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Abstract: The importance of efficient diabetes treatment and its’ reliable automation is
rising with the prevalence of this chronic condition worldwide. Robustness is one of the
enablers of the safe automation of plasma glucose control, for it can ensure consistent
behavior when the controlled dynamics are changing or partially unknown. Hence, this
work focuses on assessing the capabilities of a robust nonlinear controller framework in
a simulated environment. Linear Parameter-Varying modeling is combined with robust
control techniques, supported by an Unscented Kalman filter. These controllers are then
subjected to additional constraints in search of a practical trade-off between disturbance
rejection and the severity of transient behavior. Simulations with unannounced meal in-
takes explore and compare the effect of these additional constraints and configurations
using the virtual patients provided by a well-known in silico simulator. The simulation re-
sults indicate that this control method can ensure adequate blood glucose control and has
the potential to support other control algorithms to realize a safe and reliable artificial
pancreas.
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1 Introduction
In a healthy individual, a complex endocrine system keeps the glucose concen-
tration in the blood within a narrow range (3.9 - 7.8 [mmol/L]). Diabetes Mellitus
(DM) is a collective term referring to several chronic metabolic diseases where
this system is impaired, resulting in elevated glucose levels. In particular, Type
1 Diabetes Mellitus (T1DM) is diagnosed when the β -cells in the pancreas can-
not produce insulin, a peptide hormone that plays a crucial role in decreasing
plasma glucose concentration [1]. The most common treatment for this condi-
tion includes regular insulin injections. Due to an increasing prevalence in the
population [2, 3], the recent decades saw extensive research in the automation of
insulin treatment [4, 5], commonly referred to as Artificial Pancreas (AP). Some
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AP implementations have already undergone clinical trials [6–8].

Maintaining normal glucose concentration (normoglycemia) is a challenging con-
trol problem due to the following reasons:

• Most models approved for representing a T1DM patient [9–11] are severely
nonlinear, even though they focus on only the most relevant aspects of hu-
man metabolism.

• Tuning the parameters of these models has practical limitations [12, 13].
Hence, the nominal model can deviate significantly from the actual patient
behavior [14, 15].

• The commercially available continuous glucose monitoring (CGM) sen-
sors have significant noise and drift [16–18].

• A single-hormone controller that can only administer insulin has no means
to elevate glucose levels. Therefore, the controller must be designed so that
the control signal is always non-negative. Controllers with the capability
to increase glucose concentration using glucagon [19] is outside the scope
of this work due to some practical challenges in glucagon delivery [20].

• Even rapid-acting insulin - if injected subcutaneously - has a significantly
slower effect on the plasma glucose concentration than meal intake or
physical activity [9, 10].

• The dynamics of the human metabolism concerning glucose is slower when
the glucose levels are lower compared to when they are high [21].

• The plasma glucose concentration is affected by various factors that are
difficult to measure, detect, or even quantify. These include meal intake,
physical activity, insulin administered by the patient (in a semi-automated
setting), and various other physiological conditions.

• Having glucose levels below 3.9 mmol/L or 72 mg/dL (hypoglycemia) is
a more severe acute complication than high glucose concentration (hyper-
glycemia). While reducing the latter in severity and frequency is the pri-
mary goal of AP, the former can lead to loss of consciousness, seizures,
and even death [1] and hence must be strictly avoided [22].

