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Abstract: Inverse problems in engineering form routinely part of larger engineering 
simulations. Therefore, the quality of the solution to an inverse problem directly influences 
the quality of the larger simulation and, ultimately, the ability to solve an engineering 
problem. Inverse problems can be challenging and time-consuming to solve, as most 
inverse strategies require iteration due to the non-linear nature of the problem. As a result, 
they often remain poorly solved before proceeding to the larger analysis. The quality of the 
solution to an inverse problem is influenced by the inverse strategy, scaling of the problem, 
scaling of the data, and initial guesses employed for iterative strategies. Research has 
focussed considerably on inverse strategies and scaling. However, research into strategies 
that improve initial guesses of an inverse problem has been largely neglected. This study 
proposes an elegant strategy to improve the initial guesses for conventional optimization-
based inverse strategies, namely direct inverse maps (DIMs) or inverse regression. DIMs 
form part of modern multivariate statistics. DIM approximates the solution to an inverse 
problem using regression; popular choices are linear regression, e.g., partial least squares 
regression (PLSR). These strategies are not iterative but require several independent a-
priori simulations to have been conducted. As they are not iterative, one way to improve the 
solution is to increase the number of independent a-priori simulations to be conducted. Our 
proposed strategy is to use DIM to generate initial guesses for optimization-based inverse 
strategies. We conduct a parameter investigation on a truss structure's virtual vibration-
based damage identification problem. 

Keywords: Inverse Problem; Virtual Inverse Problem; Direct Inverse Maps; Partial Least 
Squares Regression; Optimization; Starting Point; Initial Guess 

1 Introduction 

Inverse analysis is prevalent in engineering analysis, as the characterization of 
models is routinely part of a larger analysis or simulation. The characterization of 
the models significantly influences the simulation quality. It is common for 
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engineers to focus on the analysis or simulation without properly characterizing 
some of the models used in simulations. 

Inverse problems in engineering form routinely part of larger engineering 
simulations. Therefore, the quality of the solution to an inverse problem directly 
influences the quality of the larger simulation and, ultimately, the ability to solve 
an engineering problem. Inverse problems can be challenging and time-consuming 
to solve, as most inverse strategies require iteration due to the non-linear nature of 
the problem. As a result, they often remain poorly solved before proceeding to a 
larger analysis. The implication is usually disastrous, as conclusions drawn from 
the numerical work may not be valid. In addition, the solution quality for an 
inverse problem can be influenced by the inverse strategy, loss surface 
complexity, scaling of the data, and initial guesses employed. Most research has 
focused on inverse strategies and scaling of data. However, research into strategies 
that improve initial guesses of an inverse problem has been largely neglected. 

This study focuses on and proposes an elegant strategy to improve the initial 
guesses for the ubiquitous optimization-based inverse strategies using the lesser-
known direct inverse maps or direct inverse regression strategies [1]. DIMs can be 
broadly categorized as either iterative optimization-based or non-iterative 
regression-based approaches. 

Optimization-based inverse strategies are well-known and ubiquitous in research 
and industry; in particular, weighted least-squares are considered a classical 
inverse analysis approach. Optimization-based inverse strategies start from an 
initial guess and iteratively improve the model parameters by minimizing some 
non-linear error and quantifying the difference between experimental and 
simulated responses until convergence. The sum of the error squared is a classical 
error measure often employed. Optimization-based inverse solution strategies can 
become computationally expensive when multiple local minima exist. Confidence 
in the solution is usually ensured by conducting multiple minimizations using 
gradient-based and evolutionary strategies in a multi-start procedure. In extreme 
cases, a multi-start approach may be required to obtain a converged or feasible 
solution, for instance, when an optimizer traverses model parameters that fail to 
analyze along a search path. However, a significant benefit of the minimization-
based inverse strategies is that the error between the predicted and experimental 
response is reduced iteratively. 

