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Abstract: In this paper asymptotic convergence rate of a blind distributed macro-calibration 
algorithm for sensor networks based on consensus is analyzed, assuming the presence of 
both communication and measurement noise. Convergence to consensus with probability one 
(w.p.1) and in the mean square sense (m.s.s.) is proved for the sensor gain correction 
algorithm using general stochastic approximation arguments. Starting from an original 
formulation of the convergence rate of quadratic Lyapunov functions, an expression for the 
asymptotic convergence rate of the gain correction algorithm is derived. Using this result, 
convergence w.p.1 to consensus of the offset correction algorithm is proved under an 
additional nonrestrictive condition on the step size of the algorithm. In the practically 
important case when one of the sensors is taken as a reference, convergence w.p.1 of all 
corrected gains and offsets to the given reference value is proved. Simulation results are 
provided in order to illustrate characteristic properties of the algorithm. 

Keywords: sensor networks; macro calibration; stochastic consensus; stochastic 
approximation; convergence rate 

List of acronyms: a.s. - almost surely; ARMA - autoregressive moving average; e.g. - exempli 
gratia, meaning for example; i.e. - id est, meaning that is; m.s.s. - mean square sense; w.p.1 
- with probability 1 

1 Introduction 

Sensor networks represent one of very important parts of Cyber-physical systems, 
Internet of things and complex large scale Control systems [1, 2]. Sensor network 
calibration is one of very actual problems connected to wide deployment of large 
sensor networks in industry, robotics and diverse multidisciplinary fields [3, 4].  
In this case, individual calibration of each sensor (micro-calibration) cannot be 
effectively implemented. The so-called macro-calibration appears as one of 
practically efficient and theoretically attractive approaches, treating a given sensor 
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network as a whole [6, 7]. In this sense, special attention has been paid recently to 
distributed methods for macro-calibration, not requiring centralized measurements 
and/oractions; blind distributed macro-calibration methods represent, theoretically 
and practically a great challenge since they do not require information about the 
stimuli [3, 7, 8]. 

A promising and methodologically consistent approach to blind distributed macro-
calibration has been proposed in [9-12]. Starting from a sensor model characterized 
by two parameters (gain and offset), the algorithm proposed therein is of distributed 
gradient-type, providing equal corrected sensor outputs by ensuring convergence to 
consensus of all the corrected sensor gains and offsets. In practice, identical 
readings of all sensors provide: 1) uniformly good measurements for all the sensors 
in a network, and 2) an important possibility to obtain ideal calibration of the whole 
network by individual micro-calibration of only one sensor selected as a reference. 
Convergence of the algorithm has been proved, but without any insight into its 
convergence rate [9, 11]. 

Following the line of thought specific for time-synchronization algorithms [13], in 
[14, 15] a new approach to distributed blind macro-calibration, different from the 
results presented in [9-12], has been proposed. The algorithm consists of two 
recursive schemes, in which one is used for independent correction of sensor gains, 
and another for correction of sensor offsets, relying on the current gain correction 
results. It has been demonstrated that this algorithm has theoretical and practical 
advantages over the previously proposed ones [14, 15, 16]. Having in mind that the 
recursions for gain and offset correction can be considered as distributed stochastic 
approximation algorithms, efforts have been done to prove convergence to 
consensus under different operating conditions using their general theoretical 
background, e.g. [17]. As a result, geometric convergence to consensus has been 
proved in the noiseless case [14]. In [15], the previously obtained results were 
substantially generalized by proposing an asynchronous algorithm, working under 
the presence of additive communication and measurement noises. However, the 
corresponding theoretical analysis was focused dominantly on the gain correction, 
as the most critical part. Also, in [16] a new nonlinear calibration algorithm has 
been proposed, providing high robustness in practice w.r.t. noise samples 
containing outliers  of impulsive type. 