Numerous different approaches were presented for control algorithms [23] that
can address the above-listed particularities. These include different incarna-
tions of PID control [24, 25], adaptive controllers [26], machine learning algo-
rithms [27, 28], fractional order controllers [29] among others. One of the most
widely accepted approaches is model predictive control (MPC), which showed
remarkable results both in simulation and in practice [30, 31]. However, MPC
requires an accurate model, which is rarely available in clinical practice. Hence,
increasing the robustness of the controllers [32, 33] or making robustness the core
feature of the control algorithm [34–36] gained popularity. Despite their limited
disturbance rejection capabilities compared to MPC adjusted to individual pa-
tients, robust control methods have the potential to achieve a desirable compro-
mise between safety and the efficiency of the T1DM treatment.
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This work focuses on a class of robust nonlinear controllers aiming to ensure
normoglycemia for T1DM patients. The T1DM model presented in [37] serves
as the basis of the controller design, transformed into an LPV model, extended
with an output uncertainty model, and weighting functions representing expected
tracking performance, reference dynamics, and constraints on the control signal.
The LPV controller can ensure robustness by minimizing H∞ or H2 norms be-
tween various inputs and outputs of the extended LPV model.

2 Modeling the Human Metabolism
The following differential equations describe the 11th order Cambridge model
introduced by Hovorka et al. [9] and later updated by [37]:

Ċ(t) = −ka,intC(t)+
ka,int

VG
Q1(t)

Q̇1(t) = −
(

F01

Q1(t)+VG
+ x1(t)

)
Q1(t)+ k12Q2(t)−

−Rcl max{0,Q1(t)−RthrVG}−Phy(t)+

+EGP0 max{0,1− x3(t)}+min
{

UG,ceil ,
G2(t)
tmax

}
Q̇2(t) = x1(t)Q1(t)−

(
k12 + x2(t)

)
Q2(t)

ẋ1(t) = −kb1x1(t)+SIT kb1I(t)
ẋ2(t) = −kb2x2(t)+SIDkb2I(t)
ẋ3(t) = −kb3x3(t)+SIEkb3I(t)

İ(t) =
ka

VI
S2(t)− keI(t)

Ṡ2(t) = −kaS2(t)+ kaS1(t)
Ṡ1(t) = −kaS1(t)+u(t)

Ġ2(t) =
G1(t)−G2(t)

tabs(t)

Ġ1(t) = − G1(t)
tabs(t)

+D(t),

(1)

where C(t) is the glucose concentration in the subcutaneous tissue [mmol/L],
Q1(t) and Q2(t) are the masses of glucose in accessible and non-accessible com-
partments [mmol], x1(t) [1/min], x2(t) [1/min], and x3(t) [-] are the remote ef-
fects of insulin on glucose distribution, disposal and endogenous glucose produc-
tion, respectively, I(t) is the insulin concentration in plasma [mU/L], S1(t) and
S2(t) are the insulin masses in the accessible and non-accessible compartments
[mU], while G1(t) and G2(t) are the masses of ingested glucose in the stom-
ach and gut [mmol/kg]. u(t) is the injected insulin flow of rapid-acting insulin
[mU/min], which is the input of the system. D(t) is the amount of ingested car-
bohydrates [mmol/min], and Phy(t) is the effect of physical activity [mmol/min].
Both are considered as disturbances. Table 1 provides details on model parame-
ters. The glucose absorption time constant tabs(t) is a function of state variables,
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Table 1
Cambridge model parameters.

Name Unit Description
ka,int 1/min transfer rate constant between the plasma and the sub-

cutaneous compartment
VG L distribution volume of glucose in the accessible com-

partment
F01 mmol/min total non-insulin dependent glucose flux
k12 1/min transfer rate constant from the non-accessible to the ac-

cessible compartment
Rcl 1/min renal clearance constant
Rthr mmol/L glucose threshold for renal clearance

EGP0 mmol/min endogenous glucose production extrapolated to the zero
insulin concentration

tmax min time-to-maximum appearance rate of glucose in the ac-
cessible compartment

UG,ceil mmol/min/kg maximum glucose flux from the gut
kb1, kb2 1/min deactivation rate constants

kb3 1/min deactivation rate constant for the insulin effect on en-
dogenous glucose production

SIT L/mU/min insulin sensitivity for transport
SID L/mU/min insulin sensitivity for distribution
SIE L/mU insulin sensitivity for endogenous glucose production
ka 1/min insulin absorption rate constant
VI L volume of distribution of rapid-acting insulin
ke 1/min fractional elimination rate from plasma

and calculated as follows:

tabs(t) = max
{

tmax,
G2(t)
UG,ceil

}
. (2)

Parameters ka,int , F01, k12, EGP0, kb1, kb2, kb3, SIT , SID, SIE , ka and ke are time-
varying with ±5% deviation. In the in silico tests, this is represented by sinu-
soidal oscillations superimposed on the nominal values with three hour period
and a randomly generated phase.

