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Abstract: In this note our aim is to present two new integral representations for the cross-
product of Bessel and modified Bessel functions of the first kind, and to point out that this
cross-product is in fact the solution of a fourth-order linear homogeneous Bessel-type differ-
ential equation. Moreover, we point out that an inequality by Ashbaugh and Benguria as well
as of Ashbaugh and Laugesen, involving the cross-product of Bessel functions, can be shown
by using the method of Lagrange multipliers.
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1 Introduction

Let Jν and Iν denote the Bessel and modified Bessel functions of the first kind.
Motivated by their appearance as eigenvalues in the clamped plate problem for the
ball, Ashbaugh and Benguria have conjectured that the positive zeros of the function

z 7→Φν(z) = Jν(z)I′ν(z)− J′ν(z)Iν(z)

increase with ν on
[
− 1

2 ,∞
)
. Lorch [5] verified this conjecture and presented some

other properties of the zeros of the above cross-product of Bessel and modified
Bessel functions. His result has been used in [2] by Ashbaugh and Benguria re-
lated to Rayleigh’s conjecture for the clamped plate and its generalization to three
dimensions. In [1] the authors extended the above result of Lorch and proved that
in fact the positive zeros of the above cross-product or Wronskian increase with ν

on (0,∞). Motivated by the above results, in this note we make a further contribu-
tion to the subject and our aim is to present two new integral representations for the
cross-product of Bessel and modified Bessel functions of the first kind. Moreover,
we point out that this cross-product is the solution of a Bessel-type fourth order dif-
ferential equation and its asymptotic expansion for large arguments can be obtained
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from known results on hypergeometric functions. Finally, we present an alternative
proof of an inequality by Ashbaugh and Benguria [2] as well as of Ashbaugh and
Laugesen [3], involving the cross-product of Bessel functions, by using the classical
method of Lagrange multipliers.

2 Integral representations of the cross-product
of Bessel functions

By using the known recurrence relations

zJ′ν(z)−νJν(z) =−zJν+1(z)

and
zI′ν(z)−νIν(z) = zIν+1(z),

the cross-product Jν(z)I′ν(z)− J′ν(z)Iν(z) actually can be written as

Φν(z) = Jν+1(z)Iν(z)+ Jν(z)Iν+1(z).

It has been shown that the cross–product Φν(z) possesses the series form [1, p. 821,
Lemma 2]

Φν(z) = 2 ∑
n≥0

(−1)n
( z

2

)2ν+4n+1

n!Γ(ν +n+1)Γ(ν +2n+2)
, ν >−1, z ∈ C . (2.1)

However, by the Legendre duplication formula

Γ(2w) =
22w−1
√

π
Γ(w)Γ

(
w+ 1

2

)
, ℜ(w)> 0,

transforming the denominator in (2.1) we get

Φν(z) = 2 ∑
n≥0

(−1)n
( z

2

)2ν+4n+1

n!Γ(ν +n+1)Γ(ν +2n+2)

=

√
πz2ν+1

23ν+1Γ(ν +1)Γ
(

ν

2 +1
)

Γ
(

ν

2 +
3
2

) ∑
n≥0

(
− z4

64

)n

n!(ν +1)n
(

ν

2 +1
)

n

(
ν

2 +
3
2

)
n

=
z2ν+1

22ν Γ(ν +1)Γ(ν +2) 0F3

(
ν

2
+1,

ν

2
+

3
2
,ν +1;− z4

64

)
, (2.2)

where the multiplicative constant in front of the generalized hypergeometric term
we infer by another use of Legendre’s formula.

