
Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 7 –

A Tenant-based Resource Allocation Model

Application in a Public Cloud

Wojciech Stolarz, Marek Woda

Tieto Poland Sp. z o.o., Aquarius, Swobodna 1, 50-088 Wroclaw, Poland

Department of Computer Engineering, Wroclaw University of Technology,

Janiszewskiego 11-17, 50-372 Wroclaw, Poland

wojciech.stolarz@tieto.com, marek.woda@pwr.edu.pl

Abstract: The aim of this study is to check the proposed tenant-based resource allocation

model in practice. In order to do this, two SaaS systems are developed. The first system

utilizes traditional resource scaling based on a number of users. It acts as a reference point

for the second system. Conducted tests were focused on measuring over- and

underutilization in order to compare cost-effectiveness of the solutions. The tenant-based

resource allocation model proved to decrease system's running costs. It also reduces

system resource underutilization. Similar research has been done before, but the model was

tested only in a private cloud. In this work, the systems are deployed into commercial,

public cloud.

Keywords: Cloud computing; multi-tenancy; SaaS; TBRAM

1 Introduction

Cloud computing is gaining more and more interest every year. Cloud computing

is not a new technology. It is rather a mixture of technologies existing before, like:

grid computing, utility computing, virtualization or autonomic computing [14],

and it finds application in other seemingly indirectly related areas, like hybrid

wireless networks [16] integration of information systems [17] or high

performance simulation [18].

The National Institute of Standards and Technology (NIST)
1
 defines cloud

computing as “a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction.

1
 NIST Cloud Computing Standards Roadmap, Special Publication 500-291, Version 2,

July 2013

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 8 –

This cloud model is composed of five essential characteristics, three service

models, and four deployment models”.

This approach allows Internet based applications to work in distributed and

virtualized cloud environment. It is characterized by on-demand resources and

pay-per-use [1] pricing. Nowadays, every respected IT-company has started to

think about providing its services in the cloud [5]. Currently Cloud computing is

one of major enablers for the manufacturing industry [3]. It became widely used to

enhance many other aspects of industrial commerce by moving business processes

to the cloud to improve the companies’ operational efficiency. Currently, a new

trend can be observed, inspired by cloud computing, it is illustrated in the

movement from production-oriented manufacturing to service-oriented

manufacturing. It converges networked manufacturing, manufacturing grid

(MGrid), virtual manufacturing, agile manufacturing and Internet of Things into

cloud manufacturing [2], [3], where distributed resources provided by cloud

services are managed in a centralized way. Clients can use the cloud services

according to their requirements. Cloud users can request services ranging from

product design, manufacturing, testing, management and all other stages of a

product life cycle [3].

Software-as-a-Service (SaaS) is software delivery model in which entire

application (software and data) is hosted in one place (usually in the cloud). The

SaaS application is typically accessed by the users via a web browser. It is the top

layer in cloud computing stack. SaaS evolved from SOA (Service Oriented

Architecture) and manages applications running in the cloud. It is also seen as

a model that extends the idea of Application Service Providers (ASP). ASP is

primary centralized computing model from the 1990s. SaaS platform can be

characterized by: service provider development, Internet accessibility, off-

premises hosting and pay-as-you-go pricing [3]. The SaaS platform supports

hosting for many application providers. As opposed to ASP model, SaaS provides

fine-grained usage monitoring and metrics [8]. It allows tenants to pay according

to the usage of specific cloud resources. SaaS applications often conform to multi-

tenant architecture, which allows a single instance of a program to be used by

many tenants (subscribers) [3]. This architecture also helps to serve more users

because of a more efficient resource management than in multiple instances

approach [4].

In spite of the fact that the idea of cloud computing utilization has become a

reality, questions like how to enhance resource utilization and reduce the resource

and energy consumption are still not effectively addressed [1].

Since most cloud services providers charge for the resource use, it is important to

create resource efficient applications. One of the ways to achieve this is multi-

tenant architecture of SaaS applications. It allows the application for efficient self-

management of the available resources.

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 9 –

Despite the fact, that in the cloud, one can automatically receive on-demand

resources, one can still encounter problems related to inappropriate utilization of

the available resource pool at a particular time. These issues manifest in over- and

underutilization, which exists, because of the “not fully elastic”, pay-per-use

model used nowadays [10]. Over provisioning arises when, after receiving

additional resources (in reply for peak loads), one keeps them, even if they are not

needed any more. Such a situation is called underutilization. Under provisioning

(saturation) arises when one cannot deliver required level of service because of

insufficient performance. This is also known as an overutilization. It leads to

customers turnover and revenue losses [1]. Amazon Elastic Cloud Computing

(EC2) service charges users for every partial hour they reserve each EC2 node.

Paying for server-hours is common among cloud providers. That is why it is very

important to utilize fully given resources in order to really pay just for what we

use.