2.1 Model reduction

A high-order model is rather difficult to handle, let it be analysis, identification,
observer, or controller design, regardless of the method used. Given the limited
measurement capabilities, we can only acquire information from the dominant
components of the model dynamics. It would be advantageous to reduce the
model to one that retains the most characteristic properties, yet the error resulting
from this simplification is minimal. For example, early diabetes models used only
three state variables [38], and it is not uncommon in ICU patient models to use
only 3-5 state variables [39]. However, the errors resulting from model reduction
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must be considered in the controller design.

For the states that belong to meal absorption (which is considered disturbance),
it is easy to choose a linear substitution that represents worst-case meal intake.
Let us use the notation Wmeal(s) for the transfer function of this model:

Wmeal(s) =
UG,ceil

tmaxs+1
. (3)

It is frequent among the most commonly used T1DM models [9, 10, 37, 40, 41]
to contain a second-order nonlinear component. In the Cambridge model, these
are denoted as Q1(t) and Q2(t). Aside from this and the meal absorption, the rest
of the dynamics are entirely linear. We can distinguish two main parts: subcu-
taneous glucose transfer and insulin dynamics. The former can be neglected if
an adequate state observer can accurately estimate plasma glucose concentration.
The rest incorporates the transfer of the fast-acting insulin from the subcutaneous
regions to the plasma, insulin degradation, and insulin effect. The overall model
can be simplified by truncating this single input-multiple output linear system.

In the case of (1), the transfer speed between specific compartments is compara-
ble to the sampling time of the CGM. Hence, the states associated with them can
be eliminated. The resulting reduced model is as follows:

Q̇1(t) = −
(

F01

Q1(t)+VG
+ x1(t)

)
Q1(t)+ k12Q2(t)−

−Rcl max{0,Q1(t)−RthrVG}−Phy(t)+

+EGP0 max
{

0,1− kaSIE

VIke
S2(t)

}
+min

{
UG,ceil ,

G2(t)
tmax

}
Q̇2(t) = x1(t)Q1(t)−

(
k12 +

kaSID

VIke
S2(t)

)
Q2(t)

ẋ1(t) = kb1

(
kaSIT

VIke
S2(t)− x1(t)

)
Ṡ2(t) = −kaS2(t)+ kaS1(t)
Ṡ1(t) = −kaS1(t)+u(t)

Ġ2(t) =
G1(t)−G2(t)

tabs(t)

Ġ1(t) = − G1(t)
tabs(t)

+D(t)

(4)

where the output is C(t)≈ Q1(t)/VG.

Finally, considering the range of parameter k12 as presented in [37], if 1/k12
is comparable to the CGM sensor sample time, then there is a need to apply
reduction in the nonlinear dynamics as well. Section 3.1 provides details on how
to perform the necessary changes.
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3 Controller Synthesis
3.1 Linear Parameter-Varying representation

Although continuous time T1DM models can have a varying degree of nonlinear-
ity, the vast majority of them can be transformed into a linear parameter-varying
model: [42]

ẋ(t) = A(ρ(t))x(t)+B(ρ(t))u(t)
y(t) = C(ρ(t))x(t)+D(ρ(t))u(t)

A(ρ(t)) = A0 +∑
m
i=1 ρi(t)Ai B(ρ(t)) = B0 +∑

m
i=1 ρi(t)Bi

C(ρ(t)) = C0 +∑
m
i=1 ρi(t)Ci D(ρ(t)) = D0 +∑

m
i=1 ρi(t)Di,

(5)

where the scheduling variables ρi(t) are bounded, as well as their time deriva-
tives, and these bounds are known. Furthermore, the scheduling variables should
be available for measurement. For a T1DM model, the bound constraint is satis-
fied, but only estimation of the scheduling variables is available.

