
Acta Polytechnica Hungarica Vol. 15, No. 2, 2018 

 – 49 – 

Hierarchical Histogram-based Median Filter for 

GPUs 

Péter Szántó, Béla Fehér 

Budapest University of Technology and Economics, Department of Measurement 

and Information Systems, Magyar tudósok krt. 2, 1117 Budapest, Hungary, 

{szanto, feher}@mit.bme.hu 

Abstract: Median filtering is a widely used non-linear noise-filtering algorithm, which can 

efficiently remove salt and pepper noise while it preserves the edges of the objects. Unlike 

linear filters, which use multiply-and-accumulate operation, median filter sorts the input 

elements and selects the median of them. This makes it computationally more intensive and 

less straightforward to implement. This paper describes several algorithms which could be 

used on parallel architectures and propose a histogram based algorithm which can be 

efficiently executed on GPUs, resulting in the fastest known algorithm for medium sized 

filter windows. The paper also presents an optimized sorting network based 

implementation, which outperforms previous solutions for smaller filter window sizes. 
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1 Introduction 

Median filtering is a non-linear filtering technique primarily used to remove salt-

and-pepper noise from images. Compared to convolution-based filters, median 

filter preserves hard edges much better, therefore being a very effective noise 

removal filter used before edge detection or object recognition. For example, it is 

widely used in medical image processing to filter CT, MRI and PET images; in 

image capturing pipelines to remove the sensors’ digital noise; or in biological 

image processing pipelines [14] [15] [17]. 

Median filter works basically replaces the input pixel with the median of the 

N=k*k surrounding pixels (Figure 1), which can be done by sorting these pixels 

and selecting the middle one. The figure also shows one of the possibilities for 

optimization: as the filter window slides with one pixel, only k pixels change in 

the k*k array. 

The generalization of the median filter is the rank order filter [3], where the output 

is not the middle value, but the n
th

 sample from the sorted list. Rank order filter 
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can be even more efficient in noise removal, also used in medical image 

processing [17]. Due to space limitation, rank order filtering is not discussed. 

The main drawback of the median filter is the computational complexity. Linear 

filtering is based on sequential data access and multiply-and-accumulate operation 

that can be efficiently executed using CPUs, GPUs or FPGAs. On the other hand, 

implementing median filtering without data dependent operations is considerably 

less straightforward and most architectures are not tailored towards the efficient 

implementation of it. 

x

y

k

k

 

Figure 1 

2D median filtering: computation of two consecutive pixels 

Median filter implementations differ from each other by the applied sorting (or 

selection) algorithm. For small window sizes, O(N
2
) algorithms are good 

candidates, for larger window sizes O(N) solutions are typically faster. Several 

research papers also presented O(1) algorithms [5] [7], but these are typically 

highly sequential and only offer lower execution time than O(N) algorithms if the 

window size is quite large (~25x25 pixels). We can conclude that there is no “best 

algorithm”, the optimal solution depends on the window size.  

This paper presents several algorithms, which can be efficiently used to execute 

low- and medium-sized median filtering on highly parallel architectures, like 

GPUs. 

2 Architectures 

Although there are many different computing architectures, the key in order to 

achieve high performance is parallelization. FPGAs offer fine-grained parallelism, 

where the computing elements and memory structures can be intensely tailored to 

the given application. Multi-core CPUs and many-core architectures, like GPUs, 
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share the basic idea of sequential instruction execution, but the level of 

parallelization is vastly different. 

2.1 Parallel Execution on CPUs 

Irrespectively of being embedded, desktop, or server products, CPUs offer two 

kinds of parallelization: the multi-threading and the vectorization. To be able to 

exploit the multi-core nature of processors, the algorithm should be able to run on 

multiple, preferably highly independent threads. For image processing, especially 

in case the resolution is high or there are lots of images in sequence, this is not an 

issue, as the number of cores in a single CPU is typically low (~32 for the largest 

server products). It is possible to separate input data temporally (by processing 

each image of the input sequence on different core) or within frames (by 

processing smaller parts of a single input image on different cores). This kind of 

multi-threading requires a minimum amount of communication between threads, 

and uniform memory access model – used by single multi-core CPUs – makes the 

data handling straightforward. Larger scale homogeneous CPU systems (such as 

High-Performance Computing centers) are quite different and are out of the scope 

of this paper. 