Due to the fact that we are still in early stages of cloud computing development,

we cannot expect cost-effective pay-per-use model for SaaS applications after just

deploying it in the cloud. What is more, automatic cloud scalability will not work

efficiently if applications consume resources, which are indispensable to meet the

desired performance levels [13]. To achieve desired scalability we need to design

our SaaS application with that in mind. In order to do so, the application must be

aware how it is used [7]. We can use multi-tenant architecture [9] to manage the

application behavior. It allows using a single instance of the program for many

users. It works in similar way like a singleton class in object programming

languages, which can supervise creation and life cycle of objects derived from that

class. Supporting multiple users is a very important design step for SaaS

applications [2]. We can distinguish two kinds of multi-tenancy patterns: multiple

instances (every tenant has got their own instance running on shared resources)

and native multi-tenancy (single instance running on distributed resources)
2
 [2].

The first pattern scales well for a small number of users, but if there are more than

hundreds of users, it is better to use the second pattern.

The one of most recent solutions for over- and under- utilization problems may be

a tenant-based resource allocation model (TBRAM) for SaaS applications. That

solution was introduced and tested with regard to CPU and memory utilization by

various authors [3]. They proved the validity of TBRAM through the reduction of

used server-hours as well as improving the resources utilization. However, the

authors deployed their solution into a private cloud which can only mimic a public

cloud environment. They tested cases with incremental and peak workload of the

system. In this paper we wanted to check whether the TBRAM is really a valuable

system. Examining the TBRAM system in a public and commercial cloud

environment could deliver the answer to that question. Therefore, the main aim of

2 Architecture Stfrategies for Catching the Long Tail: 2006.

http://msdn.microsoft.com/en-us/library/aa479069.aspx. Accessed: 2014-09-07

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 10 –

the paper is the further validation of TBRAM approach, as it was proposed in the

future research part of the base work [3]. If the results of the study confirm

improvement of the model performance, then it could be considered as the

solution to the previously mentioned provisioning problems.

2 System Design

2.1 Base System

In this section the base tenant-unaware resource allocation SaaS system (Base

System) is described. It conforms to a traditional approach to scaling resources in

a cloud and is based on the number of users of the system. It is substituted by

Elastic Load Balancer service. According to AWS Developer Forum
3
 the Elastic

Load Balancer (ELB) sends special requests to balancing domain's instances to

check their statuses (health check) it then round-robins among the healthy

instances, having fewer outstanding requests pending. Although the name of this

system suggests lack of awareness of tenants it concerns only resource allocation.

The system was built according to Service Oriented Architecture (SOA) and native

multi-tenancy pattern. First, it was implemented as a set of J2EE web applications

using Spring and Struts frameworks. Several parts of the system were later

transformed to web services using WSO2 and Axis2. Deploying application as a

web service makes it independent of the running platform. It also gives more

flexibility when accessing the application.

SOA

SaaS
App 1

SaaS
App2

SaaS
App n

Auth, log, account

Tag libs, Java libs

XML config files

Core
Web
App

Figure 1

SaaS platform system architecture

3
 https://forums.aws.amazon.com/thread.jspa?messageID=135549&. Accessed: 2014-

10-17

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 11 –

A general, high level, overview of the test-bed architecture is shown in Fig. 3, one

can see there a group of Amazon EC2 (Tomcat) instances. The number of

the instances varies and it depends on the number of simulated users. Each of

the instances consists of a Virtual Machine (VM) with one Tomcat web container.

In each Tomcat container authorial a SaaS platform is deployed. The platform is

the main part of the system as it makes a basis for SaaS applications. It also

includes web services and common libraries.

The SaaS platform (Fig. 1) was the main part of the system. The task of the

platform was to support deployment of plain web applications as a SaaS service.

The idea behind the design of this part was inspired by this work [3]. Their SaaS

platform was developed as a part of the Rapid Product Realization for Developing

Markets Using Emerging Technologies research at Tecnológico de Monterrey

University, Mexico.

Since the authors had limited means and limited time, The SaaS platform was

simplified and focused only on the usability for SaaS system.

The entry point to the platform was the Core Web App (CWA). As the name

suggests, it was a web application that worked as a gate. All interactions between

outside environment and the parts of the platform were done through this element.

In the background, there were applications responsible for users’ authorization,

account management and logging. The platform contained also common Java

libraries used by deployed applications. Configuration was made by the XML or

plain text files. The platform exhibited web service interfaces to be consumed by

outside applications. One example of such an interface was the interface for

metering services. It allows monitoring the usage of resources by the platform.

That behavior is depicted by the SOA element in Fig. 1. On top of this, we can see

the SaaS applications. These were developed as normal Java web applications, but

when deployed on the platform, they gain extra SaaS functionality. Two were

implemented, a Sales application and a Contacts Application. It is assumed that

two applications are enough to present the platform's functionality as well as the

interactions between the deployed applications. It is worth mentioning that there is

one more feature, which was not depicted in Fig. 1, the communication channel

between the platform and an external database server.