The chosen LPV representation of the Cambridge model is the following:

Ċ(t) = −ka,intC(t)+
ka,int

VG
Q1(t)

Q̇1(t) = −(Faρ1(t)+Fb)Q1(t)−ρ1(t)x1(t)+ k12Q2(t)−distRcl(t)−

−Phy(t)+EGP0 (1− x3(t))+
UG,ceil

tmax
G̃(t)

Q̇2(t) = ρ1(t)x1(t)− k12Q2(t)−ρ2(t)x2(t)
ẋ1(t) = −kb1x1(t)+SIT kb1I(t)
ẋ2(t) = −kb2x2(t)+SIDkb2I(t)
ẋ3(t) = −kb3x3(t)+SIEkb3I(t)

İ(t) =
ka

VI
S2(t)− keI(t)

Ṡ2(t) = −kaS2(t)+ kaS1(t)
Ṡ1(t) = −kaS1(t)+u(t)
˙̃G(t) = −

1
tmax

G̃(t)+distmeal(t),

(6)

which is constructed with the following considerations. The state variables Q1
and Q2 were chosen as scheduling variables: ρ1 = Q1 and ρ2 = Q2. The Hill
function F01(Q1(t)+VG)

−1 has a linear approximation Faρ1(t)+Fb, as presented
in [43] and [44]. The worst-case meal model (3) replaces the second-order meal
intake. Moreover, to avoid switching control, endogenous glucose production
(EGP) has no saturation, and the renal extraction (Rcl) is considered a distur-
bance: distRcl(t). In exchange, the controller must ensure that x3(t)<= 1.

If model reduction is necessary, the same method is applicable as presented in
Section 2.1. In addition, if 1/k12 is comparable to the CGM sensor sample time,
then further model reduction is possible by replacing Q1(t) and Q2(t) with Q̃(t)≈
Qt(t)− x1(t)/k12 as follows:
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Ċ(t) = −ka,intC(t)+
ka,int

VG
Q̃(t)−

ka,int

k12VG
x1(t)

˙̃Q(t) = −(Faρ1(t)+Fb) Q̃(t)+(Fcρ1(t)+Fd)x1(t)−distRcl(t)−

−Phy(t)−ρ2(t)x2(t)+EGP0 (1− x3(t))+
UG,ceil

tmax
G̃(t),

(7)

where we used the approximation Fcρ1(t)+Fd ≈ Q1(t)F01/(k12(Q1(t)+VG)).
Furthermore, the output can be approximated with

C(t)≈
1

VG

(
Q̃(t)−

1
k12

x1(t)
)
, (8)

if necessary.

Note, that even though Q1(t) and Q2(t) are not part of the model (7), the schedul-
ing variables ρ1(t) and ρ2(t) are still present, hence the state observer must pro-
vide reliable estimation, and cannot use (7) instead of (1).

Considering the nonlinearity of the Cambridge model and the presence of dis-
turbances, sigma-point filters are good candidates for estimating the scheduling
variables [45–47]. These filters provide further benefits of reducing the mea-
surement noise of CGMS, estimating the glucose flux from unannounced meal
intakes, as well as enabling state feedback control.

The state observer used in this work is the same as presented in [43], i.e., we
use unscented square-root filter with lognormal distribution for state variables
associated with glucose concentration and meal intake.

