 hours with 10 hours of in-domain data). 
Whereas regularization usually operates by controlling the cost function and 
preventing sudden changes, the learning rate can also be directly reduced to ensure 
new data does not modify model parameters in an excessive manner. The learning 
rate can be specified to be different for each layer and each epoch. This means that 
bottom most layers can be updated extremely carefully whereas letting topmost 
layers learn by a slightly higher rate. This coincides with the assumption that 
bottom layers tend to perform feature extraction, and classification is obtained in 
the top layers. Reducing the learning rate as iterations follow each other is also an 
effective and easy way of keeping the training conservative. 
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A very often used regularization technique in the field of model adaptation is the 
Kullback-Leibler Divergence (KLD) based regularization [30]. One of its 
advantages is that KLD can be carried out without any modification in the core 
training algorithms, but simply by rescaling the targets themselves [30], provided 
that the objective allows for this (i.e., with an objective based on frame based 
cross entropy). To achieve this with a cross-entropy minimization objective (or 
maximizing negative cross entropy), a new target probability distribution has to be 
created which can be obtained as a linear combination of the original target 
distribution p̂ and the distribution computed via forced alignment with the 
adaptation data p. So in the objective 

 (1) 

dealing with N samples and C senones for the estimated distribution p at time 
frame t, the target distribution p̂ is computed from the original target p̂0 and the 
estimate of the source model: 

 (2) 

where α is the regularization coefficient. The term senone may need a brief 
explanation: a senone is an abstract entity to be modelled that can be linked to the 
tied state of a traditional triphone model, i.e., the leaves of the decision tree used 
to represent context in ASR acoustic models. 

However, in recent acoustic model training recipes the frame based cross-entropy 
objective has been replaced by the so-called chain objective. Scaling the targets is 
unfortunately not feasible for a chain objective (or would be so complex to make it 
that it cannot be tolerated even during training), but we still have the opportunity 
to use KLD regularization as part of the regularization in place already: the chain 
objective Dchain may be itself regularized by interpolating it with the cross entropy 
based framewise objective DfCE (this is even supported by Kaldi through the 
output-xent output layer): 

Dchain+fCE= (1−β )Dchain+βDfCE  (3) 

By extending the objective to 

Dchain+fCE+ KL= (1−β )Dchain +βDKL  (4) 

we can observe a frame based regularizing term. Technically such regularization is 
carried out by preserving a copy of the original model (the source model) and use 
it in parallel to the newly trained branch of network. 



Acta Polytechnica Hungarica Vol. 19, No. 11, 2022 

 – 53 – 

4 Analysed Adaptation Approaches 

4.1 Vanilla Retraining 

Retraining is probably the simplest way of adapting a model. For retraining, we 
use target domain data in the same manner we use the source domain data for 
training the source model, with the exception that retraining has to be more 
conservative. The topology of the source model is not adapted, which means that 
the senone representation reflects knowledge extracted essentially from the source 
domain data. This has advantages and disadvantages: the pro side is that we can 
preserve a robust tree estimate which would be hard to achieve on the low amount 
of target domain data; the negative side however, is that the tree may be 
mismatched if context dependency in the target domain differs too much from the 
source domain. Unfortunately, this is an often case, to reduce the negative effects, 
the number of senones can be reduced so that we use a broader model that has 
higher chance to match the target dialect better. What is the optimal number of 
senones, however, has to be determined experimentally on a development set. 

To prevent overfitting, the primary interest is to use low learning rates, which we 
will set layerwise so that we let the top layers learning more. The secondary way 
to regularize retraining consists in increasing the weights α and β in the 
regularization terms of the objective Dchain+fCE+KL, as explained in subsection 3.3. 
In the supervised adaptation scheme, alignments for the adaptation data can be 
generated with the source model, but the source model can also be used to decode 
the target data in the first step and use the so-obtained lattices as soft alignments 
for the retraining phase. Using lattices fits perfectly into the chain training of 
TDNN acoustic models with the Lattice Free Maximum Mutual Information (LF-
MMI) objective, as numerator lattices are directly available from the decoder. 