As a result, simultaneous operation of gain and offset correction in a stochastic 
environment containing both communication and measurement noise has still 
remained insufficiently clarified for the algorithm proposed in [14, 15]. Such a 
regime has been completely understood only in the noiseless case as a consequence 
of the exponential convergence rate. It turned out that the convergence to consensus 
of the offset correction scheme in a stochastic environment depends on the 
convergence rate of the gain correction scheme, which is far from being 
exponential. This situation requires a methodologically new tool for the theoretical 
analysis, since the existing general results cannot be successfully applied, e.g. [11, 
15, 17-26]. 
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This paper treats the distributed calibration algorithm proposed in [14, 15] under 
stochastic disturbances in a new and methodologically original way, trying to 
formulate the convergence rate to consensus of the gain correction scheme, and to 
prove exactly, for the first time, convergence to consensus with probability one 
(w.p.1) for both gain and offset correction in simultaneous operation.  
The autonomous scheme for gain correction will be analyzed first using the 
methodology from [15], generalizing the deterministic approach presented in [14] 
(Theorem 1 below). Proof of convergence w.p.1 and in the mean square sense 
(m.s.s.) to consensus is derived in a novel way. After showing that the methodology 
from [17], Paragraph 3.1, (proposed in the context of a.s. convergence) may be 
applied to the analysis of appropriate Lyapunov functions (Theorem 2 below), 
convergence rate to consensus of the gain correction scheme is formulated, as an 
indispensable precondition for treating the problem of convergence of the offset 
correction algorithm. Using a selected methodology from [1, 18] and the obtained 
expression for the rate of convergence of the gain correction algorithm [17], a proof 
of the offset correction algorithm convergence w.p.1 to consensus has been obtained 
(Theorems 4 and 5 below). 

A special section (Section 5) is devoted to an important extension of the results 
obtained within Section 4 to the practically important case in which one of the 
network nodes is selected as a reference. In this case, the whole calibration 
algorithm succeeds in making all the asymptotical corrected gains and offsets equal 
to the selected ones w.p.1 and in the m.s.s., see [14, 15, 16]. The corresponding 
proofs are provided, representing an additional original contribution of the paper. 

All in all, a major part of the presented theoretical results can be considered new, 
providing a new insight into the distributed blind calibration algorithms proposed 
in [14, 15]. They also provide a new general methodology for determining 
convergence rate of quadratic Lyapunov functions (Theorem 2), extending an idea 
from [17]. We hope that the results will fill not only an obvious gap in the theoretical 
understanding of the basic calibration algorithms from [14, 15] themselves, but also 
an analogous gap in the general understanding of complex dynamic consensus 
schemes (having in mind that the algorithm from [14, 15] can be formally 
considered as a special form of complex dynamic consensus schemes working in a 
stochastic environment [15]). Notice that the theoretical results from [9-12], having 
a similar character as the above, cannot be applied to the algorithm treated in the 
paper, having in mind that: 1) the algorithm itself is basically different, 2) 
convergence rate has not been analyzed and 3) the analysis methodology developed 
therein is not applicable to the algorithm from [14, 15]. Namely, the two-way 
coupling between the corrected gains and the corrected offsets adopted therein 
implies  utilization of mathematical tools (e.g., related to diagonal dominance of the 
matrices characterizing the system) that are not applicable in the case of the 
algorithms treated in this paper. On the other hand, numerous existing results have 
shown that the algorithm from [14, 15] has a superior convergence rate in practice. 
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A number of simulations illustrate the behavior of the algorithm under different 
assumptions and operating conditions, enabling getting a better feeling of its 
behavior in a stochastic environment. These simulations do not serve for direct 
validation of the derived theoretical results, having in mind their nature - they are 
strictly valid asymptotically and provide, as usual [17, 24, 25], upper limits of the 
mean square distance w.r.t. consensus points. 

2 Problem Formulation 

Assume that there exist n distributed sensors measuring a real signal 𝑥𝑥(𝑡𝑡), where 𝑡𝑡 
is discrete time𝑡𝑡 = 0,1, … Sensor outputs are defined by the standard linear 
stochastic model 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖𝑥𝑥(𝑡𝑡) + 𝛽𝛽𝑖𝑖 + 𝜁𝜁𝑖𝑖(𝑡𝑡) (1) 

where the sensor gain 𝛼𝛼𝑖𝑖 and the sensor offset 𝛽𝛽𝑖𝑖 are unknown constants and 
𝜁𝜁𝑖𝑖(𝑡𝑡)the measurement noise always present in real signals (its properties will be 
specified later), 𝑖𝑖 = 1, … ,𝑛𝑛 [14, 15]. 