DIMs, in turn, are not so well known as they are rooted in modern multi-variate 
statistics [1, 2]. These strategies regress the experimental response directly to the 
model parameters without the need to iterate. Although these strategies are not 
iterative, they require a regression set of model parameters and their respective 
responses, usually constructed by simulation. DIM is, therefore, susceptible to 
extrapolation from the regression set when noise (aleatoric) and model (epistemic) 
mismatches exist between the experimental response and simulated responses in 
the regression set. The simulated response can then be computed using the model 
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parameters. Supplementing the regression set with additional simulated responses 
may improve the regression quality, but it is not guaranteed. The improvement 
depends on the similarity between the simulated responses in the regression set 
and the experimental responses regressed to the model parameters. The benefits 
and pitfalls of DIMs are detailed in [1]. Mature strategies quantify and address 
both aleatoric (noise) and epistemic (model mismatches) errors. 

They include principal component regression (PCR) [3-5] and partial least squares 
regression (PLSR) [3, 6-8]. The optimization-based iterative and regression-based 
non-iterative inverse strategies are utilized in isolation [2, 9, 10]. The classical 
optimization-based inverse approach usually uses uniform or normally distributed 
initial starting points over an anticipated model parameter space [11]. 
Alternatively, judgment, experience, or exploiting physics can inform suitable 
starting guesses, but this requires focused and qualified analysts. Alternatively, 
DIMs merely regress the response to the model parameters using a regression set 
[2, 9, 12]. Essentially, when these strategies are used in isolation, we have 

1) multiple minimizations that are conducted in isolation and 

2) large sets of independent simulated responses are generated to make up the 
regression set. 

This study proposes a complementary unified approach from these two 
approaches. We use DIM to predict starting points for a gradient-based inverse 
procedure that iteratively minimizes some nonlinear scalar error measure, which 
in this study is demonstrated for the sum of the error squared. 

The benefit is that the computational cost to solve an inverse problem may be 
reduced and the robustness enhanced. We specifically consider partial least 
squares regression (PLSR) to predict the initial starting point when minimizing the 
sum of errors squared using a gradient-based minimizer. The robustness and the 
computational cost of solving optimization-based inverse problems are directly 
related to the quality of the initial starting points supplied to the optimizer. Of 
course, numerous strategies exist to improve the robustness of solving inverse 
problems. Examples include response surfaces [23] and lower fidelity models 
[21], which will benefit from improved starting points for the minimization 
strategy. 

We consider a virtual inverse problem [21-22, 1] where we simulate the problem 
with and without simulated noise (aleatoric uncertainty) on the computed 
response. The benefit of knowing the solution is that we can properly quantify the 
performance of the various strategies in identifying the correct parameters. Since 
the considered approaches see the same problem, we can draw sensible 
conclusions in our comparisons between approaches. This study evaluates the 
dynamic identification of damage in a 25-bar truss structure [13]. 
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2 Minimisation Inverse Strategy 

Minimization-based inverse strategies predict the unknown model parameters by 
minimizing some scalar error measures between the experimental and simulated 
response. 

The difference between the experimental and predicted response results in an error 
vector. The error vector can be reduced into a scalar form, e.g., the sum of the 
errors squared or stated as the square of the L2-norm, resulting in the familiar least 
squares problem. The least squares problem is an unconstrained minimization 
problem usually solved using a Quasi-Newton minimizer [23]. 

Alternatively, the error vector can be the constraint in a min-max optimization 
problem where the maximum error is minimized. Here, the L∞ norm is usually 
minimized [15]. The objective function is linear by construction, but each point in 
the predicted response is a constraint. This constrained problem is generally 
solved using an augmented Lagrangian strategy [23]. 

This study is limited to least squares minimization but can be applied to various 
error measures. 

3 Direct Inverse Maps 

DIM regresses an observed experimental response to unknown model parameters. 
Various DIM strategies exist. The most popular are based on high dimensional 
linear regression constructed from a regression set. The regression set contains 
model parameters and their respective responses. The regression set is usually 
computed by simulation of a representative model. The regression strategies 
include principal component regression (PCR) [3-5, 8] and partial least square 
regression (PLSR) [3, 6-8]. 