The other parallelization method offered by CPUs is SIMD execution. Each 

modern CPU instruction set has its own SIMD extension: NEON for ARM [13], 

SSE/AVX for Intel [12] and AltiVec for IBM [9]. An important common feature 

of all SIMD instruction sets is the limited data loading/storing: one vector can be 

only loaded with elements from consecutive memory addresses and the elements 

of a vector can be written only to consecutive memory addresses. Beyond this 

limitation, in order to achieve the best performance, it is also beneficial to have 

proper address alignment. Regarding execution, obviously, it is not possible to 

have data dependent branches within one vector. The typical vector size is 128 or 

256 bit and vector lanes can be 8, 16 or 32-bit integers or floats, so when 

processing 8-bit images 16 or 32 parallel computations can be done with one 

instruction. The nature of SIMD execution greatly reduces the type of algorithms 

which can be parallelized this way – with the notable exception of [5], most of 

them are based on the minimum and maximum instructions [8] [9]. 

Although the future of this product line seems to be questionable now, we should 

also mention Intel’s many-core design: the Xeon Phi. In many ways, it is similar 

to standard Intel processors, as it contains x86 cores with hyper-threading and 

vector processing capabilities. The main differences are the number of cores in a 

single chip (up to 72); the wider vectors (512-bit); the mesh interconnect between 

the cores; and the presence of the on-package high-bandwidth MCDRAM 

memory. 
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2.2 Parallel Execution on GPUs 

The computing model of GPUs is quite different from CPUs. First, the number of 

cores is much larger – e.g. 2560 in the high-end NVIDIA GTX 1080 [11]. To 

allow the efficient usage of these cores, the number of concurrently executed 

threads should be much larger (tens of thousands) than it is for a CPU. Execution 

is also different: basically, a GPU is a MIMD array of SIMD units. 
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Figure 2 

GPU thread hierarchy and accessible memories 

Threads are grouped hierarchically, the lowest level being the warp (NVIDIA) or 

wavefront (AMD), which contains 32 or 64 threads, respectively. The threads 

within a warp always execute exactly the same instruction; therefore, they are 

SIMD in this respect. If threads within a warp execute different branches, all 

threads within the warp execute both branches – therefore data dependent branch 

divergence should be avoided within a warp unless one of the branches is empty. 

Memory access, however, is much less constrained compared to a CPU’s SIMD 

unit: theoretically, there is no limitation on where the warp’s threads read from or 

where they write to; practically to get good performance there are constraints, but 

it is still much freer than it is on CPUs. All threads have their own register space, 

which is the fastest on-chip storage that the GPU has. The number of registers 

allocated to a single thread is defined during compile time: the hardware 

maximum is 255, which is much more than the number of registers available in a 

CPU (though the number of concurrently scheduled threads decreases as the 

number of registers per thread increases, which may affect the performance). 
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The next hierarchy level is the Thread Block (TB): threads within a TB can 

exchange data through a local (on-chip) Shared Memory (SM) and they can be 

synchronized almost without overhead. Hardware-wise, threads within a TB are 

executed on the same Streaming Multiprocessor (SMP). If resource constraints – 

SM and register usage per TB – allow it, threads from multiple, independent TBs 

are scheduled on a single SMP. 

TBs are grouped into Thread Grid, which is executed independently of each other. 

Data exchange between TBs is only possible through cached, off-chip Global 

Memory (GM) and synchronization is quite expensive in terms of performance. 

 

Figure 3 

GPU performance trends 

Beyond the computational capacity, another important factor that has a huge 

impact on performance is memory bandwidth. Just as in case of CPUs, the fastest 

storage is the register array. The second fastest memory is the on-chip SM, but in 

order to get the most performance out of it, there are restrictions to keep. SM is 

divided into 32 parallel accessible banks; each consecutive 32-bit word belongs to 

a different bank. As long as threads within a warp access different banks (or 

multiple threads access exactly the same word within a bank), SM access is 

parallel. However, if different threads within a warp access different words from 

the same bank, memory access is serialized, which heavily affects performance. 

GM bandwidth is considerably lower (see Figure 3). Since the Fermi architecture, 

access to off-chip memory is cached, thus performance impact of non-ideal 

transactions is considerably decreased, but it is still important to design for ideal 

read/write bursts. 
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Figure 3 shows the trends of the theoretical calculated performance of current and 

past NVIDIA GPUs. ALU performance is the number of floating point operations 

per second (other instructions may execute much slower, but it depends on GPU 

architecture); REG is the size of the register space on the whole chip; SM size is 

the size of the SM on the whole chip; SM BW is the cumulative bandwidth of all 

SM blocks; GM BW is the bandwidth of the off-chip GM; TEX is the texture read 

performance in GTexel/s. 