Next, consider the line integral form of the generalized hypergeometric function [6,
16.5.1], adopted to our situation:

0F3

(
ν

2
+1,

ν

2
+

3
2
,ν +1;− z4

64

)

=
Γ(ν +1)Γ(ν +2)

2ν+1i
√

π

∫
L

Γ(−s)
(

z4

64

)s

ds

Γ(ν +1+ s)Γ
(

ν

2 +1+ s
)

Γ
(

ν

2 +
3
2 + s

) ,
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where L is a contour that starts at infinity on a line parallel to the positive real
axis, encircles the nonnegative integers in the negative sense, and ends at infinity on
another line parallel to the positive real axis. After some routine transformations we
arrive at

Theorem 1. For all ν >−1,z 6= 0 there holds the integral representation

Φν(z) =
1

i
√

π

z2ν+1

23ν+1

∫
L

Γ(−s)
(

z4

64

)s

ds

Γ(ν +1+ s)Γ
(

ν

2 +1+ s
)

Γ
(

ν

2 +
3
2 + s

) . (2.3)

In turn, having in mind the Hankel loop-integral formula for the reciprocal Gamma
function [6, 5.9.2]

1
Γ(z)

=
1

2πi

∫ (0+)

−∞

ett−zdt, z ∈ C,

where the integration path starts at infinity on the real axis, encircling 0 in a positive
sense, and returning to infinity along the real axis, respecting the cut along the pos-
itive real axis. In turn, this formula is equivalent with the Bromwich–Wagner type
complex line integral

1
Γ(z)

=
1

2πi

∫ c+i∞

c−i∞
ess−zds, c > 0. (2.4)

Indeed, consider the Fourier–integral

ec

2π

∫
R
(c+ it)−zeitdt, c > 0.

The integrand has one branch point t = ic in the upper half–plane. Taking the branch
cut B= [ic, i∞) we deform the contour of integration so that it runs counterclockwise
from i∞ to i∞ around B. Combined with the definition of the Gamma function,
this will give an expression proportional to Γ(1− z)sin(πz). The Euler’s reflection
formula and the change of variable s 7→ c+ it finishes the derivation of (2.4).

Theorem 2. For all ν >−1, c > 0 and z ∈ C, we have

Φν(z) =
z

2πi

∫ c+i∞

c−i∞
ett−2Jν

(
z2

2t

)
dt . (2.5)

To prove this, inserting 1/Γ(ν +2n+2) expressed via (2.4) into Φν(z), we get

Φν(z) =
1
πi ∑

n≥0

(−1)n
( z

2

)2ν+4n+1

n!Γ(ν +n+1)

∫ c+i∞

c−i∞
ett−ν−2n−2dt

=
1
πi

∫ c+i∞

c−i∞
ett−ν−2

∑
n≥0

(−1)n
( z

2

)2ν+4n+1

n!Γ(ν +n+1)t2n dt

=
1
πi

( z
2

)2ν+1 ∫ c+i∞

c−i∞
ett−ν−2

∑
n≥0

(
− z4

16t2

)n

n!Γ(ν +n+1)
dt,
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which is equivalent to the assertion, since the rest is obvious.

3 A fourth-order Bessel-type differential equation

The Bessel function of the first kind Jν is a particular solution of the second-order
linear homogeneous Bessel differential equation, while the modified Bessel function
of the first kind Iν is a particular solution of the second-order linear homogeneous
modified Bessel differential equation. In this section we would like to point out that
their Wronskian, that is, the cross-product Jν(z)I′ν(z)− J′ν(z)Iν(z) is a particular
solution of the following fourth-order linear homogeneous Bessel-type differential
equation

z4w′′′′(z)+4z3w′′′(z)+(1−4ν
2)(z2w′′(z)+ zw′(z))+(4ν

2−1+4z4)w(z) = 0.
(3.1)

This can be verified by using the fact that Jν and Iν are solutions of Bessel and
modified Bessel differential equations or we can use the method of Frobenius and
seek the solution of (3.1) in form of a power series and arrive to (2.2). If we write
the equation (3.1) in the form

w′′′′(z)+
4
z

w′′′(z)+(1−4ν
2)

(
w′′(z)

z2 +
w′(z)

z3

)
+

(
4ν2−1

z4 +4
)

w(z) = 0, (3.2)

then this equation has a regular singularity at the origin and an irregular singularity
at the point at infinity, all other points of the complex plane are regular or ordi-
nary points for the differential equation. Note that the classical Bessel and modified
Bessel differential equations have the same classification. A calculation shows that
the Frobenius indicial roots for the regular singularity of the differential equation
(3.2) at the origin 0 are {−1,1,1− 2ν ,1+ 2ν}. The application of the Frobenius
power series method yields four linearly independent series solutions of (3.2), each
with infinite radius of convergence in the complex plane. If we use the transforma-
tion q(z) =