These approaches are not susceptible to co-linearity problems like multi-linear 
regression (MLR) as they also reduce the dimension of the problem by projection. 
Hence, many high-dimensional points can be used in the regression set [24]. Both 
PCR and PLSR require the size of the reduced dimension (number of modes or 
loadings) to be selected by the user [24]. For regression, it is often suggested to 
use the lowest number of modes such that the responses in the regression set 
describe the experimental response well. This implies that the projected 
experimental response onto the modes can be expressed by interpolating between 
the responses in the regression set that are also projected onto the modes. This is 
opposed to extrapolation, which indicates the response is an outlier to the points in 
the regression set. 
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In this study, we only consider partial least square regression. PLSR solves the 

following problem: and is given by the following algorithm PLSR is available in 
most numerical software packages such as Matlab (function plsregress in the 
Statistics and machine learning toolbox), R (pls package), and Python (module 
PartialLeastSquares). 

4 Combined Strategy 

Optimization inverse analysis and DIMs are generally used in isolation due to 
their historical origins. Instead of comparing these two approaches for their 
benefits and pitfalls, we demonstrate the potential benefits when unifying them to 
solve inverse problems. This approach can be applied when the simulation model 
is evaluated directly [22] or via a response surface [24]. In this study, we only 
consider the former approach to allow us to assess its merit without introducing 
additional complexities and uncertainties, such as the quality of the response 
surface. We note that should this approach prove beneficial in the absence of 
response surfaces, the additional benefits are evident when including response 
surfaces [23 - 25]. The simulated data points to construct a response surface can 
also generate initial starting points that might be less susceptible to local minima 
and more likely to lie within the global basin [26]. 

Our proposed strategy under investigation uses the PLSR as a DIM to compute the 
initial starting point for a classical Quasi-Newton gradient-based minimization 
algorithm. This process is repeated until convergence. Consider the algorithmic 
outline of our approach: 

1 Estimate the expected domain for each input parameter X of the model. 
Initialize an empty design of experiments (DOE) XY. Choose NDOE and NOPT. 

2 Compute NDOE points and augment the DOE XY, using augmented Latin 
Hypercube Sampling (ALHS) over the expected parameter domain. 

3 Predict the model input parameters XP, from the experimental response YEXP 
using PLSR. 

4 The predicted response is then used as an initial starting point for an iterative 
minimization approach x0 = XP when there is a lower error than the best 
point in the regression set. Otherwise, the point with the lowest error in the 
regression set is used as an initial starting point. The minimizer is limited to 
NOPT iterations. Here, we can include or discard the responses computed at 
each iteration to be used in the regression set for the next PLSR. In this 
study, we only include the point at iteration NOPT. 

5 Repeat steps 2-5 until convergence. 
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Note that if we choose NDOE = 1, we recover an optimization-based inverse 
strategy with a single initial random guess. By choosing NOPT = 0, we recover 
PLSR solely. This allows us to quantify the benefits of the independent and 
various blends of the unified strategy. 

An additional parameter to NDOE, NOPT, and the convergence criteria is the number 
of modes NMODES to use for the PLSR. The number of modes NMODES are estimated 
as follows: 

1 Compute the participation coefficients (scores) of each mode (loading) for 
each point in the regression set. 

2 For each loading estimate, the expected ranges for the participation 
coefficients. 

3 Project the experimental response YEXP onto the first mode using standard 
least squares regression and compute the participation coefficient. 

a. If the participation coefficient of the first mode falls outside the expected 
range, use the data point in the set used to construct the PLSR with the 
least error as an initial optimization starting point; otherwise, continue. 

4 Include the next mode in the projection and compute the participation 
coefficients. 

5 Conduct the following convergence checks 

a. Check if the participation coefficients fall within the expected ranges. 

b. Check that the norm of the difference between the current and previously 
predicted model parameters decreased. 

c. Continue until a check fails and use all modes, excluding the last mode 
that failed a check. 