Firstly, we can conclude: the increase in GM bandwidth is notably slower than the 

increase in computational performance (even for the P100, which uses HBM2 

High Bandwidth Memory). Therefore, often used data should fit into on-chip 

memory otherwise the algorithm is not the best candidate for GPU acceleration. 

Second, SM bandwidth increases more or less in line with the computing 

performance, but this is not true for the size of this memory. Thus, memory 

bandwidth intensive algorithms may be relatively good candidates, but the 

algorithms requiring a large size of on-chip memory are not ideal. 

2.3 Special Instructions 

Creating branchless algorithms is a requirement for vectorization and it is also 

preferred for GPU acceleration. For median filtering, the most important 

instructions are the vector comparison instructions, the data selection instruction, 

and the minimum/maximum instructions. 

All SIMD CPU and GPU architectures have comparison instructions for all data 

types: these instructions set a register either to a predefined value (if the 

comparison is true) or to zero. E.g. for Intel SSE the result is 1.0f and 0.0f for 

floating point data types and -1 and 0 for integer data types. For ARM NEON, the 

output is -1 or 0, irrespective of the input data type. NVIDIA GPUs has a more 

versatile SEL instruction: the result type can be set independently of the source 

operand type, therefore both (1.0f or 0.0f) and (-1 or 0) are supported. A slightly 

different version of the SEL instruction is SELP: instead of setting a general-

purpose register, this instruction writes a special predicate register. Please note 

that comparison instructions are not always executed at full-speed: unlike the 

Fermi generation, in case of newer NVIDIA Maxwell and Pascal GPUs, the 

throughput is 0.5 operations per clock per ALU. The same is true for x86 SSE2, 

throughput is 0.5 or 1 depending on data type and CPU generation. 

Another important instruction type is the selection. ARM NEON and IBM 

AltiVec natively supports 3-operand selection instruction. NVIDIA GPUs has a 

SELP instruction where the selection is based on the value of a predicate register 

and an SLCT instruction where selection between two operands is based on the 

sign of the third operand. SSE2 does not have dedicated selection instruction, but 

it can be implemented with several logical operations. 
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Minimum and maximum instructions are widely supported, all SIMD CPU 

instruction sets and all GPUs can execute them on all types of data, though – just 

like comparison and selection – throughput is typically lower than 1. 

3 Grayscale Image Processing 

In this chapter, we present several algorithms. Binary search (BS) is an optimized 

CUDA implementation of NVIDIA’s OpenCL SDK sample [10]; Batcher’s Odd-

Even Merge Sort (BMS) implements the known algorithm [1] in CUDA; BMS2 is 

an optimized version of BMS; the counter based method (CNT) is the GPU 

implementation of our previous FPGA-based solution [3]; and finally hierarchical 

histogram (HH) is a novel histogram based solution for GPUs. Exactly the same 

implementations can be used to handle multiple color planes independently, e.g. to 

filter R, G and B channels independently. For biomedical image processing 

pipelines where the planes show different properties of the cell (e.g. fluorescence 

microscopy [16]) this is the required processing method. However, for natural 

color images, like photos, this is not an advisable method, as independent filtering 

may generate RGB combinations on the output, which were not present on the 

input. Chapter 4 presents a luminance based modification which can be used to 

filter photographs. 

3.1 General Architecture 

Similarly to most image processing functions, input data usage is very redundant 

in case of the median filter. For a N=k*k window size, N-k pixels are the same for 

two neighboring output pixel calculations (see Figure 1), which means that every 

input pixel is read several times. Therefore, appropriate caching is very important. 

Modern GPUs offer three alternatives: cached read access from GM; cached read 

from Texture Memory; software managed buffering in SM. Although every 

memory access is cached, efficiency is not the same – albeit it requires more 

instructions, typically an SM-based solution is considerably faster, thus this is the 

method used for the implementations discussed below. 

Unless otherwise noted, the basic principle is that every thread computes one 

output pixel, which means that a thread block with a size of TX*TY requires 

(TX+k-1)*(TY+k-1) input pixels. The 8-bit pixels are stored line by line in SM, so 

consecutive byte addresses belong to adjacent pixels, therefore one SM word 

stores four adjacent pixels. Using horizontal thread block size of 32, access to the 

adjacent pixels within a warp is free of bank conflict: at any given time the 32 

threads of a warp access 32 adjacent pixels which reside in 32/4=8 banks. If a 

single thread computes S horizontally adjacent output pixels, the i
th

 thread of a 

warp reads byte address i*S, which is bank i*S/4. To have a bank conflict-free 
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access, (i*S/4)%32 should be different for i=0…31, which limits the possible 

numbers to O={1,2,3,4,12,…}. Computing vertically adjacent pixels is free of 

bank conflict: at any given time the threads within a warp reads horizontally 

consecutive pixels from a single line. The drawback is GM read access: when 

loading input data into SM only 32+k-1 bytes can be read from consecutive 

addresses. 