In order to measure over- and under- utilization certain metrics from running VMs

were needed. Some of them were available directly through Amazon CloudWatch

metering service (CPU usage, network in/out and number of requests per second

in case of the ELB). The latter metric can be used to calculate the throughput of

the entire system. Other source of data for this metric came from JMeter tool.

However, monitoring of RAM consumption and number of running threads was

not provided by the CloudWatch. That is why authors developed a monitoring

solution called Resource Consumption Monitor (RCM) – a service that sat

between the monitoring domain and the CloudWatch.

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 12 –

There are two main approaches to the monitoring problem. The first is

a distributed approach. It is similar to Observer Pattern [6] known from object

oriented programming patterns and best practices. In this case monitored VMs

register themselves to the monitoring service and then publish their measurements.

The main strength here, is build simplicity. It has, however, one big disadvantage

– each worker VM needs to be aware of the monitoring process. It is also hard to

quickly notice a VM termination due to unexpected events or errors. That is why

the second, centralized approach was chosen. In this case, the VMs with SaaS

platforms are unaware of being monitored as it is beyond their consideration. The

RCM is constantly monitoring the state of VMs by polling AWS cloud (the

performance hit was negligible, it was not included in the considerations). After

each interval (Polling interval) it collects the measurements from the monitored

domain. After another interval (Publishing interval) it publishes collected data to

the CloudWatch service. Thanks to that, all of the VMs measurements were

available in one place.

The RCM is a web application, but it can also be used as a standalone console Java

application packed into an archive file (jar). It used the Java Management

Extension (JMX) RMI-based protocol which allows to request information about

running Java Virtual Machine. Generally, it is recommended to use an authorial

web services to fulfil the same tasks, but since the entire SaaS system is too overly

complex, the flexibility offered by web services seems not to be really needed.

Especially, that such flexibility comes with a price. First of all, the JMX packets

are much smaller than competitive SOAP protocol ones. Therefore, it reduces

network traffic and time necessary to decode the packet. The next reason is the

requirement for management of web services like Axis2. The JMX is built in Java

Runtime Environment (JRE 1.7), which is used by authors. Finally, the JMX

technology is far more robust and advanced. It would be difficult to build a better

web service within such a short time frame. It is also transparent for applications

running on JVM. All what is necessary to do, is to add extra running parameters

when starting the JVM.

The RCM requires a set of parameters to run. One of them is the running mode

which tells the monitor whether to run in test mode (very frequent data collecting,

but without publishing them to the CloudWatch) or in normal mode (with

synchronization to the CloudWatch). The chosen mode affected both (polling and

publishing) intervals. In test mode the data were gathered every 5 seconds. In

normal mode polling was set to 10 seconds and publishing to 1 minute. These

settings matched the settings of CloudWatch service working in detailed mode.

Using RCM one could also manually start or stop the monitoring of certain VM.

To tell the RCM which instances to monitor a special tag to VMs was added.

The tagging is a feature in AWS cloud that helps to organize running instances.

The most common usage of tags is for giving names to the instances which are

often more meaningful than their IDs.

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 13 –

Because owned metrics are sent to the CloudWatch it was crucial that all

the measurements (direct and own) for given VM are taken in the same time. They

could be published asynchronously, because they contained a timestamp tag.

However, the measurement data itself needed to be synchronized in time.

Otherwise they would be invalid. To avoid that synchronization mechanism was

implemented in the RCM. It was assured that own measurements data are

collected at the same moment as the direct CloudWatch data.

The RCM was deployed on a dedicated t1.micro EC2 instance, because it should

not affect the work of virtual machines it monitored. Thanks to its web interface, it

can be managed from any computer via a web browser.

2.2 Tenant Aware System

The base SaaS system was implemented as a reference tenant-unaware resource

allocation system. The main flaw of its design was rigid management of VM

instances in the cloud. Thus, it could lead to serious over- and underutilization

problems. In Chapter III, we show this based on test results. One of the ways to

tackle aforementioned issues was proposed in [3] as a tenant-based resource

allocation model (TBRAM) for scaling SaaS applications over a cloud

infrastructure. By minimizing utilization problems, it should decrease the final

cost of running the system in the cloud.

SaaS Platform
(Tomcat)

SaaS Platform
(Tomcat)

SaaS Platform
(Tomcat)

SaaS Platform
(Tomcat)

EC2 Instances

Core Web App

Tenant Context
Manager

Load Balancer

VM Manager

Resorce
MonitorAWS Cloud

SCWA

Authentication

Memory

Threads
Initial use

Figure 2

TBRAM system architecture

The TBRAM consists of three approaches that use multi-tenancy to achieve its

goals. The first approach is tenant-based isolation [11], [12], which separates

contexts for different tenants. It was implemented with tenant-based

authentication and data persistence as a part of the SaaS platform (Tomcat

instances). The second, is to use tenant-based VM allocation [11], [12]. With this

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 14 –

approach we are able to calculate the actual number of the VMs needed by each

tenant in a given moment. The third approach is the tenant-based load balancer

that allows to distribute the virtual machines’ load with respect to certain tenant.