3.2 Modeling Uncertainties

Not even one of the most complex T1DM models [48] can fully capture a system
as complex as human metabolism. All models used in practice employ some level
of simplification, capturing only the most essential aspects of the glucose-insulin
interaction. Additionally, human physiology tends to change and adapt over time
and is affected by various external factors that are difficult to quantify, let alone
measure [49, 50]. No matter the model used, controller design must address
deviation from the actual dynamics. This approach uses uncertainty weighting
functions to that end. Let P denote a nominal T1DM model, with a single output
y(t), a single controlled input u(t), and a set of external disturbances d(t). Fig-
ure 1 presents a simple system that uses output uncertainty weighting functions.
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P

d(t)

u(t) y(t)

Wout,adout(t)

Wout,m ∆

Figure 1
Simple system with output uncertainty weighting functions

Wout,a and Wout,m are linear minimum-phase systems representing additive and
multiplicative output uncertainty, respectively. ∆ is an unknown linear system
that is of minimum-phase and has an H∞-norm that is less or equal to 1. din(t)
and dout(t) are considered stochastic disturbance signals, that are usually mod-
eled with distribution N (0,1) or U (−1,1).

There are other ways to model uncertainties, but this work only considers output
uncertainties. The parameters of Wout,a and Wout,m may come from the residual
error of fitting T1DM parameters or from a priori knowledge from clinical prac-
tice. Here the uncertainty model accounts for the sinusoidal changes in model
parameters presented in section 2, and any reduction ((7) and section 2.1) that
may take place.

Extending the nominal model with uncertainties is vital for both the controller
and state observer, as it can ensure robustness and stability for both control and
state estimation. However, it also poses a challenge if the control law is realized
with state feedback. In this particular case, the state variables of the uncertainty
models shall be estimated as well.

3.3 LPV Model in the Clinical Practice

Before presenting the controller synthesis, it is worth examining the LPV trans-
formed model from a different perspective. In (7), in the subsystem consisting of
Q1(t) and Q2(t), ρ1(t) defines the rate of transfer of glucose from Q1(t) to Q2(t)
compartments, and ρ2(t) is responsible for how fast glucose in Q2(t) dissipates
from the system. Since ρ1(t) is identical to Q1(t), and the output is ≈ Q1(t)/VG,
hence the larger the glucose levels are, the faster the dynamics of the system.
This is a common observation in clinical practice as well.

Consequently, this poses a challenge to controller design: Suppose the controller
injects too much insulin during hyperglycemia. In that case, it is difficult to com-
pensate for its effect once the glucose levels decrease, not only because negative
control signal is not an option but also because the system will be less sensitive
to any intervention.
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3.4 Robust Controller Synthesis

In order to address the need for robustness and stability, H∞ and hybrid H∞/H2
controllers [51] can provide a solid foundation. Let G( jω,ρ) denote the transfer
matrix of an LPV (5) closed-loop system with an H∞ controller, that was suc-
cessfully synthesized for a positive γ value. This controller ensures that ∥G∥∞,
the H∞ norm of the transfer matrix is smaller than γ:

∥G∥∞ = sup
ρ

sup
ω∈R

σmax(G( jω,ρ))< γ, (9)

where σ denotes the singular value. An H2 controller on the other hand ensures
that ∥G∥2, the H∞ norm of the transfer matrix is smaller than γ:

∥G∥2 = sup
ρ

√√√√ 1
2π

trace
∞∫

−∞

G( jω,sup
ρ

)(G( jω,sup
ρ

))Hdω < γ. (10)

H∞ and H2 constraints can be imposed on the controlled system with carefully
chosen linear matrix inequalities (LMIs) [52].

Figure 2 and Figure 3 display two different schemes: LPV state feedback, de-
noted with K f b(ρ), and dynamic LPV controller, denoted with Kd(ρ).