3.2 Binary Search 

Binary search (BS) is the algorithm employed by the 3x3 median filter example in 

NVIDIA’s OpenCL SDK, therefore it is included as a reference [10]. It finds the 

median by counting the number of elements which are greater than the current 

median candidate (highcount); if the result is greater than (N-1)/2, there are more 

larger elements and less smaller elements than the median candidate, thus the 

candidate is increased with interval halving. Figure 4 shows the first three steps of 

the algorithm: the initial median candidate (128) is half of the absolute interval 

([0….255]). In the first step, there are 5 larger and 4 smaller elements than the 

median estimate. Therefore, the median estimate is moved to the middle of the 

upper half-interval: (128+255)/2=192. The new interval is [128…255]. The 

maximum number of steps required to find the median is b=log2I, where I is the 

range of the input data, e.g. 256 for 8-bit input. 

A single step of an iteration is a comparison of the input data and the modification 

of the high-counter. This should be repeated for every input pixel, thus the 

complexity is O(b*N), where b is the bit width of the input values. The algorithm 

is a good choice because it does not contain divergent branches and does not 

require an extensive amount of registers or memory (interval halving can be 

implemented branchless with comparison and selection instructions). 

NVIDIA’s original implementation was created for RGBA input images where 

every thread computes one pixel. The input components were stored in SM as 8-

bit values per component, but computation (median estimate, interval ends) was 

done using float values. This is acceptable when the filter window is small 

because the compiled code reads input values from the SM only once and stores 

them in registers – conversion from uint8 to float takes place during the read. 

However, as the window size increases, there are not enough registers to store all 

N input pixels in registers, therefore every pixel is read and converted multiple 

times, which makes type conversion redundant (not to mention that this type of 

instruction is slow anyway). Although it requires more memory, performance wise 

it is a better approach to do the conversion when the SM is loaded – the speed of 

this process is limited by the GM bandwidth, so the relatively slow type 

conversion is almost free in terms of execution time. 

By checking the generated assembly code, it can be noticed that the NVIDIA 

compiler generates a SETP and a SELP instruction from the C code which 
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implements the basic compare-increment functionality. This is unnecessary, as the 

SEL instruction can set a register to 1.0f or 0.0f based on the result of the 

comparison, thus one instruction can be saved. With the data type modification 

and inline assembly, the performance of the binary search method can be 

increased by 60% compared to the original code. 

2550Interval:

Estimate: 128

      10   33  50   78                 130  132  140  200  220 Highcount: 5

1

255128Interval:

Estimate: 192

        10   33  50   78            130  132  140       200  220 Highcount: 2

2

192128Interval:

Estimate: 160

        10   33  50  78 Highcount: 2

3
130
132
140

200  220

    

Figure 4 

First three steps of the binary search 

As the algorithm can be realized without branches, it can be vectorized when 

being implemented for CPUs. When SSE2 is used, a single vector register can be 

used to calculate the counter for 16 adjacent pixels. As the comparison returns -1 

when true, the addition should be replaced with subtraction for the “larger than” 

counter and the selection operation should be implemented with logical operators. 

3.3 Batcher Odd-Even Merge Sort 

The Batcher Odd-Even Merge Sort (BMS) is a general sorting network introduced 

by Ken Batcher [1]. Although its O(N*(logN)
2
) complexity is not optimal, for 

reasonable input size it is better than any other sorting network [2]. Like other 

sorting networks it is based on comparison and element swapping, which is 

equivalent to executing min()/max() functions – therefore it can be implemented 

branchless. The algorithm completely sorts the N input elements, which is not 

necessary in the case of a median filter, so complexity can be slightly decreased 

by removing the unnecessary comparisons. Figure 4b shows the network for N=9. 

Generally, for N=2
t
 inputs, the number of data swaps required to generate a sorted 

list [2]: 

12)4()2( 22  tt ttc  (1) 

Therefore, complexity is O(N*(logN)
2
). Because of the relatively bad scaling and 

high register usage, the expectation is that a sorting network-based 

implementation can only be used for smaller (3x3 or 5x5) window sizes. 
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Figure 5 

Batcher sorting network for N=9 median 

The performance can be considerably increased by taking advantage of the 

common pixels in two adjacent filter windows: in a window of size N=k*k, there 

are CP=k*(k-1) common pixels. In the sorted list of the common pixels, the only 

median candidates are the (k+1) middle values. To compute the final median these 

candidates should be merged with the sorted list of the remaining k pixels, 

separately for each window. Therefore, to compute two outputs, we have to 

employ one CP-input sorting network and two additional merging steps using the 

(k+1) and k element sorted lists. Compared to performing two N-input sorting 

networks independently, this method greatly decreases the number of required 

instructions. Performance numbers achieved with this optimized version are 

denoted as BMS2 in Chapter 5. 