An overview of the architecture is presented in Fig. 2. The dashed line in the

picture denotes communication with web services. One can notice that the SaaS

Core Web App (SCWA) element in the Fig. 2 is the only change made to the

original test-bed [3].

A simple load balancer based on round-robin IP address algorithm, is not the best

solution to isolate each tenant. Since users from the same tenant share certain

tenant-related data it would be a good idea to dispatch their requests to the same

VM (if possible). That could reduce the amount of tenant data kept by each VM

since some of them would be serving only a few tenants. That could also lead to

better usage of servers’ cache mechanisms by concentrating on data that are really

shared by number of tenant's users. That in turn could for example, reduce

a number of requests to database engine.

The key task of the load balancer was to isolate requests from different tenants.

The tenant-based load balancer worked in 7
th

 layer of the OSI model. It used

information stored in the session context as well as local applications data to

assign the load efficiently. The idea behind request scheduling is that requests

from one tenant should be processed on the same VMs. If that is impossible, then

the number requests should be limited, so they were not scattered along the whole

balancing domain. That can also allow reducing context switching and using

previously cached data. The traditional scheduling process uses only current status

data, so it does not belong to dynamic load balancers family, but TBRAM-based

solution is based on adaptive models of load balancing.

As suggested in other work [3], we made the load balancer a part of SaaS Core

Web App (SCWA). It was a natural choice to put that element there, since all the

requests came through it anyway (because of the centralized authorization

service). Design of the load balancer is similar to the one proposed in current work

[3]. It consisted of five elements: Request Processor, Server Preparer, Cookie

Manager, Response Parser and Tenant Request Scheduler. Each of them was

responsible for specific function in the processing pipeline sequence. The most

important was the last part of processing assigned to Tenant Request Scheduler.

The scheduling policy enforces that the subsequent requests from the same tenant

should be dispatched to the same VM. If a given VM was saturated, then the

scheduler dispatched the request to the next available VM of that tenant. Finally, if

no other VM was available, the scheduler requested a new VM from the VM

Manager.

The HTTP as the Internet protocol was designed to be stateless. It means that

every request is independent. It starts from handshaking in order to establish

a connection. Then data exchange appears for one or possibly more server's

resources. After that the connection is closed. When user requests another

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 15 –

resource the whole procedure repeats. However there was a need to keep a track

of users action for example to make functioning of shopping chart possible

in online shops. Because of private IP addresses it was not feasible to recognize all

users just based on their IP. This is where the session mechanism comes with help.

In general, it allows storing user related data at the server side and therefore

distinguish each unique user. It works fine when there is only one server dealing

with a given user, because of the limited session scope. If there are more servers

this has to be handled differently. One of the solutions for that problem is

clustering of Tomcat servers. But even better solution is to dispatch given user's

requests in a unique server as it eliminates the need of session sharing. For that

purpose many available load balancers offer so called session stickiness or session

affinity. This feature allows grouping requests of a given user within a session

scope and sending these requests to the same server. When it comes to tenant-

based load balancer it could be called tenant stickiness or affinity. It can be

imagined as yet another layer above the session layer which groups requests from

a given tenant.

3 Test Results and Analysis

We tested our TBRAM-based SaaS system and compared it with the non-TBRAM

version. The comparison was made in terms of overutilization, underutilization

and financial cost. To calculate cost of running certain SaaS system in the cloud,

billing statement delivered by Amazon was used. To measure over- and under-

utilization of resources, measurements data collected by Amazon CloudWatch

monitoring service were used. Before this was done the entire test bed was

deployed in Amazon cloud environment (AWS). Then the system was stressed

with the workload of HTTP requests. We used a cluster of JMeter machines

performing test plans to achieve that. There was one test bed. The main difference

in the architecture was in the entry point to the SaaS system. In the case of

TBRAM it was the SCWA element including a load balancer, tenant context

manager and virtual machines manager. In the case of the standard model it was

just the Elastic Load Balancer (ELB) service from Amazon.

3.1 Over- and Under- utilization Results

Test results were collected by Amazon CloudWatch monitoring service. This tool

allows to view some basic statistics of data in form of charts. However, in order to

perform more advance analysis it was needed to download the raw data for further

processing. The results are presented in following tables (Table 1, Table 2).

Table 1 presents results of the tests performed over the Base System that used

traditional resource scaling. The results come from memory and CPU monitoring

of the system. The first column contains the months of simulated year (24 hours of

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 16 –

tests). The second column presents the number of virtual machines running in

each simulated month.