√
zw(z), then (3.1) will become

z4q′′′′(z)+2z3q′′′(z)−
(

4ν
2 +

1
2

)
z2q′′(z)+

3
2

zq′(z)+
(

4z4 +
21
16

)
q(z) = 0,

which according to the Wolfram Alpha software has the general solution

qν(z) =c1 · z−
1
2 0F3

(
1
2
,

1
2
− ν

2
,

ν

2
+

1
2

;− z4

64

)
+ c2 · z

3
2 0F3

(
3
2
,1− ν

2
,

ν

2
+1;− z4

64

)
+ c3 · z

3
2−2ν

0F3

(
1−ν ,1− ν

2
,

3
2
− ν

2
;− z4

64

)
+ c4 · z

3
2+2ν

0F3

(
ν

2
+1,

ν

2
+

3
2
,ν +1;− z4

64

)
.
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We can see that this is in agreement with our knowledge on equation (3.1). More
precisely, the powers of z in the above general solution, that is,{

−1
2
,

3
2
,

3
2
−2ν ,

3
2
+2ν

}
correspond exactly to Frobenius indices, that is, they are

1
2
+{−1,1,1−2ν ,1+2ν} .

In view of (2.2), this shows that indeed the cross-product Φν(z) is a particular solu-
tion of the fourth-order linear homogeneous Bessel-type differential equation (3.1).

Asymptotic series expansion for large arguments for the cross-product Φν(z) can
be obtained by using the well-known asymptotic series of Jν(z), J′ν(z), Iν(z) and
I′ν(z) for large arguments. However, because of the 0F3 representation of the cross-
product Φν(z), it is more convenient to use the asymptotic expansion of hypergeo-
metric functions. Since for |z| → ∞

0F3(a,b,c;z) =
Γ(a)Γ(b)Γ(c)

4
√

2π
√

π
e4 4√zz

1
4 (

3
2−a−b−c)

(
1+O

(
1
4
√

z

))
,

in view of (2.2) we get for |z| → ∞

Φν(z) =
ez
√

2i

2ν+ 3
2 π2

(
z
√

i
2
√

2

)2−2ν (
1+O

(
1

z
√

2i

))
.

4 An inequality by Ashbaugh and Benguria for the
cross-product of Bessel functions

Let

fν(x) = x2ν+1
(

Jν+1(x)
Jν(x)

+
Iν+1(x)
Iν(x)

)
and consider the expression Fν(a) = fν(kν ,1a)+ fν(kν ,1b), where an +bn = 1, ν =
n/2−1 and kν ,1 denotes the first positive zero of fν , that is, of Φν . Ashbaugh and
Benguria [2] proved that for n ∈ {2,3}, an + bn = 1 and jν ,1/kν ,1 < b < 1, where
jν ,1 is the first positive zero of Jν , the inequality

Fν(a) = fν(kν ,1a)+ fν(kν ,1b)< 0 (4.1)

is valid. In this section our aim is to show the following result.

Theorem 3. The inequality (4.1) holds true for n≥ 4, an +bn = 1 and a,b ∈ (0,1).

For this, we consider the function

Lν(a,b,λ ) = fν(kν ,1a)+ fν(kν ,1b)+λ (1−an−bn)
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and employ the classical method of Lagrange multipliers to find the critical value of
Fν(a). The system

∂Lν(a,b,λ )
∂a

= kν ,1 f ′ν(kν ,1a)−nλan−1 = 0
∂Lν(a,b,λ )

∂b
= kν ,1 f ′ν(kν ,1b)−nλbn−1 = 0

∂Lν(a,b,λ )
∂λ

= 1−an−bn = 0

gives the stationary points of the Lagrange function Lν(a,b,λ ). Combining the first
two equations we get

f ′ν(a)
an−1 =

f ′ν(b)
bn−1 .