3.5 Counter-based Method 

The third algorithm (denoted with CNT) originates from our optimized FPGA 

implementation [3], but a slightly similar (less efficient) method was also used in 

[6]. The basic idea is to count the number of elements, which are greater than the 

current one for every pixel. At the end of the process, there will be N different 

counter values ranging from 0 to N-1; the median is the element which counter 

equals to (N-1)/2. 

For the i
th

 processed element, the initial value of its counter is set to i. Then the 

new element is compared with all the older elements (new<old); if the comparison 

is true, the counter of the older element is increased with one and the counter of 

the new element is decreased with one. If the comparison result is false, counters 

do not change. Figure 6 shows the steps of the algorithm for 5 elements. 

The median element can be found by comparing all counter values with (N-1)/2 –

the index of the median element is the index of the counter where the comparison 

is true. The already mentioned SETP and SELP instructions can be used to step 

through all the counter values and select the one with the appropriate value. As the 

GPU’s registers cannot be indexed with a register, this should be done in an 

unrolled loop. A slightly faster version can be created using SEL and FMAD 



Acta Polytechnica Hungarica Vol. 15, No. 2, 2018 

 – 59 – 

(floating point multiply and add): the result of the SEL (1.0f or 0.0f) is multiplied 

with the index of the counter register and added to an accumulator. As all counter 

values are different, SEL returns 1.0f only once, thus the final accumulator value 

equals to the index. This is faster because the throughput of the FMAD instruction 

is 1. 
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Figure 6 

Counter based algorithm example 

The basic step of the algorithm contains four arithmetic instructions: set initial 

counter value; compare the new value with the old one; increment and decrement 

the corresponding counters. The number of steps required for the full process 

equals to 











1N

1i

1i

0j

j4c  (2) 

so the algorithm is O(N
2
), meaning it is only a candidate for a window size of 3x3 

pixels. Register usage also confirms this assumption: the number of counter 

registers required equals to the window size. 

It is possible to exploit the benefits of the overlapping kernel windows: for two 

adjacent outputs, there are N-k common input pixels and k different pixels. This 

means that the first N-k computations are common. That is, the number of steps 

per output pixel can be decreased from 36 to 34 for the 3x3 window, and from 300 

to 205 for the 5x5 window. On the other hand, register usage cannot be decreased, 

as all processed pixel should have their own counter. 
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3.6 Histogram-based Method 

Histogram-based median filters are widely used in CPU implementations because 

of the achievable O(N) or O(N
1/2

) complexity. Moreover, several papers discussed 

O(1) implementations [5] [7], but such algorithms are typically sequential, require 

a large amount of memory and, although O(1) complexity is true, the large 

multiplication factor makes them a viable option only for extremely large window 

sizes. A conceptually similar method was also implemented for GPUs [5] with the 

conclusion that although O(1) complexity can be approached, the O(N) version is 

faster for reasonably sized windows. 

Creating a simple histogram based median filter for uint8 data (referred as H256) 

is quite straightforward. After clearing the histogram, each pixel in the filter 

window is processed and the histogram bin corresponding to the given pixel’s 

value is incremented. After all pixels are processed, the summation of the 

histogram bins equals to N. The median value can be found by accumulating 

histogram bin values starting with bin 0 – the median value is in the bin where the 

accumulator reaches (N+1)/2, because there are (N+1)/2-1 pixels which are 

smaller than the current bin index. Exploiting the advantages of a sliding window 

(see Figure 1) is also quite straightforward: as the filter window steps one column 

right, k pixels should be removed and k new pixels should be added to the 

histogram. For GPU implementation, the main drawback of the simple histogram 

algorithm is memory usage. Every thread should have its own histogram of the 

pixel(s) it processes. This limits the number of concurrently scheduled threads on 

an SMP to 384 (Maxwell and Pascal architectures) when using uint8 bins and to 

192 when using uint16 bins (for windows which contain more than 255 pixels). 

Such a low level of occupancy can seriously decrease performance. 