4.2 Transfer Learning 

The transfer learning approach is also based on retraining, but the model structure 
is not preserved in this case [15]. As the SoftMax output layer represents the 
phone context dependency tree, this means that both have to be trained from 
scratch, based on target domain data. At least the last hidden layer of the source 
model has also to be removed, as the number of output nodes will be likely 
different compared to the source model. These layers are newly initialized, and 
their parameters are learned from scratch by training the modified model on target 
domain data. The context dependency tree is obtained as resulting from training a 
GMM based acoustic model on the target domain data. The same GMM can then 
be used to generate alignments for supervised adaptation. Compared to simple 
retraining, the advantage is that the output is tuned according to the target domain 
statistics. The drawback is that this tuning has to be carried out on relatively low 



Gy. Szaszák et al. Adaptation Strategies for Human-Machine Interactions in Dialect Specific Environment 

 –	54 –

amount of data in case of adaptation, which is a risk factor of getting a somewhat 
mismatched senone layout. Using unsupervised adaptation gets mostly out of the 
scope as well, as for training the small target domain GMM model transcriptions 
are desirable, but even if transcription is automated with the source domain 
decoder, using a lattice is not as straightforward as with the unchanged topology in 
simple retraining. 

4.3 Factorization 

As outlined earlier, factorization-based adaptation approaches offer an alternative 
for adaptation scenarios with very low amount of target domain data available [17, 
24]. In this work we use the Singular Value Decomposition (SVD) algorithm and 
decompose the weight matrix W between two particular layers as follows: 

W m× n= Um× k Sk× k V k ×n .       (5) 

Factorization goes hand-by-hand with modifying the network structure, but this is 
a non-invasive action compared to the reinitialization of the complete top layers 
required for the transfer learning approach. With SVD, the output senone layout is 
not changed. Usually a single bottleneck is created (or an existing bottleneck is 
used) in the neural acoustic model. The dimensions of the bottleneck allow for a 
fine control over the number of parameters to be retrained. Comparing SVD to 
simple retraining, we select or create a small subset of latent network parameters 
and freeze all other (meaning a zero-learning rate). 

The advantages of the factorization approach include the scalability and aptitude 
to work with low amount of data, whereas its drawbacks can be summarized as 
limiting the adaptation to a small part of the parameters which allows for only 
slight shifts in model outputs. Both supervised and unsupervised adaptation 
schemes can be suitable as the output layer is not affected by the adaptation. 

5 Research Hypotheses 

One of our goals in this work is to compare different acoustic model adaptation 
approaches for ASR. As we discussed in the introduction, several approaches in 
several flavours have been proposed for acoustic model adaptation, but most of 
them were evaluated within specific setups and special conditions, making a fair 
comparison intractable. Therefore, we will use a common baseline setup and the 
same environment for all experiments, with the main research questions 
condensed around which approach could be suitable given an hour or some ten 
hours of adaptation (target) data. Our research questions and null hypotheses are 
as follows: 
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- Can factorization-based approaches outperform vanilla retraining in the case if 
very low amount of target data is available for adaptation? – We hypothesize 
that vanilla retraining is better as factorization introduces loss through the used 
bottleneck (H1). 

- Can transfer learning outperform vanilla retraining in the case if higher amount 
of adaptation data is available? Our hypothesis is that after reaching a 
threshold transfer learning yields better results since it has a better matching 
output layout (H2). 

- Can we leverage KLD regularization for better convergence in the case if we 
combine it with cross entropy-based regularization for chain models? We 
hypothesize that KLD regularization improves the convergence (H3). 

6 Experiments 

6.1 Configurations 

We perform the source model adaptation with the 3 different strategies by 
gradually adding more target data and by also gradually performing more and 
more training epochs with dynamically decreasing learning rate. We test the ASR 
performance in terms of Word Error Rate (WER) on the held-out test set. 

We use and adopt the Kaldi Librispeech recipe for all kinds of adaptation 
experiment. Alignments on the target data are generated with the Librispeech 
`tri6b-cleaned' model (the same used for training the source acoustic model 
TDNN) for supervised adaptation. In case of unsupervised adaptation, we use the 
default offline Librispeech Kaldi decoder with its default settings (for the 1c 
recipe as of October 2018) and the 'tgsmall' language model. We did not perform 
second pass rescoring for the obtained lattices. For the individual approaches we 
use the following configurations: 

- for transfer learning, we train the GMM acoustic model and its associated 
phone context decision tree on the target data and we reduce the target number 
of tree leaves from 7k to 1.8k. (No further fine tuning for the number of leaves 
was investigated depending on the amount of the target data.) 