6 Repeat 1-5 until a convergence check fails. 

5 Numerical Investigation 

We conduct a numerical investigation to assert the feasibility of solving inverse 
problems using the proposed approach of combining DIMs and minimizing the 
sum of the errors squared. By appropriately selecting NDOE and NOPT, we can 
investigate the two strategies in isolation and combined. In this study, we restrict 
ourselves to a virtual inverse problem [21-22, 1], using simulated experimental 
data instead of actual experimental data. The benefit is that we can critically 
assess the quality of the estimated model parameters and the responses' quality. 
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We effectively turn an unsupervised learning problem into a supervised learning 
problem through modeling. 

We conduct the inverse analysis with simulation in the loop instead of the typical 
and appropriate response surface-based strategy [25-26]. This is done deliberately 
to investigate the proposed approach without adding the additional complexity and 
uncertainty that response surfaces may introduce into the investigation. 

We consider the vibration-based damage identification of a 25-bar truss. We aim 
to estimate the mass of 25 trusses from the first two vibration modes given by the 
nodal displacements of the six nodes of the truss structure, resulting in a 36-
dimensional response vector. We consider the simulated experimental response 
vector with and without simulated measurement noise. 

5.1 Vibration-based Damage Identification of a 25-bar Truss 

Vibration-based damage identification approaches aim to assess the integrity of 
structures non-destructively [13, 16-18]. Modal parameters (natural frequencies, 
mode shapes, damping, and modal strain energy) of a structure depend on the 
physical properties of the structure, i.e., mass, stiffness, and damping. The premise 
behind vibration-based damage identification is that changes in the physical 
properties manifest in changes to the modal parameters. Hence, changes in modal 
parameters can be used to locate and identify damage in a structure. 

We consider a simple example in which we aim to estimate the effective mass (or 
equivalently, area) of the truss members from only the first two structural modes 
of a structure in a corrosive environment. The geometry and material properties 
are assumed to be known. A truss analysis without damping is considered 
sufficient to describe the dynamics of the structure, i.e., a lightly damped 
structure. The nodal displacements of the six nodes in three-dimensional space for 
two modes result in a 36-dimensional response vector. 

The 25-bar truss structure [19] is depicted in Figure 1(a), and the first two modes 
are in Figures 1(b) and (c), respectively. The structure is fully constrained (in all 
three translational directions) at the four ground supports, as indicated in Figure 
1(a). The truss modal analysis is conducted using an in-house finite element 
analysis code with direct and adjoint analytical sensitivities developed by Wilke 
for his Optimum Design (MOO780) graduate course at the University of Pretoria, 
South Africa, which solves the generalized eigenvalue problem 

(Kff − λMff )y = 0,        (1) 

with Kff and Mff, the assembled system stiffness and mass matrices with the 
associated unconstrained degrees of freedom of the system. The experimental data 
in this vibration-based damage identification problem is simulated using the same 
code to conduct a virtual inverse problem. 
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This study considers simulated experimental data with and without measurement 
noise, i.e., aleatoric uncertainty. A normally distributed measurement noise of 2% 
for the first standard deviation was assumed.  The experimental data is simulated 
for 1 kg masses for each of the 25 truss members, which results in a 487 Hz 
fundamental frequency and a second mode at 530 Hz. An unknown parameter 
range of 100% around the solution is considered for this study. The parameters to 
be estimated were normalized by the solution [20]. The error norm for the 
calculated response is 0.0 (within machine precision) in the absence of noise and 
around 0.5102 when 2% measurement noise is assumed. 

 
Figure 1 

(a) The undeformed truss structure and associated (b) fundamental at 487 Hz and (c) second mode at 
530 Hz. The base (indicated by the solid red dots) is fixed to resist any translation. 
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6 Numerical Results 

The numerical investigation aims to quantify our proposed strategy's performance 
and sensitivity to divide the effort between adding points to the NDOE to improve 
starting points instead of allowing additional optimization iterations NOPT. We 
investigate the benefits of splitting effort between the PLSR and iterative 
optimization without explicitly considering the associated computational cost to 
avoid distracting from this study. We limit ourselves to 500 function evaluations 
and consider the cost of each optimization iteration to be one function evaluation. 
Similarly, each point added to the DOE is regarded as one function evaluation. 
The benefit of this choice is that a user can scale the associated computational cost 
of an optimization iteration to DOE point computation independently afterward. 