As it is usual [9, 11, 12, 14], we will assume that each sensor implements an affine 
calibration transformation which generates the corrected (modified) sensor output 

𝑧𝑧𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖(𝑡𝑡) + 𝑏𝑏𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑥𝑥(𝑡𝑡) + 𝑓𝑓𝑖𝑖 + 𝑎𝑎𝑖𝑖𝜁𝜁𝑖𝑖(𝑡𝑡) (2) 

where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the calibration parameters to be determined according to the 
chosen calibration goals, while 𝑔𝑔𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑎𝑎𝑖𝑖  represents the corrected (modified) gain 
and 𝑓𝑓𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 the corrected (modified) offset. In general, the calibration goal 
is to keep 𝑔𝑔𝑖𝑖 close to one and 𝑓𝑓𝑖𝑖 close to zero. 

It is assumed that the sensors are mutually interconnected, so that the sensor 
network is represented by a directed graph 𝒢𝒢 = (𝒩𝒩,ℰ), where 𝒩𝒩 is the set of nodes 
(sensors) and ℰ the set of directed links (edges) (𝑖𝑖, 𝑗𝑗) (node 𝑖𝑖 sends messages to 
node 𝑗𝑗). Let 𝒩𝒩𝑖𝑖

𝑖𝑖𝑖𝑖 represent the set of in-neighbours of node 𝑖𝑖 and 𝒩𝒩𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 the set of 

its out-neighbours [19]. 

Remark 1. In the literature, blind macro-calibration of sensor networks in the sense 
of finding such parameters 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 from (2) which ensure some global properties 
of a network as a whole, usually assumes a static model (1) and synchronous time 
[5-14]. Asynchronous functioning based on broadcast gossip is tretaed in [15]. 
Eventual communication time delays appearing as a consequence of propagation 
through the network are considered  small w.r.t. the variations of the measured 
signal. In wireless sensor networks, this assumption is simply fulfilled when the 
nodes from 𝒩𝒩𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜  receive information from node i by broadcasting. Otherwise, 
blind macro-calibration can easily loose sense, as in the case of large and 
unpredictable communication delays. 
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3 Gain Correction 

Following the methodology presented in [14, 15], the algorithm for estimating the 
correction parameters 𝑎𝑎𝑖𝑖 is derived using the increments of the local measurement 
signals: 

𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖(𝑡𝑡) − 𝑦𝑦𝑖𝑖(𝑡𝑡 − 1) = 𝛼𝛼𝑖𝑖𝛥𝛥𝑥𝑥(𝑡𝑡) + 𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) (3) 

where 𝛥𝛥𝑥𝑥(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 1) and 𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) = 𝜁𝜁𝑖𝑖(𝑡𝑡) − 𝜁𝜁𝑖𝑖(𝑡𝑡 − 1) are the signal and 
measurement noise increments. The algorithm (not depending on 𝑏𝑏𝑖𝑖) is derived 
starting from the following local criteria, aimed at making the sensor output 
increments equal: 

𝐽𝐽𝑖𝑖𝑎𝑎(𝑎𝑎𝑖𝑖) = ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 𝐸𝐸{�𝛥𝛥𝑧𝑧𝑖𝑖(𝑡𝑡) − 𝛥𝛥𝑧𝑧𝑖𝑖(𝑡𝑡)�

2
} (4) 

where 𝛾𝛾𝑖𝑖𝑖𝑖 > 0 are scalar weights reflecting the relative importance of the nodes j 
from the in-neighbourhood of node 𝑖𝑖 and 𝛥𝛥𝑧𝑧𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1, … ,𝑛𝑛.  
The expression for the gradient of the criterion (4) w.r.t. 𝑎𝑎𝑖𝑖  can be used directly as 
a generator of stochastic gradient algorithms for estimating calibration parameters 
𝑎𝑎𝑖𝑖[14, 15]. In such a way, one obtains the following set of recursions 

𝑎𝑎�𝑖𝑖(𝑡𝑡 + 1) = 𝑎𝑎�𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖,𝑖𝑖𝛥𝛥 (𝑡𝑡)𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡) (5) 

where 𝑎𝑎�𝑖𝑖(𝑡𝑡) is an estimate of 𝑎𝑎𝑖𝑖, 𝛿𝛿(𝑡𝑡) > 0 is the step size of the algorithm common 
for all the nodes, 𝜀𝜀𝑖𝑖,𝑖𝑖𝛥𝛥 (𝑡𝑡) = 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡) + 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡), 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡) =
𝑎𝑎�𝑖𝑖(𝑡𝑡)𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡),and𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡) represents the additive communication noise between the 
nodes 𝑗𝑗 and 𝑖𝑖 (to be specified later). In general, one adopts that 𝑎𝑎�𝑖𝑖(0) = 1 [14]. 
Notice that the algorithm is distributed (based on local information), linear and 
simple for real time implementation. 