Wu zu

Wmmeal
P(ρ)dΣ

Wre f

Wo,m S−1
c

zo
∆

do
Sc

Wo,ada r
Wnn

Wper zp

−K f b(ρ)

u

x̃ext

ρ̃

Obs

−

Figure 2
Controller realized as LPV state feedback

P(ρ) represents the LPV transformed T1DM model (6) with reduction applied
if necessary, and the meal absorption dynamics separated into Wm. Obs denote
the sigma point filter that provides state variable (x̃ext ) and scheduling variable
estimation (ρ̃). Wo,m and Wa,m are weighting functions for multiplicative and
additive output uncertainty models, respectively, with the latter driven by da.
Wper defines expected tracking performance. Wu serves two purposes:

1. it defines the maximum value for the control signal;

2. it ensures that endogenous glucose production does not saturate.
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Wu zu

Wmmeal
P(ρ)dΣ

Wre f

Wo,m S−1
c

zo
∆

do
Sc

Wo,ada r
Wnn

Wper zp

Kd(ρ)

u

Obsρ̃

+

+

−

Figure 3
Controller realized as dynamic LPV system

dΣ represents all disturbance signals affecting P(ρ) directly: Phy physical ac-
tivity, the estimation error of glucose flux from the gut, and quantization error
if the control signal has a finite resolution. Since an estimated output of Wm is
available, it is possible to define reference tracking dynamics Wre f that mimics
the behavior of a healthy patient. Using the output of Wre f instead of relying on a
constant reference signal r for feedback can potentially help avoid hypoglycemia.
Finally, Wn noise model is not present for state feedback control.

The state observer works with (1) instead of (6), and will use Wo,m, Wa,m, and
Wn regardless of the control method used. Section 3.5 details the role of scaling
factor Sc.

Pure H∞ controller will ensure minimal H∞ norm for the transfer to the perfor-
mance output zp and smaller than 1 H∞ norm to zo and zu from the disturbance
inputs meal, da, do, dΣ and n. The latter ensures robust stability for the controlled
system. Hybrid H∞/H2 controller minimizes the H2 norm for the performance
output instead of H∞ norm.

Finally, additional LMI constraints limit the poles of the controlled system to a
defined region, reducing oscillatory transients and rejecting poles too fast com-
pared to the sampling frequency of the CGM sensor (Figure 4).

Re

Im

1
2 fs α

Figure 4
Constraints for the poles of the controlled system: fs is the sampling frequency of the CGM sensor,

α is the maximum angle of the complex conjugate pole pairs
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The control law for LPV state feedback is as follows:

u(t) =−K f b(ρ(t))x̃ext(t), (11)

where x̃ext(t) is the estimated state variables of P(ρ), Wm, Wu, Wo,m, Wo,a, Wre f ,
and Wper.

If the controller is a dynamic LPV system (5) instead, the control signal is the
output of the following:

ẋd(t) = Ad(ρ(t))xd(t)+Bd(ρ(t))e(t)
u(t) = Cd(ρ(t))xd(t)+Dd(ρ(t))e(t).

(12)

3.5 Scaling

In order to achieve robust stability, the H∞ norm of the transfer function from
the disturbance inputs to the output of Wu and Wout,m shall be smaller than 1.
On the other hand, the glucose levels can reach up to 17 mmol/L, even with a
well-functioning artificial pancreas.

Hence, when using the multiplicative output uncertainty model, the output of
the corresponding weighting function (zo in Figure 2 and Figure 3) should be
scaled (Sc) to satisfy robust stability constraints. If Sc is too small, the controller
synthesis is infeasible. Conversely, too large scaling factor will lead to reduced
disturbance rejection performance. In this work, we used an iterative algorithm
to set a patient-specific scaling factor.

4 Results
All simulations were performed on the original eight patient parameter sets in-
troduced in [37]. The weighting functions presented in Figure 2 and Figure 3 are
as follows:

• P(ρ) is the LPV-transformed model (6), with patient-specific reduction
applied only to remove state variables that would otherwise introduce time
constants less than 20 minutes.

• Transfer function (3) is chosen as Wm in Figure 2 and Figure 3, using
patient-specific parameters.