- for factorization, we create the bottleneck after the last TDNN layer and before 
the 'prefinal' layer with 256 dimensions, and initialize it following [17] (S is 
initialized as an identity matrix). In the recent Kaldi recipes with factorized 
TDNN architecture (F-TDNN), we can simply add a linear layer initialized as 
an identity matrix for this purpose. 

- for vanilla retraining we tune α and β in the range of [0,1], letting them to sum 
to 1 in each case. 
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6.2 Number of Iterations 

Plotting WER from epoch to epoch for a vanilla retraining illustrates in Fig. 1 as 
the model is being shifted toward the target domain: we observe reducing WER on 
target evaluation data and increasing WER on source domain test data. Most of the 
performance gain is obtained within the first three iterations (1 iteration contains 
1.5 M chain examples in the used setup). 

 

Figure 1 
Illustration of the adaptation process with simple retraining (WER in %) using 10 hours of Indian 

English adaptation data 

Final reduction on WER in the target domain is as high as 50% relative, although 
the basis is also high, given the Indian accent is far from the US English one. It is 
not worth running more than 18 iterations with this setup using 10 hours of Indian 
accent data and 1.5 M frames per iteration (note, this depends both on minibatch 
size and the amount of available adaptation data), as there is no more performance 
gain, but models may overfit, i.e., the WER seen with source data keeps 
worsening. In parallel, robustness of the AM is likely to become worse. 

6.3 Amount of Data 

Taking again the example of Indian English adaptation of the US English source 
model, Figs. 2a-c show convergence seen on eval data for all the 3 adaptation 
scenarios and gradually adding data of 1k, 2k, 5k and 10k utterances, 
corresponding roughly to 1 hour, 2 hours, 5 hours and 10 hours of target domain 
data, respectively. We can observe, that – according to reasonable expectations – 
the more data we use, the higher WER reduction we obtain; and that the more data 
we have, also the more iterations we have to run during the retraining phase. 
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Figure 2 
Illustration of the adaptation process with the 3 strategies: (a) simple retraining (upper left), (b) 

factorization (upper right) and (c) transfer learning (bottom). Pane (d) shows the comparison of the 3 

methods (on 10 hours of Indian accented English). 

Fig. 2b shows the factorization adaptation outcome, where we see a performance 
gain saturating at 2 hours of adaptation data and adding further data does not result 
in additional WER improvement. This can be explained partly by the fixed 
bottleneck size at 256 nodes irrespective of data quantity, but as both other 
strategies overperformed the factorization approach already by smaller amount of 
data, we did not find it worthwhile to increase bottleneck dimensionality. This also 
means that albeit the available amount of data is usually considered a key 
parameter when choosing the adaptation strategy, i.e., factorization alike 
approaches are reported to have the advantage of scalability [17] and work well 
with low amount of target data, we still found vanilla retraining outperforming it 
by using equal amount of data. This corresponds to confirming our H1 (by 5% 
confidence). Even with datasets containing only 15 and 30 minutes of speech and 
despite scaling the bottleneck size down to 128, we were not able to demonstrate 
such difference between the approaches. Using i-vectors in the baseline system 
may interplay in this result, but as i-vectors are regarded to be state-of-the-art, we 
found it pointless from a practical perspective to experiment with discarding them. 
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6.4 Effect of Top Layout Adaptation 

By using all the 10 hours of Indian development data we compared the 
convergence of the 3 strategies in Fig. 2d. Still the vanilla retraining approach is 
the best performing one. We can therefore conclude that for the used 10 hours of 
data, the advantages of a better fitting output layer cannot counteract the benefit of 
having a somewhat mismatched output layer, which was trained on more data 
even it is out-of-domain data. Looking at Table 1 we observe however, that for 
other dialects associated with more training data, adapting the top layout can yield 
a better model than the one obtained with vanilla retraining, as is shown in the 
case of English spoken in England. On British English with 31 hours of adaptation 
data, transfer learning performs better. The case of US English may seem 
contradictory to this finding, as with even higher amount of 59 hours of adaptation 
data we again observe vanilla retraining yielding a better model, but we resolve 
this contradiction with the following arguments: the source model is trained on the 
Librispeech dataset, which contains dominantly US English utterances.  
The domain mismatch therefore does not arise from different variants of the same 
language, but rather from a mismatch in the acoustic conditions of the speech data 
used for adaptation, taken from the US English samples of the Mozilla Common 
Voice database. We argue that as dialect mismatch should be minimal between the 
two corpora, the worse performance of the adjusted topology model can rather be 
attributed to the poorer modelling capabilities of the context dependency decision 
tree, which, trained on less data can provide a poor representation for the 
particular dialect. 