Resource
Monitor

AWS Cloud

Req/s

A
m

az
on

R

D
S

Cloud
Watch

SaaS Platform
(Tomcat)

SaaS Platform
(Tomcat)

SaaS Platform
(Tomcat)

m1.small

VM

m1.micro

VM

VM

ELB
or

SCWA

m1.medium

CPU, RAM

db.small

Requests

JMeter

machines

VM

Desktop
PC

Figure 3

Test bed architecture

This number is valid only for the incremental workload tests. The peak-based tests

were conducted in slightly different way. Instead of time constraints they were set

to perform certain number of test plan iterations. We can notice the difference

between the test types in server hours provided by the VMs each simulated month.

Table 1

Results of the Base System tests

Simulated

month
VMs

Server-hours
Combined-

incremental
Combined-peak

incremental
Peak-

based
UU (%) OU (%) UU (%) OU (%)

January 2 1440 2460 38.75 0.00 31.94 0.00

February 2 1440 2580 20.83 0.83 34.17 0.00

March 2 1440 2460 0.00 0.00 35.42 0.00

April 2 1440 2580 0.00 9.15 37.22 0.00

May 4 2880 4200 19.38 6.66 43.36 0.98

June 4 2880 5160 9.79 0.00 26.39 0.00

July 4 2880 4920 10.63 0.00 19.03 0.00

August 4 2880 8040 10.83 0.00 64.31 0.49

September 8 5760 9840 31.61 0.00 7.43 0.49

October 8 5760 10320 34.48 0.00 0.21 1.46

November 8 5760 9840 19.90 0.00 1.56 0.49

December 8 5760 7440 21.39 0.00 56.04 0.00

Total 40320 69840

Avg. 18.13 1.39 29.76 0.33

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 17 –

In the case of the incremental test the total value can be simply calculated by

multiplying the number of VMs by the number of hours in the month (number of

VMs * 24h * 30 days). In the case of the peak-based test such calculation is not

straightforward. This is because peak-based tests were little longer than the

original time frame of 24 hours (simulated year) per each test. The last four

columns of the table contain combined utilization. This term describes a situation

during the tests when a given VM was saturated or underutilized with respect to

the both measures (CPU and memory). The combined utilization percentages were

calculated based on formulas [3]:

%𝑈𝑈(𝑈𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) =
(

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑈𝑈

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟
)

𝑠𝑒𝑟𝑣𝑒𝑟 ℎ𝑜𝑢𝑟𝑠
 (1)

Formula (1) calculates the combined underutilization of a given VM per each time

period. It yields a percentage of wasted VMs out of all available in that time. We

could also divide the number of measurements when a VM was underutilized by

the number of all measurements to get the information how often the UU

occurred. This number oscillated around 50% for both test types. However,

the measure defined by the formula (1) is more informative since it shows the size

of the problem, not just the occurrence frequency. In case of overutilization

the following formula was used:

%𝑂𝑈(Overutilization) =
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑂𝑈

(Measurements per month ∗VMs number)
 (2)

Overutilization informs us about a percentage of VMs that were saturated each

month. It is calculated by dividing the number of measurements that had inflection

points by all measurements performed during the measured time period

(measurements per month * VMs number). As it can be noticed OU hardly appear

in the tests. This is because the VMs workload was chosen with overutilization

in mind. We did not want to saturate the VMs too much, but during the final tests

the system behaved even better than expected. Therefore saturation of the

machines was lower. Nevertheless, the tests of TBRAM system were conducted

under exactly the same conditions, so it shouldn't bias the results. One can also

observe the total number of server-hours provided by the SaaS platform VMs.

It was 40320 and 69840 for the incremental and peak-based tests respectively.

Table 2 shows results of the tests of the TBRAM system which uses tenant-based

load balancing and resource scaling. Since the VMs fleet size was adjusted to the

current needs dynamically there is no corresponding VMs number column with

fixed size for each month. The first observation is that the total server-hours were

reduced by 19.94% and 30.21%, for the incremental and peak-based tests,

respectively. The %OU was marginally smaller as in the case of the Base System.

There was however a difference in %UU between the systems. First of all, we can

notice that underutilization for incremental workload was smaller at the beginning

of the simulated year as compared with the Base System. This is at least partially

caused by the dynamic scaling method of TBRAM system. Whereas, the Base

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 18 –

System started with 2 VMs the second system could increase this number starting

from only one machine. As it can be seen in Table 2 TBRAM system did not

perform so well in the second part of the year.