• Wo,m is a low pass filter that represents 10% to 25% multiplicative uncer-
tainty on frequencies below 2π

120 [rad/min]:

Wo,m(s) =
0.1

120s+1
(13)

The higher uncertainty value is necessary when working with a linear
model and controller instead of LPV.
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• Wo,a assume ±0.5 [mmol/L] additive uncertainty on top of the multiplica-
tive uncertainty.

• Wu is patient-specific, ensuring that endogenous glucose production does
not reach zero and that u is smaller than 4500 [mU/min].

• The sensor noise is assumed to be Gaussian white noise with 0.1 [mmol/L]
standard deviation, hence n ≈ N (0,1) and Wn = 0.1.

• Wper specifies that the controller should only minimize tracking error be-
low 2π

180 [rad/min]:

Wper(s) =
1

180s+1
(14)

• If applicable, the reference dynamics Wre f is:

Wre f (s) =
11

UG,ceil(60s+1)
(15)

The constant reference signal is 4.5 [mmol/L] and 4.9 [mmol/L] with and
without Wre f respectively.

We used MATLAB and SIMULINK for controller synthesis and simulation, in-
cluding the CVX toolbox [53, 54]. For each controller, α = 45◦ and 5 minutes
sampling time constrain the closed-loop poles as shown in (Fig. 4).

For easier comparison with other methods, the simulations were done using two
commonly used meal intake scenarios spanning 24 hours. The controller admin-
istered the insulin without manual intervention and any meal intake announce-
ment. The meal intake scenarios were as follows:

1. 150 g of carbohydrate (CHO) intake per day. The meal intake consists of a
35 g CHO breakfast at 8:30, a 65 g CHO lunch at 13:00, and a 50 g CHO
dinner at 19:00.

2. The meal intake protocol is presented in [55]. It consists of a 45 g CHO
breakfast at 9:30, a 75 g CHO lunch at 13:30, and an 85 g CHO dinner at
19:30.

Control variability grid analysis (CVGA) [55] visualizes and compares the ca-
pabilities of different types of controller configurations on Figure 5, Figure 6,
Figure 7, and Figure 8. The x and y axis is the minimum and maximum glu-
cose levels throughout the simulations, respectively, in [mg/dL]. The aim is to
stay in the A and B zones for both meal scenarios for all virtual patients. In each
figure, two sets of simulation results are presented: black circles represent simu-
lations using a state feedback controller. In contrast, the simulations result when
a dynamic LPV controller was applied are represented with white circles.
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Figure 5 displays the CVGA of simulations results for linear H∞ controllers,
without reference dynamics Wre f . The output multiplicative uncertainty is 25%,
as ensured by (13). Both the state feedback and the dynamic controller performed
poorly, reaching only C and D zones with the majority of virtual patients.

A-zone Lower B Lower C

Upper B B-zone Lower D

Upper C Upper D E-zone

A-zone Lower B Lower C

Upper B B-zone Lower D

Upper C Upper D E-zone

Meal scenario 1 Meal scenario 2

100

200

300

≥400

110 90 70 ≤50
100

200

300

≥400

110 90 70 ≤50

M
ax

im
um

gl
uc

os
e

[m
g/

dL
]

Minimum glucose [mg/dL] Minimum glucose [mg/dL]

Figure 5
CVGA for linear H∞ controllers using (a) meal scenario 1 and (b) meal scenario 2.

Since the linearization of the model was at 4.9 [mmol/L] (≈ 90 [mg/dL]), both
controllers assume slow dynamics, which does not hold once the glucose levels
elevate after each meal intake. However, the behavior of the two controller con-
figurations is different. The state feedback controller administers more insulin
than necessary, leading to lower maximum values but severe hypoglycemia. In
contrast, the dynamic controller avoids hypoglycemia at the cost of higher maxi-
mum glucose levels.

Choosing a different working point with a higher glucose level for linearization
could improve the capabilities of both controllers. Furthermore, using hybrid
H∞/H2 norm or reference tracking dynamics can bring some minor improve-
ment. However, using a purely linear controller has its limits, and hence a non-
linear approach is necessary.