The algorithm (5) can also be expressed by using the corrected gains 𝑔𝑔𝑖𝑖(𝑡𝑡) =
𝛼𝛼𝑖𝑖𝑎𝑎�𝑖𝑖(𝑡𝑡): 

𝑔𝑔𝑖𝑖(𝑡𝑡 + 1) = 𝑔𝑔𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 �𝑔𝑔𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝑡𝑡)�𝛼𝛼𝑖𝑖2𝛥𝛥𝑥𝑥(𝑡𝑡)2 + 𝛿𝛿(𝑡𝑡)𝑛𝑛𝑖𝑖′(𝑡𝑡), (6) 

where𝑛𝑛′𝑖𝑖(𝑡𝑡) = ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 {�𝑎𝑎�𝑖𝑖(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) − 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) + 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡)��𝛼𝛼𝑖𝑖𝛥𝛥𝑥𝑥(𝑡𝑡) + 𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡)� +
�𝑔𝑔𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝑡𝑡)� 𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡)}. 

The last relation is important for a proper understanding of the algorithm behavior. 
The whole measurement noise term is composed of two parts, the first of which is 
zero-mean, and the second is not (having in mind that 𝐸𝐸{𝑎𝑎�𝑖𝑖(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡)2} ≠ 0).  
An analogous phenomenon can be found in system identification algorithms when 
the measurement noise corrupts the dynamic system output, leading to biasedness 
of the parameter estimates [20]. In the case of the above calibration algorithm, this 
effect is much more pronounced: the algorithm may loose its fundamental capability 
of achieving consensus, and may become inapplicable to calibration. This problem 
can be efficiently overcome by applying instrumental variables, a very popular tool 
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for system identification [20]. In our case, instrumental variables have to be 
correlated with the measured signalx(t), and uncorrelated with the random noise 
𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡), so that the delayed measured noisy signals by at least two sampling instants 
represent a simple and efficient solution [15]. If 𝑍𝑍𝑖𝑖(𝑡𝑡) denotes the instrumental 
variable of the 𝑖𝑖-th node at the instant 𝑡𝑡, 𝑍𝑍𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖(𝑡𝑡 − 𝜏𝜏) simply solves the 
problem for 𝜏𝜏 ≥ 2, having in mind that 𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡 − 𝜏𝜏) = 𝛼𝛼𝑖𝑖𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏) + 𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡 − 𝜏𝜏) 
and that, evidently, 𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡 − 𝜏𝜏) is uncorrelated with 𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) for 𝜏𝜏 ≥ 2, assuming a 
realistic situation that 𝛥𝛥𝑥𝑥(𝑡𝑡)and 𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏) are correlated. 

Consequently, our calibration algorithm based on instrumental variables, is defined 
by 

𝑎𝑎�𝑖𝑖(𝑡𝑡 + 𝜏𝜏) = 𝑎𝑎�𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 𝛥𝛥𝜀𝜀𝑖𝑖,𝑖𝑖𝛥𝛥 (𝑡𝑡)𝑍𝑍𝑖𝑖(𝑡𝑡) (7) 

where 𝑍𝑍𝑖𝑖(𝑡𝑡) = 𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡 − 𝜏𝜏), 𝜏𝜏 ≥ 2. The algorithm consists, in fact, of 𝜏𝜏 interlaced 
recursions at the network level, all having identical asymptotic behaviour [23].  
The recursion (6) for 𝑔𝑔𝑖𝑖(𝑡𝑡) based on instrumental variables becomes now 

𝑔𝑔𝑖𝑖(𝑡𝑡 + 𝜏𝜏) = 𝑔𝑔𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 �𝑔𝑔𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝑡𝑡)� 𝛼𝛼𝑖𝑖2𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏) +

𝛿𝛿(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡), (8) 

where 𝑛𝑛𝑖𝑖(𝑡𝑡) = ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 {�𝑎𝑎�𝑖𝑖(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) − 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡) + 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡)��𝛼𝛼𝑖𝑖𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏) +
𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡 − 𝜏𝜏)� + �𝑔𝑔𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝑡𝑡)� 𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝜁𝜁𝑖𝑖(𝑡𝑡 − 𝜏𝜏)}.  