On the other hand, by using the Mittag-Leffler expansions for Bessel and modified
Bessel functions of the first kind, we have that the function

x 7→ f ′ν(x)
x2ν+1 = 2+

J2
ν+1(x)
J2

ν(x)
−

I2
ν+1(x)
I2
ν(x)

= 2+

(
∑
n≥1

2x
j2
ν ,n− x2

)2

−

(
∑
n≥1

2x
j2
ν ,n + x2

)2

is increasing on (0, jν ,1) since(
∑
n≥1

2x
j2
ν ,n− x2

)2

−

(
∑
n≥1

2x
j2
ν ,n + x2

)2

= ∑
n≥1

4 j2
ν ,nx

j4
ν ,n− x4 ∑

n≥1

4x3

j4
ν ,n− x4

increases with x on (0, jν ,1) as a product of two increasing and positive functions of
x. Here jν ,n denotes the nth positive zero of Jν . Therefore, whenever a,b ∈ (0,1)⊂
(0, jν ,1), they should be equal and then a = b = 2−1/n.

Now, in view of the infinite product representation (see [1, 4]) of Φν(x) as well as
of Πν(x) = Jν(x)Iν(x) we get

fν(x) =
x2ν+2

ν +1 ∏
n≥1

γ2
ν ,n− x4

j4
ν ,n− x4

j4
ν ,n

γ2
ν ,n

,

where γν ,n denotes the nth positive zero of Φν(
√

x). According to [4, Theorem 1]
all the zeros of Φν(

√
x) are real and thus if we consider the value fν(kν ,12−1/n),

then its sign depends only on the difference ∆ = j4
ν ,1− k4

ν ,1 · 2−4/n, since the other
members of the infinite product are all positive. But, ∆ is negative, since according
to [3] we have 21/n jν ,1 < kν ,1 for n≥ 4. This implies that

fν(kν ,12−1/n)< 0

for n≥ 4.

On the other hand, Fν can be estimated from above by the maximum of its crit-
ical values and its two marginal values. In our particular case, see the Lagrange
multipliers, it follows that for all a ∈ [0,1] we get

Fν(a)≤max
{

Fν(0),Fν(1),Fν

(
2−1/n

)}
.
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Note that Fν(0) = Fν(1) = 0 and due to the fact that fν(kν ,12−1/n) < 0 for n ≥
4, it follows that Fν(a) ≤ 0 for all a ∈ [0,1]. If there is an a0 ∈ (0,2−1/n] such
that Fν(a0) = 0, by the last relation (and again by Lagrange multipliers) we have
necessarily that Fν is identically zero on [0,a0], which is not possible.

Thus, indeed Fν(a)< 0 for n≥ 4, an +bn = 1 and a,b ∈ (0,1). Moreover, since fν

is increasing on (0, jν ,1) for each ν > 0, it follows that for n ≥ 4, an + bn = 1 and
a,b ∈ (0,1) we have that fν(21/n jν ,1a) < fν(kν ,1a) and fν(21/n jν ,1b) < fν(kν ,1b)
and in view of (4.1) this in turn implies the following result.

Theorem 4. The inequality

fν(21/n jν ,1a)+ fν(21/n jν ,1b)< 0 (4.2)

holds true for each n≥ 4, an +bn = 1 and a,b ∈ (0,1).

Note that inequality (4.2) was proved by Ashbaugh and Laugesen [3, eq. (5.3)] in
the case when n≥ 4, an +bn = 1 and 0 < a < 2−1/n.

References

[1] H.A. Al-Kharsani, Á. Baricz, T.K. Pogány, Starlikeness of a cross-product of Bessel
functions. J. Math. Inequal. 10(3) (2016) 819–827.

[2] M.S. Ashbaugh, R.D. Benguria, On Rayleigh’s conjecture for the clamped plate and its
generalization to three dimensions, Duke Math. J. 78(1) (1995) 1–17.

[3] M.S. Ashbaugh, R.S. Laugesen, Fundamental tones and buckling loads of clamped
plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23(2) (1996) 383–402.
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