We consider a purely sequential computational framework, but the benefits of 
parallel environments are evident when increasing the number of points of the 
DIM, as it is embarrassingly parallel as opposed to the sequential nature of a 
classical gradient-based algorithm. However, these questions warrant an 
independent study to explore when a multi-core, GPU, or parallel computational 
architecture is considered. The implicit assumption of our choice is that function 
computations dominate the computational cost of these two problems, with 
sensitivities being available computationally efficiently either analytically or by 
differentiating a response surface representation of the cost function. In this study, 
adjoint analytical sensitivities are computed. 

To conduct our study, we consider distinct ratios NOPT:NDOE of the number of 
optimization iterations NOPT to Latin hypercube sampled NDOE points. The ratios 
we consider for both problems are 0:9, 1:9, 4:9, 1:1, 9:4, 9:1, and 100:1. A ratio of 
0:9 implies that no optimization is conducted, and the response is computed using 
only PLSR. In turn, a ratio of 100:1 effectively results in an optimization strategy 
using random initial starting points. We conduct this for increments of ΔNf = {10, 
25, 50, 100, 250, 500} function evaluations per iteration for our combined 
strategy. When only PLSR is considered, we compute exactly ΔNf function 
evaluations, whereas the optimization strategy with random initial starting points 
is limited to a maximum number of ΔNf function evaluations. This is repeated 
until the maximum of 500 function evaluations is reached. Table 1 indicates the 
number of function evaluations available for PLSR and the least squares 
minimization strategy for the different choices of NOPT:NDOE and ΔNf. 

The optimization algorithm used in this study is Matlab’s SQP algorithm in the 
fmincon function. The convergence tolerance for the optimization algorithm 
was set to 10−6 for changes in updates or function values between updates. 



G. Stephens et al. Improving Optimization-based Inverse Analysis using Direct Inverse Maps:  
 A Dynamic Damage Identification Case Study  

 – 80 – 

Table 1 
The available number of function evaluations (NDOE,NOPT) for the combined strategy per iteration for 

the selected ratios NOPT:NDOE and ΔNf 

 
For each selected setting, we repeat the optimization run 100 times and depict the 

results in box plots for choices of ΔNf. The box plots show the median (solid red 
line), with the box representing half the data points. The whiskers extend to the 
extreme data points that are statistically unimportant. Lastly, the red crosses 
indicate all the outliers. 
We quantify the analyses' robustness and solutions' quality. The analyses of the 
25-bar truss always succeeded. 

6.1 Vibration-based Damage Identification of a 25-bar Truss 

The final residuals obtained for the 100 independent runs after 500 total function 
evaluations are presented in Figures 2(a)-(g) and 3(a)-(g) for the noiseless and 
noisy simulated experimental data, respectively. Figure 4 shows the results after 
only 100 function evaluations to highlight the relative improvement from 100 to 
500 function evaluations. In Figure 2(a), the PLSR predictions vary between two 
error levels. It is evident from the median position that divides the data points at 
the top or bottom of the box. In Figure 2(a), as expected, the same response for all 
ΔNf is evident when considering the size and position of each box. 

There is a definite benefit to selecting a lower NOPT:NDOE ratio for the noiseless 
simulated experimental data, except for a ratio of 0, which represents only PLSR. 
A larger ΔNf seems to be consistently beneficial. The 0 ratio effectively represents 
the contribution of the PLSR in isolation, whereas the minimizer effectively 
realizes the remainder of the improvements. Note that a single optimization run is 
preferred, as consistently indicated by the better performance of the larger ΔNf.  
It demonstrates the benefit of continuing the minimization after an appropriate 
initial guess has been provided. Additional PLSR regression points perform worse 
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than allowing additional iterations in the minimizer. However, an estimate of a 
proper initial point is important as minimization in isolation, similar to PLSR in 
isolation, performed the worst on average. 