Table 2

Results of TBRAM system tests

Simulated

month

Server-hours Combined-incremental Combined-peak

incremental Peak-based UU (%) OU (%) UU (%) OU (%)

January 720 1200 0.00 0.00 0.00 0.00

February 768 2040 0.00 0.81 13.52 0.65

March 1440 1920 0.00 2.44 0.83 0.65

April 1440 1440 0.00 1.63 26.25 3.26

May 1800 4440 2.78 0.00 0.00 0.00

June 2160 3960 10.56 6.50 2.08 2.60

July 2880 2280 15.83 0.81 16.89 2.60

August 3240 6000 1.19 0.00 31.54 0.65

September 3600 7680 29.17 0.81 1.62 0.65

October 3960 6720 40.02 1.63 20.94 0.00

November 4680 6000 54.45 0.81 25.00 0.65

December 5586 5064 51.59 1.63 35.42 0.00

Total 32274 48744

Avg. 17.13 1.42 14.51 0.98

It is important to notice that both averages for %UU are generally lower than

in the case of traditional scaling system. In order to check if the TBRAM system

leads to the significant improvement over the Base system, we used the t-test to

compare UU% in peak-based test:

Table 3

Parameters of the t-student test

N Degrees Accuracy α tα

12 22 97.50% 0.025 2.07

where, N is the number of samples (months). Degrees stands for degrees

of freedom of the t-test and it is equal to (N1 + N2 – 2 = 12 + 12 – 2 = 22). Unlike

the authors of the base paper the accuracy was chosen to be set to 97.5% rather

than 99.5% because it was thought that test conducted in real public cloud

environment is less predictable than a private cloud cluster. The tα is a base

parameter value from the t-student distribution table for the significance α =

0.025. If the t-student value for given columns in both tables is greater than the

base parameter (2.074) then one can say with 97.5% certainty, that the column's

averages are significantly different. We can see that the t-student value for the

%UU in peak-based test is equal to 2.1854 (>2.074). Therefore the TBRAM

system statistically improved that characteristic. However, %OU averages were

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 19 –

not improved according to the t-student test. The t-student values are given in

TABLE3. They were calculated using the following formula:

𝑡 =
𝑥1−𝑥2

√(
𝑠1

2

𝑁1
+

𝑆2
2

𝑁2
)

 (3)

where x1 is an average and s1 is a standard deviation of a column in Table1, where

x2 and s2 are respective values for a column in Table 2.

3.2 Cost Analysis

Before we explain the cost analysis, a brief description of AWS pricing model is

needed. Even despite this vendor specific model, the general idea of pay-per-use is

common with cloud computing providers.

One of the main reasons for using the cloud infrastructure is its flexibility. AWS

model is also flexible and is based on either pay-as-you-go and pay-per-use. The

first one means there is no need for long term contracts neither for any minimal

commitment. The latter one is strongly related to utility computing roots of

the cloud computing. It means that we pay for what we used. Abovementioned

fact is generally true, but with certain granularity, for example: each started

running hour of EC2 instance. In case of the AWS there is also no need to pay up-

front for any resource. We are also free to over-utilize or under-utilize our

resources without any additional fees. There are three fundamental characteristic

for which one pays in the AWS. These are: CPU, Storage and Transfer OUT.

In case of computing, we pay for each partial hour of our resources from start to

stop of the instance. If it comes to storage we pay per each GB of stored data.

There are many usage ranges with different prices. The more data we store the less

per GB we pay. The transfer OUT is generally considered as data transferred out

of the AWS resources through the Internet. Transfers between our AWS resources

do not count in the same way. Communication between the resources within

the same Availability Zone (distinct physical location belonging to certain region)

is free of charge. What is also important is that we do not pay for any inbound

traffic to our cloud resources. It does not matter whether the transfer IN comes

from our other resources or from the Internet.

Table 4

EC2 SaaS platform instances cost comparison

 Incremental Peak-based Total

Base

System
10.20 USD 16.49 USD 26.69 USD

TBRAM 7.57 USD 12.24 USD 19.81 USD

Total 17.77 USD 28.73 USD 46.50 USD

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 20 –

We used the AWS part to compare our system with the EC2 computing service.

This included the instances running the SaaS platform, ELB and CloudWatch

monitoring. It also included the AutoScaling
4
 service, but it was free to use

as a tool. One pays just for the outputs of that tool, like increased number of

running EC2 instances. Except the server-hours mentioned before, the EC2 cost

depends on: instances type (m1.small, m1.medium and ELB on-demand instances

in this case) and of course the number of instances. It is worth mentioning, that

Amazon charges additionally for the amount of data processed by ELB load

balancer. The last EC2 service that was included in the cost calculation was

running CloudWatch in detailed monitoring mode. We were charged only one

time per use for both tested systems. Therefore, it was excluded from the cost

comparison.

Figure 4

The SaaS platforms costs comparison

Table 4 shows the cost of both systems excluding the load-balancing cost (ELB or

SCWA). That means that only costs of running the SaaS platform VMs were

included. Fig. 4 we visualize the costs distribution for each test (simulated year =

24hour of real tests). The TBRAM cost is again, lower than the Base System's

with 25.8% improvement. This holds even in case of incremental workload test

when the TBRAM system did not statistically improve the underutilization.