Table 1 
WER reduction obtained with different supervised adaptation strategies 

 AUS CDN ENG IND USA 
Amount of adaptation data (hours) 8 8 31 10 59 
Baseline WER 25.3 13.3 19.9 44.8 24.5 
WER reduction vanilla retraining 35.2 20.3 31.7 52.1 46.9 
WER reduction top layer reinitialization 28.9 12.0 35.2 50.3 44.1 
WER reduction factorization - - - 42.0 - 

The difference in the relative WER improvement with the transfer learning and the 
retraining strategies is significant in the case of the ENG variety (by 5% 
confidence level), so our H2 hypothesis is confirmed. However, the threshold 
point for the amount of data when reinitialization of the top layer becomes 
beneficial does not only depend on the number of hours of the target data: it may 
hence be worth considering on a case-by-case basis that transfer learning requires 
an additional precursory step to architect the output layout by training a GMM on 
the adaptation data. 
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6.5 Learning Rate and Regularization 

We applied a factor of 0.05..0.5 to the default learning rates worked out by the 
Kaldi TDNN trainer. On 10 hours of adaptation data we consistently experienced 
that the learning rate factors between 0.1 and 0.15 work the best. Letting the 
learning rate be higher (up to 0.5) we observed a consistent increase in WER after 
adaptation leading to by 5-6% less relative improvement in WER. 

We were experimenting with applying KL regularization as part of the cross-
entropy regularization. Although the difference between using simply the 
Dchain+fCE objective or the Dchain+fCE+KL objective is not large, we experienced 
smoother convergence and slightly better performance with Dchain+fCE+KL, the 
difference remaining however below significance (by 5% confidence, we obtained 
the best results with α=0.3 and β=0.6). We hence had to reject our H3. Using KL-
regularization is reportedly beneficial when training with cross-entropy objective 
[30, 31]. Using this approach for regularizing chain training was hence not 
significantly better; we had the impression that in part regularizing with cross-
entropy (without KL) is already effective enough, and in part that the backstitch 
training [28] has a similar regularizing effect than has adding KL-regularization. 
We did not carry out targeted experiments to do further research on these, 
however. 

7 Unsupervised Adaptation 

In several cases there may be no available gold transcription for the utterances 
which nevertheless could be valuable for acoustic (or language) model adaptation. 
By providing an unsupervised adaptation scheme, systems can make a step toward 
self-learning. Obviously, for training, a transcription has to be provided in any 
case. In the unsupervised case, this transcription is obtained by decoding with the 
existing baseline model. The source model may also be a specific model which 
needs further adaptation (incremental adaptation). 

For unsupervised adaptation, the quality of transcriptions is never good enough, 
otherwise the adaptation would not be required. Therefore, a mechanism allowing 
for either predicting the accuracy (or confidence) of the transcripts, or soft target 
training to represent multiple hypotheses can be very useful to carry out the 
adaptation on reliable data. 

7.1 Predicting Confidence 

The ASR itself is able to produce confidence in a normalized range associated 
with words in the decoded lattice. These confidences result from the acoustic and 
the language model scores, hence are less favourable for acoustic model 
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adaptation, because if the grammar used for decoding is poorly fitting, 
confidences get heavily biased. Analysing some recordings along with their 
confidence lattices has revealed that the predicting power of the confidence scores 
for telling whether a word is correctly recognized is too low for a meaningful 
exploitation in our task. Indeed, providing confidence is known to be a hard task, 
no standalone feature is known with strong predicting power, therefore, an 
ensemble of weak classifiers was considered an alternative: TranscRater [32] is a 
freely available toolkit building upon an abundant feature set to predict WER, and 
the prediction is independent from ASR confidence and does not require reference 
(supervision) for inference. The input features rely on four main categories: 
speech signal (MFCC plausibility), lexicon (how difficult is to transcribe a given 
word), language model (several can be used, even different from the one used for 
decoding, word likelihoods and perplexities are extracted) and part-of-speech (to 
estimate whether the observed syntax makes sense). As said, there is no 
confidence score used from the ASR, but TranscRater has to be trained prior to 
using it, which however requires a supervised subset, or at least a correct (high 
precision) value for the WER. This is obviously a considerable drawback. 