 
Figure 2 

Residual box plots for 100 independent runs using the simulated experimental data without noise for 
the damage identification problem. The total number of function evaluations is 500 for the selected 

ratios NOPT:NODE (a)-(g). The choice ΔNf is quantified in each subfigure. 

This contrasts the simulated experimental data with noise, where the selection of a 
moderate ΔNf yields better results on average. In addition, a ratio NOPT:NDOE that 
favors the minimizer is beneficial. Note that suitable ratios NOPT:NDOE allow for 
PLSR-estimated starting points instead of random initial starting points.  



G. Stephens et al. Improving Optimization-based Inverse Analysis using Direct Inverse Maps:  
 A Dynamic Damage Identification Case Study  

 – 82 – 

The implication is that multi-starts benefit this noisy problem, as indicated by a 
low to moderate value for ΔNf. 

 
Figure 3 

Residual box plots for 100 independent runs using the simulated experimental data with noise for the 
damage identification problem. The total number of function evaluations is 500 for the selected ratios 

NOPT:NODE (a)-(g). The choice ΔNf is quantified in each subfigure. 
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Figure 4 

Residual box plots for 100 independent runs using the simulated experimental data with noise for the 
damage identification problem. The total number of function evaluations is 100 for the selected ratios 

NOPT:NODE (a)-(g). The choice ΔNf is quantified in each subfigure. 

Minimization in isolation (NOPT:NDOE = 100:1) and PSLR in isolation (NOPT:NDOE 
= 0) performs the worst. Notably, in isolation, the minimizer significantly reduces 
the number of outliers at the cost of a higher residual on average. The results 
obtained after 100 total function evaluations for the noisy simulated experimental 
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data are presented in Figure 4(a)-(g). This shows the progression of the decrease 
in residual and also how the various settings benefit from an additional 400 
function evaluations that Figure 3(a)-(g) depicts. 

We also present area variation as box plots in Figures 5(a) and 5(b) for a range of 
residual values. The solution is obtained when all the areas are 1, as seen in Figure 
5(a). All values, including outliers, are within a 15% range of the solution. From 
Figure 5(b), the larger residuals are due to the minimizer poorly estimating the 
truss areas and not the PLSR-estimated initial guesses. 

 
Figure 5 

Box-plots of the areas found by two different sets of data 

To investigate the quality of the computed initial guesses as a function of the 
number of LHC points, we compute 100 initial guesses for various numbers of 
points in the regression set. The results are depicted in Figure 6. Note the 
significant benefit of a small sample size in the regression set. 

The results presented demonstrate a computational benefit when unifying 
optimization-based inverse strategies and DIM. A benefit that is enhanced in the 
presence of experimental measurement noise. 
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Figure 6 

Boxplot of the residuals computed for 100 initial guesses for the optimization algorithm as the number 
of points in the regression set increases 

Conclusion 

This study demonstrated the benefit of unifying two inverse strategies: least 
squares minimization and the PLSR direct inverse map (DIM). Traditionally, 
these two strategies are considered separately, but this study demonstrates the 
benefits of unifying them into a complementary approach. Our proposed strategy 
unifies these two into a single strategy that allows each to be recovered in 
isolation. DIM is used to compute suitable initial guesses for the iterative 
optimization solver. For a practical inverse problem, we demonstrated that this 
combination results in computational benefits.  

This unified approach demonstrated benefits when considering a sequential 
computing platform. The additional benefits of this approach on parallel 
computing platforms will only complement this strategy. This will be investigated 
in a future study to investigate and quantify each properly. 

Future work will consider the benefits of this strategy in terms of robustness, as 
preliminary work on identifying ODEs on Calcium signaling pathways [14] only 
solves around 50% of the time when random starting points are used compared to 
100% when combined with DIM. As future work will demonstrate, this unified 
approach can improve the robustness of the inverse problem when facing 
challenging problems or when limited resources are available. 
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