To reduce memory usage at the expense of increasing the instruction count, we 

propose a novel method, the Hierarchical Histogram (HH). The basic idea is to 

first create a histogram based on the MSB bits of the input and then create a 

histogram based on the LSB bits using the inputs whose MSB equals to the 

computed MSB median. Figure 7 demonstrates the operation using the following 

hexadecimal input values: 0x14, 0x44, 0x42, 0xA3, 0xA6, 0xAB, 0xC0, 0xE4, 

0xFF. The MSB histogram is created from the 4 MSB bits of the input data set, 

then the median is found by accumulating the bin values until (N+1)/2 is reached 

– in this example this is bin 10, where the number of already counted elements 

equals to 6. The number of elements before the selected bin is 3 (bin 1 and bin 4). 

The LSB histogram is created using input data where MSB equals to 0xA. To find 

the LSB median, bin value accumulation should be started from 3, what was the 

number of elements before bin 10 in the MSB histogram. The process reaches 

(N+1)/2 at bin 6, therefore the median LSB value is 6, thus the full median value 

is 0xA6. For 8 bit inputs separating MSB and LSB processing requires only 16 

bytes of histogram memory, which greatly increases GPU occupancy. 
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Figure 7 

Median filtering using Hierarchical Histogram 

The main disadvantage is that in worst case every input pixel should be processed 

twice, which almost doubles SM bandwidth usage. The efficiency increase from 

incrementally processing adjacent pixels also decreases: although the MSB 

histogram can be updated by removing k old pixels and adding k new ones, the 

LSB histogram has to be cleared and recomputed for every new output. To be able 

to do this, the two histograms have to be stored in separate memories, which 

doubles the required space. 

 

Figure 8 

Histogram Shared Memory structure 

For all histogram based filters bank conflict-free memory access is also an 

important design goal. As the threads within a warp access their histogram 

randomly, the histogram array should be constructed in a way that different bins 

of a histogram reside in the same bank and only bins from different warps may be 

placed in the same bank. For N<256 uint8 is enough to store a single bin, for 

larger N uint16 is necessary. Assuming uint8 bins, the most trivial way to avoid 

bank conflict is to place the first 4 bins of a thread into word W of bank B, and the 

i
th 

4 bin word into word W+i of bank B. The drawback of this method is that 
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histogram access requires additional bit selection from the input to determine 

word address and byte address. A better way is to make addressing data-

independent and only related to the thread ID so it can be computed once. One 

general solution is to place 4 bins from 4 different warps into the same word and 

place the bins of a thread into the same bank, as Figure 8 shows. For window size 

N>256 only two uint16 bins are placed in a single word, but otherwise, the same 

memory structure can be used. 

When using histogram-based median filters on CPUs, memory size is not the 

limiting factor – a 256-byte histogram easily fits into any CPU’s L1 cache. On the 

other hand, searching the histogram may take up to 256 steps in the worst case. 

For reasonable window sizes (<15*15), this can require much more instructions 

than the histogram update itself, therefore accelerating the search gives a 

tremendous performance increase. Several SIMD instruction sets offer horizontal 

addition, which sums the elements of a single vector, e.g. 16 bins when the vector 

size is 128 bit. The downside is that the resolution of the resulting “sum of bins” is 

not one bin, but 16. Therefore, after the accumulated sum of 16 bins is larger or 

equal to (N+1)/2, single bin values should be subtracted until the accumulator 

becomes smaller than (N+1)/2. The bin subtracted, before this condition becomes 

true, is the median bin. In the worst case, the horizontally vectorized search 

requires (256/16) vector adds and 16 single bin subtractions, which is 8 times 

faster than the linear search. For SSE2, horizontal operations are very limited, 

only the sum-of-absolute–differences can be used to sum 8-8 elements of a 16 

element vector. Most other instruction sets (SSE4, AVX, NEON) offer a wider 

range of horizontal add instructions. 

4 Luminance-based Filtering 

As it was mentioned earlier, to avoid mixing color planes from different input 

pixels, color images should be filtered using the luminance component (or a value 

similar to it). The additional work to be done compared to the grayscale version 

are the computation of luminance from RGB, and the selection of the full RGB 

values based on the luminance median value. The former is quite trivial: the input 

SM is filled with luminance values computed from the RGB components during 

the SM write. Storing only this value in SM is an appropriate compromise: the full 

RGB values are used only for computing the luminance value and during the final 

output RGB write. This degree of redundant read does not justify the memory size 

which would be required to store the luminance and all the RGB planes in internal 

memory. Even if only the luminance value is stored, its accuracy has an effect on 

the memory size required: storing only 8 bits requires similar memory size to the 

grayscale version, however using more bits doubles the input storage space 

required. Furthermore, in the case of the histogram-based algorithms, increasing 
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the accuracy of the luminance value exponentially increases the size of the 

required histogram memory. 