While evaluating TranscRater capabilities for our task, we found a very weak 
correlation between the actual and predicted WER on our development sets, 
therefore, we dropped using it. We were also experimenting with predicting the 
M-measure [33], which evaluates acoustic consistence and plausibility and 
therefore it can be a promising candidate to prepare acoustic model adaptation, as 
it considers only the acoustic aspects of data. In a similar framework to M-
measure, it is also possible to use acoustic model posteriors for WER prediction 
(or provide a score for the goodness of the transcript), which completely 
eliminates the dependence on the HCLG (and hence language model). Without 
representing here, the exact formulae, the idea behind M-measure is to capture 
posterior divergence of the acoustic model for several time spans and compute the 
mean of them. Divergence is computed as the symmetric Kullback-Leibler 
distance between posterior distributions yielded by the acoustic model for a 
certain time. Intuitively, this term penalizes smooth distributions (where there is 
no outstanding posterior probability associated with a certain senone), and also 
penalizes inconsistency over time, i.e. a recurrent senone should be consistently 
represented at the posterior level, which could minimize the KLD and hence M-
measure, too. M measure was found to yield better estimates than ASR confidence 
or TranscRater, but still below a fair correlation between the M-measure and the 
WER. 

7.2 Soft Targets with Lattice Supervision 

An alternative to predicting confidence (reliability of transcripts) is to provide a 
soft transcript, which allows for multiple hypotheses. A lattice is an ideal choice 
instead of a hard transcript. Using a lattice moreover matches perfectly with 
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discriminative training strategies and given the computation load reduction 
resulting from applying a lattice free denominator, the numerator can be allowed 
to remain more complex. 

We prepared experiments by using standard decoder settings (in terms of beam 
and other respective parameters) with the Librispeech TDNN baseline and the 
‘tgmed’ language model. The first task is augmenting the data: a speed and 
volume perturbation-based augmentation can be used, followed by extraction of 
high resolution (hires) features. Thereafter, the decoder can be run by preserving 
the produced lattices for the numerator in TDNN discriminative training. 

Adaptation results are summarized in Table 2. Results suggest that the closer the 
accent is to the standard one, the less amount of data is required, and that the more 
target data we have, the more powerful becomes creating a new layout (last hidden 
layer, SoftMax and output based on target domain state tying tree). 

Table 2 
WER reduction obtained with unsupervised adaptation 

 AUS CDN ENG IND USA 
Amount of adaptation data (hours) 8 8 31 10 59 
Baseline WER 25.3 13.3 19.9 44.8 24.5 
WER reduction vanilla retraining 16.4 11.3 15.4 33.3 16.2 
WER reduction top layer reinitialization 16.4 11.7 13.3 34.1 15.4 

Compared to the supervised case, the obtained WER reduction is lower, but still 
over 10% in all cases. Changing the output layout was slightly better performing 
than vanilla retraining, probably because training a new context dependency tree 
was better fitting to automatic transcripts (lattices) containing errors. As a rule of 
thumb, we may suggest using a new context dependency tree and adjusted model 
topology for unsupervised adaptation, or stay with vanilla retraining when 
adaptation data is in the range of 10 or a few tens of hours. 

Conclusions 

In this paper we have addressed dialect adaptation of the ASR acoustic models. 
We compared vanilla retraining without network topology changes to two 
alternatives involving topology changes: factorization between hidden layers and 
creating new senone layout by preserving lower network structure with transfer 
learning. We found that even with low amount of adaptation data available, 
factorization alike approaches underperformed vanilla retraining. Regarding 
transfer learning with changing the top layout, we obtained better results than with 
vanilla retraining if adaptation data was abundant. Adding cross-entropy based 
Kullback Leibler regularization did not improve significantly the WER after 
adaptation, as other regularizing component and techniques ‒ using cross-entropy 
and backstitch ‒ are likely to have a similar effect. Our overall conclusion can be 
summarized as follows: instead going for sophisticated approaches, the more 
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traditional solutions work also well by much lower complexity and requiring less 
effort. 
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