Using LPV model and LPV controllers reduce the occurrence of both hypo- and
hyperglycemia, as shown in Figure 6. Since the controllers directly address the
changing dynamics of the model, more than half of the virtual patients are kept
in the B-zone for both controller types.
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Figure 6
CVGA for LPV H∞ controllers using (a) meal scenario 1 and (b) meal scenario 2.

However, there are cases of severely low glucose concentrations for both con-
troller types. Introducing reference tracking dynamics can mitigate these hypo-
glycemic episodes, as shown in Figure 7. Instead of a constant reference signal
at 4.9 [mmol/L], the additional weighting function Wre f (s) defines the desired
disturbance rejection. The input of Wre f (s) is the estimated glucose flux resulting
from meal intake. Both the occurrence and severity of hypoglycemia decreased
for the two types of controllers compared to Figure 6, although they are not elim-
inated completely. The maximum glucose concentration is below 300 [md/dL]
for the state feedback controller but increased for the dynamic controller.
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Figure 7
CVGA for state-feedback and dynamic controllers using reference tracking dynamics Wre f for (a)

meal scenario 1 and (b) meal scenario 2.
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Finally, the results can be further improved by using H2 norm for the perfor-
mance output instead of H∞. The results are displayed in Figure 8. As a result,
the minimum glucose values in both meal scenarios and controller types have
less variance and hence lessen the chance of hypoglycemia.
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Figure 8
CVGA for LPV H∞/H2 controllers with Wre f using (a) meal scenario 1 and (b) meal scenario 2.

Conclusions

Based on the simulation results presented in section 4, a linear controller is insuf-
ficient for glycemic control. LPV controllers are more reliable than linear ones,
with less variability in both maximum and minimum glucose levels for the used
meal intake protocols. However, they are still prone to hypoglycemia. Using ref-
erence tracking dynamics instead of a constant reference signal can considerably
lessen both the occurrence and the severity of these events without compromis-
ing the severity of hyperglycemia. Moreover, using a hybrid norm for controller
synthesis: H∞ for stability and H2 for performance can provide further benefits.
Generalized H2 and L1 norm [52] was not in the scope of this work. However,
there is a significant difference between using state feedback or a dynamic con-
troller, even though the combination of a sigma point filter and an LPV state feed-
back is technically a dynamic controller as well. Using the same constraints and
extended model, the resulting dynamic controller will lead to higher minimum
and maximum glucose levels in the CVGA compared to a state feedback con-
troller. The reason is that the transfer function of the former across all scheduling
variables is akin to a high pass filter. Therefore, it will compensate low frequency
tracking errors poorly. Introducing an integrator [51] to eliminate this error will
result in an infeasible convex synthesis problem.

Even though the presented results may be satisfactory, there are still limitations
that must be addressed in future works. LPV model can represent most of the
nonlinearity present in the Cambridge model, but it does not capture the positive
nature of the system. All the measures to avoid hypoglycemia only indirectly
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addressed the constraint that the control signal is non-negative. Despite the pa-
rameter variability in the Cambridge model, changes in insulin sensitivity or us-
ing different types of insulin are not part of it. Furthermore, a robust controller
combined with an accurate meal and fault detection [56] can increase both per-
formance and safety [49, 50]. Finally, a crucial next step is to incorporate the
detection of unannounced physical activity. One potential approach is to use the
model presented by Resalat et al. [57] is an extension of the Cambridge model
that includes a dynamic physical activity subsystem. Early prediction of potential
hypoglycemic episodes is necessary since a single hormone system cannot raise
the plasma glucose concentration.

Further work shall address the limitations mentioned above and perform valida-
tion with the UVA/PADOVA simulator, which is approved by the U.S. Food and
Drug Administration (FDA) as an alternative to animal testing of Type 1 diabetes
control strategies [11].
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