Selecting the full RGB values from the computed luminance median is quite 

different for the algorithms discussed above. 

The Counter based method does not require too much additional computation – 

searching is similar to the grayscale version with the only difference being that the 

output of the process is not the luminance value, but the linear index of the 

register (and thus the pixel) where the median value resides. This index – together 

with the thread IDs – clearly defines the input pixel, which should be written as an 

output. 

Batcher Odd-Even Merge Sort (and any other algorithm based on min/max 

computation) can be easily modified by extending the values with the pixel 

indices. That is, when the luminance value is loaded from SM, a 32-bit value is 

generated by concatenating the luminance with the x and y pixel coordinates 

within the filter window. As the luminance is placed on the MSB, adding the 

indices does not affect the min/max computation. Final RGB values can be loaded 

based on the indices in the median value and the thread ID. 

For the histogram based algorithms, there are two methods implemented. The first 

one simply compares all the luminance values of the filter window with the 

resulting median and stores the index of the pixel where the values are similar. 

This can be done branchless with SETP and SELP instructions. The other method 

requires an additional index memory. This index memory has as many bins as the 

LSB histogram and it is written with the pixel index whenever the LSB histogram 

is updated. When the LSB histogram update is finished, it is certain that the bin 

corresponding to the median value contains the index of the last pixel equals to the 

median. As this memory is never cleared, other bins of this index memory may 

contain outdated data (if multiple pixels are processed by a single thread), but this 

does not have any influence on the operation. 

For the binary search algorithm, the only available option is the complete search 

method (the first alternative for the histogram based implementation). 

5 Performance Results 

For the benchmarks below a real-world 20 MPixel (4992x3774) photo was used – 

the histogram of the grayscale version is shown in Figure 9. With the exception of 

the histogram based methods, all other algorithms are data independent, thus 

execution time does not depend on the input data. For the HH version, the worst-

case execution time can be measured when every pixel falls into the last bin. In 

this case, all pixels have to be processed both for the MS and the LS histograms 
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and the median search takes as many steps as many bins are used. For the 

vectorized H256 version the worst case is when all pixels are in bin 240 – this is 

the first bin of the last 16-bin part, so the median search is the slowest in this case. 

Measurements show that worst-case execution time is ~25% higher than the 

execution time presented. 

   

Figure 9 

Image and its histogram used for the benchmarks 

5.1 GPU Grayscale Results 

To our knowledge, the fastest median algorithms for GPUs published to date are 

the Forgetful selection [4] and Parallel Ccdf-based Median Filter [5] (hereinafter 

FFUL and PCMF). Although our primary targets are modern desktop and 

embedded architectures (NVIDIA Maxwell, Pascal), to be comparable with 

previous work, the grayscale we also benchmarked on a Fermi GPU based Tesla 

2070, which is the same card used in the above articles. In their article, the authors 

benchmarked PCMF for window sizes ranging from 3x3 to 15x15, while FFUL 

was benchmarked for 3x3, 5x5 and 7x7. 

The performance numbers presented in Figure 10 differs from the numbers in the 

original articles. The mentioned articles measured the time of (hostGPU DMA 

+ kernel runtime + GPUhost DMA) and calculated the MPixel/s numbers from 

this value, while the results in Figure 10 are calculated from the kernel runtime 

only. There are multiple reasons to do this. First of all, DMA speed is also 

affected by the capabilities of the PCIe root complex (chipset). Second, for several 

GPUs, DMA from/to the host can be overlapped with kernel execution, so as long 

as data movement takes less time than kernel runtime, it can be eliminated from 

the full runtime. Third, in the embedded Tegra SoC systems there is no separated 

GPU memory, therefore there is no need for data copy. For FFUL, kernel runtimes 

were presented in [4], for PCMF they were calculated by subtracting the two 

direction DMA times (which were measured with the same board and image size) 

from the runtimes published in [5]. 
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Using the Tesla 2070, at 3x3 and 5x5 window sizes FFUL is slightly faster than 

the standard BMS implementation, but the optimized BMS2 has a substantial 

performance advantage over both. At sizes 7x7 and 9x9 BMS2 is still the fastest, 

though HH12 (Hierarchical Histogram, one thread computes 12 output pixels) is 

getting closer because of its lower complexity. The situation changes drastically 

when the number of registers required by the BMS2 increases too much – 

performance drops significantly and HH12 becomes the fastest solution for the 

larger windows. Although it scales worse than PCMF, it is still almost three times 

as fast even when the window size is increased to 15x15 pixels. 