Table 5

EC2 load balancing cost comparison

Incremental Peak-based Total

cost
%system

cost
cost

%system

 cost
cost

%system

cost

ELB 3.20 USD 23.88% 5.25 USD 24.14% 8.45 USD 24.04%

m1.medium 4.25 USD 35.97% 5.61 USD 31.43% 9.86 USD 33.24%

Total 7.45 USD 29.55% 10.86 USD 27.43% 18.31 USD 28.25%

4
 Amazon Auto Scaling: http://aws.amazon.com/autoscaling/

 10,20 USD

 7,56 USD

 16,49 USD

 12,24 USD

0 USD 5 USD 10 USD 15 USD 20 USD 25 USD 30 USD

Base System

TBRAM

Incremental Peak-based

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 21 –

However, the biggest cost reduction is for the peak-based workload tests. It needs

to be remembered that the SCWA contained also other parts of the system.

Therefore the TBRAM system could not possibly work without that component.

The next step was to compare the separated costs of load-balancing with

the results presented in Table 5. The base system used ELB as a load balancer and

the authorial TBRAM system used m1.medium instance with the SCWA

(that contained load balancer). The column named %system cost shows what part

of the total system cost constitute the load-balancing part. The ELB made 24.04%

of the Base System cost, when the m1.medium instance made 33.24% of

the TBRAM system cost. The ELB was also 14.2% cheaper in terms of USD

price. This was because the cost of m1.medium instance per hour is over 6 times

more than the ELB. We can see that, even despite additional data processing and

transfer cost that the ELB introduces, the Amazon's load-balancing service was

cheaper. The main difference was in the ELBs scaling up ability. One could notice

the moment when the ELB scaled up during the preliminary tests. This motivated

us to the built up the authorial load balancer deployed into more powerful EC2

instance than the standard m1.small. That was clearly an over-provisioning for the

time when the system load was low. The lack of enterprise scalability of the

SCWA (for small (<10 tenants) scale implementation is equally good as ELB) was

the main reason for the higher load-balancing cost of the TBRAM system. It is

valuable to notice, that in spite of the fact, that ELB use is cheaper it is not so

“resource wise” as the proposed load balancer used in SCWA approach.

Conclusions

This work was inspired and based on the base paper [3]. We wanted to check in

practice if the model proposed in the base paper can really influence cost-

effectiveness of SaaS systems running in a public cloud. As opposed to just testing

the model in the private Eucalyptus cloud. Comparing results from [3] with ours,

great similarities were shown. In the base paper [3] the authors achieved 32%

server-hours reduction compared to traditional resource scaling. In this work we

achieved about 20% and 30% reduction in case of incremental and peak-based

tests, respectively. Better result for the peak-based test is caused mainly by

the TBRAM underutilization improvement achieved for this type of workload.

In the base work the model statistically improved also only the underutilization,

but for both types of workload. Thus, we think that this work confirms

the TBRAM benefits making it worthwhile, in practice.

Development and deployment of the SaaS systems into AWS cloud made us to

draw some other conclusions, too. First, this research showed that TBRAM can

improve cost-effectiveness. On the other hand, conformance to that model

introduces non-negligible development overhead. This is because we need to write

the code for the proposed load balancer, a VM manager (scaling) and a resource

monitor. These are not trivial elements to implement and have a great influence on

the overall system performance. They are also not easy to test. Because most of

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 22 –

the system's components are independent and distributed, practically the only

place they can be fully tested is within the cloud environment, in which, they are

implemented. Thus, they make our system more complex and error-prone.

Without using the TBRAM one could simply utilize the robust and flexible

services delivered by a cloud provider like Elastic Load Balancer and

CloudWatch monitoring for the case of Amazon, which are not so resource

efficient, but noticeably cheaper. So, the model introduces additional costs for the

system development and deployment. It is up to us to calculate whether the one-

time cost will be returned by the possible savings from a decreased, system

running costs.

References

[1] M. Armbrust, et al.: Above the Clouds - A Berkeley View of Cloud

Computing. EECS Department University of California, Berkeley

Technical Report No. UCB/EECS-2009-28 February 10, 2009

[2] Jie Guo Chang et al. (2007) A Framework for Native Multi-Tenancy

Application Development and Management. 2007 9
th

 IEEE International

Conference on e-Commerce Technology and the 4
th

 IEEE International

Conference on Enterprise Computing, e-Commerce, and e-Services, 23-26

July 2007 (Piscataway, NJ, USA, 2007) pp. 470-477

[3] J. Espadas, A. Molina, G. Jimenez, M. Molina, R. Ramirez, and D. Concha:

A Tenant-based Resource Allocation Model for Scaling Software-as-a-

Service Applications over Cloud Computing Infrastructures, Future

Generation Computer Systems Vol. 29, Issue 1, January 2013, pp. 273-286

[4] C. Hong et al.: An end-to-end Methodology and Toolkit for Fine

Granularity SaaS-ization. 2009 IEEE International Conference on Cloud

Computing (CLOUD) 21-25 Sept. 2009 (Piscataway, NJ, USA) pp. 101-

108

[5] R. Iyer, et al. VM3: Measuring, Modeling and Managing VM-shared

Resources. Computer Networks. 53, 17 (Dec. 2009) pp. 2873-2887

[6] R. C. Martin, M. Martin: Agile Principles, Patterns, and Practices in C#.

2006, Prentice Hall

[7] G. V. Mc Evoy, B. Schulze (2008) Using Clouds to Address Grid

Limitations. 6
th

 International Workshop on Middleware for Grid

Computing, MGC’08, held at the ACM/IFIP/USENIX 9
th

 International

Middleware Conference, December 1-5, 2008

[8] X. Meng, et al. (2010) Efficient Resource Provisioning in Compute Clouds

via VM Multiplexing. 7
th

 IEEE/ACM International Conference on

Autonomic Computing and Communications, ICAC-2010 and Co-located

Workshops, June 7-11, 2010 (Washington, 2010) pp. 11-20

Acta Polytechnica Hungarica Vol. 12, No. 7, 2015

 – 23 –

[9] M. Pathirage, A Multi-Tenant Architecture for Business Process Executions

2011 IEEE International Conference on Web Services (ICWS) pp. 121-128

ISBN 978-1-4577-0842-8

[10] M. Stillwell, et al. Resource Allocation Algorithms for Virtualized Service

Hosting Platforms. Journal of Parallel and Distributed Computing. 70, 9

2010, pp. 962-974

[11] W. Stolarz, M. Woda: Proposal of Cost-Effective Tenant-based Resource

Allocation Model for a SaaS System. New Results in Dependability and

Computer Systems: Proceedings of the 8
th

 International Conference on

Dependability and Complex Systems DepCoS-RELCOMEX, September 9-

13, 2013, Brunów, Poland / Wojciech Zamojski [et al.] (eds.) Springer,

2013, pp. 409-420

[12] W. Stolarz, M. Woda: Performance Aspect of SaaS Application Based on

Tenant-based Allocation Model in a Public Cloud. Proceedings of the 9
th

International Conference on Dependability and Complex Systems DepCoS-

RELCOMEX, June 30-July 4, 2014, Brunów, Poland / Wojciech Zamojski

[et al.] (eds.) Springer, 2014

[13] J. Yang, et al. (2009) A Profile-based Approach to Just-in-Time Scalability

for Cloud Applications. CLOUD 2009 - 2009 IEEE International

Conference on Cloud Computing, September 21, 2009

[14] Q. Zhang, et al. Cloud Computing: State-of-the-art and Research

Challenges. Journal of Internet Services and Applications. 1, 1 (2010) pp.

7-18

[15] B-H Li, et al: Cloud Manufacturing: a New Service-oriented Networked

Manufacturing Model. Computer Integrated Manufacturing Systems CIMS

2010; 16(1) pp. 1-7

[16] S. Li, L. Xu, X. Wang, J. Wang, Integration of Hybrid Wireless Networks

in Cloud Services Oriented Enterprise Information Systems, Enterprise

Information Systems, Vol. 6, No. 2, 2012, pp. 165-187

[17] Q. Li, Z. Wang, W. Li, J. Li, C. Wang, R. Du, Applications Integration in a

Hybrid Cloud Computing Environment: Modelling and Platform,

Enterprise Information Systems, Vol. 7, No. 3, 2013, pp. 237-271

[18] L. Ren, L. Zhang, F. Tao, X. Zhang, Y. Luo, Y. Zhang, A Methodology

towards Virtualization-based High Performance Simulation Platform

Supporting Multidisciplinary Design of Complex Products, Enterprise

Information Systems, Vol. 6, No. 3, 2012, pp. 267-290

[1] F Tao, L Zhang, YF Hu. Resource Services Management in Manufacturing

Grid System. Wiley, Scrivener Publishing, 2012, ISBN 978-1-118-12231-0

[2] F. Tao, L. Zhang, V. C. Venkatesh, Y. Luo, Y. Cheng: Cloud

Manufacturing- a Computing and Service-oriented Manufacturing Model.

W. Stolarz et al. Tenant-based Resource Allocation Model Application in a Public Cloud

 – 24 –

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture, 225(10), 2011, pp. 1969-1976

[3] X. Xu: From Cloud Computing to Cloud Manufacturing, Robotics and

Computer-Integrated Manufacturing, Volume 28, Issue 1, February 2012,

pp. 75-86