 

Figure 10 

Performance using Tesla 2070 and GeForce GTX 1070 

There are notable changes when we use the GTX 1070 with the most recent Pascal 

architecture (note: FFUL and PCMF were not re-implemented). Due to the 

increased register count, the larger performance drop of BMS2 happens only at 

larger window size. On the other hand, SM intensive algorithms also behave 

better, as the per-SMP SM size is increased from 48 kB to 96 kB, which allows 

higher occupancy for these implementations. Similarly to the case of the Tesla, the 

optimized BMS2 implementation is the fastest implementation up to window size 

7x7. HH12 already performs on par with it at 9x9, however, the result is data 

dependent: HH12 can be up to 18% faster than BMS2, or can be up to 17% 

slower. For larger sizes, HH12 is data-independently faster. Due to the increased 

SM size, the trivial histogram based implementation (H256) also becomes a viable 

option – for the largest window size benchmarked, it is even faster than HH12.  

Results differ noticeably when the algorithms are executed on NVIDIA’s latest 

embedded GPU which can be found in the Tegra Parker SoC. Similarly to the 

GTX 1070, this chip is also based on the Pascal GPU architecture, but the SM size 

was decreased to 64 kB, while the per-SM register size remained the same. The 

impact is clearly visible in Figure 11: compared to the other solutions, the SM 

intensive HH4 (Hierarchical Histogram, one thread computes 4 output pixels) 

algorithm performs slightly worse. BMS2 is clearly the fastest solution up to 9x9 



P. Szántó et al. Hierarchical Histogram-based Median Filter for GPUs 

 – 66 – 

window size and it performs similarly to HH4 at 11x11. As the window size 

increases further, HH4 becomes the fastest method. 

 

Figure 11 

Tegra Parker and Intel Core i7 results 

5.2 CPU Grayscale Results 

For a complete picture, it is unavoidable to compare GPU filtering performance 

with CPU filtering performance. In [5] PCMF was also implemented for CPUs 

and compared to a histogram based O(1) algorithm (Constant Time Median 

Filtering - CTMF [7]), so these results are included as a reference. As these 

algorithms are more suitable for very large window sizes, to have comparable 

results, we have also implemented a multithreaded and vectorized version of BS, 

BMS, and H256 which takes advantage of Intel’s SSE2 instruction set. The 

benchmarks were run on an Intel Core i7 960 CPU (4 cores, 8 threads, 3.2 GHz 

frequency, 17 GB/s memory bandwidth), which is similar to the CPUs used in [5], 

so the results are comparable. 

As Figure 11. shows, the trends are quite similar to the GPU results. For window 

sizes below 11x11, the sorting network based BMS offers the best performance, 

while for larger windows H256 has the best throughput – at 15x15 it is 4 times as 

fast as CTMF and 6 times as fast as PCMF. 

Conclusions 

To give a comprehensive overview about GPU accelerated median filtering, we 

implemented several algorithms in CUDA and compared them to the fastest 

published solutions (FFUL, PCMF). BS and BMS are known branchless 

algorithms, which are good candidates for GPU implementation; CNT is a 

software implementation of our parallel method developed for FPGAs; BMS2 is 

our optimized version of the sorting network, while Hierarchical Histogram is our 

novel algorithm for GPUs. Based on the performance measurements done, we can 
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make the conclusion: the implementations we presented in the article are the 

fastest median filter solutions for GPUs. BMS2 offers the highest performance for 

smaller window sizes; it is faster than the FFUL [4] method even for a window 

size of 3x3. HH is suitable for larger windows, where it substantially outperforms 

previously published implementations. 

To be able to compare the GPU performance to CPU performance, we also 

created optimized CPU-based solutions. We can conclude that the easily 

vectorizable sorting network-based method (BMS) is the fastest implementation 

up to 9x9 window size, but beyond that our partially vectorized histogram based 

algorithm becomes faster – at 15x15 window size it is 4 times as fast as the fastest 

O(1) algorithms published [5] [7]. 

We should also emphasize the benefits of GPU acceleration in this application. 

Compared to the CPU, not only the absolute performance is much higher, but also 

the energy efficiency is outstanding. Even if considering the actual CPU 

generation approximately doubles the performance per watt ratio, the GTX 1070 

board is more than 5 times as efficient as a CPU. The situation is similar in case of 

the Tegra Parker. Whilst its performance is comparable to the Core i7 960 CPU, 

there is a huge difference in power consumption: the TDP of the CPU is 130 W, 

whereas the Tegra consumes less than 10 W. 
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