A compact form of the algorithm (8) at the network level is 

𝑔𝑔(𝑡𝑡 + 𝜏𝜏) = [𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝛼𝛼2𝛤𝛤]𝑔𝑔(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)𝑁𝑁(𝑡𝑡) (9) 

where 𝑔𝑔(𝑡𝑡) = [𝑔𝑔1(𝑡𝑡) …𝑔𝑔𝑖𝑖(𝑡𝑡)]𝑇𝑇 , 𝑁𝑁(𝑡𝑡) = [𝑛𝑛1(𝑡𝑡) … 𝑛𝑛𝑖𝑖(𝑡𝑡)]𝑇𝑇 and 𝛼𝛼 =
diag{𝛼𝛼1. . . .𝛼𝛼𝑖𝑖}, while,  

Γ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−�𝛾𝛾1𝑖𝑖

𝑖𝑖

𝛾𝛾12 ⋯ 𝛾𝛾1𝑖𝑖

𝛾𝛾21 −�𝛾𝛾2𝑖𝑖
𝑖𝑖

⋯ 𝛾𝛾2𝑖𝑖

⋮ ⋮ ⋱ ⋮
𝛾𝛾𝑖𝑖1 𝛾𝛾𝑖𝑖2 ⋯ −�𝛾𝛾𝑖𝑖𝑖𝑖

𝑖𝑖 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

is a matrix of weights having the form of the Laplacian of the underlying directed 
graph [19, 21, 22]. 

The convergence analysis given below is based on the general results related to the 
stochastic approximation method [17, 24, 25, 26] and the properties of dynamic 
consensus schemes in stochastic environments [18, 21]. 

We will adopt the following assumptions: 

(A.1) Graph 𝒢𝒢 possesses a central node [22], 
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(A.2) 𝛿𝛿(𝑡𝑡) > 0; ∑ 𝛿𝛿∞
𝑜𝑜=0 (𝑡𝑡) = ∞; ∑ 𝛿𝛿∞

𝑜𝑜=0 (𝑡𝑡)2 < ∞, 

(A.3) For some 𝜏𝜏 ≥ 2, 𝐸𝐸{𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)|ℱ𝑜𝑜} ≥ 𝑐𝑐1 > 0, 𝐸𝐸 {𝛥𝛥𝑥𝑥(𝑡𝑡)4|ℱ𝑜𝑜} ≤ 𝑐𝑐2 <
∞, where ℱ𝑜𝑜 is the minimal 𝜎𝜎-algebra generated by 𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1) 

(A.4) Signal 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡) (or �̂�𝑧𝑖𝑖(𝑡𝑡)) sent by node 𝑗𝑗 is received by node 𝑖𝑖 together with the 
additive noise 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡) (or 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡)); all random communication noise processes are zero 
mean and i.i.d. with finite variances. 

(A.5) Measurement noise sequences {𝜁𝜁𝑖𝑖(𝑡𝑡)} are mutually independent and 
composed of zero mean, finite variance i.i.d. random variables. 

(A.6) Communication noise, measurement noise and the signal are mutually 
independent. 

Theorem 1 (Convergence of the gain correction algorithm). Let assumptions 
(A.1) - (A.6) be satisfied. Then, the estimate 𝑔𝑔(𝑡𝑡) generated by (9) tends w.p.1 and 
m.s.s. to a random vector 𝑤𝑤𝟏𝟏,𝟏𝟏 = [1 … 1]𝑇𝑇, where 𝑤𝑤 is a random variable 
(𝐸𝐸{𝑤𝑤2} < ∞). 

Proof: Let 𝑇𝑇 = �𝟏𝟏  𝑇𝑇𝑖𝑖×(𝑖𝑖−1)�, where span�𝑇𝑇𝑖𝑖×(𝑖𝑖−1)� = span(𝛼𝛼2𝛤𝛤). Having in 
mind properties of 𝛤𝛤 expressed by (A.1), it follows that 

𝑇𝑇−1𝛼𝛼2Γ 𝑇𝑇 = �
0 ⋮ 01×(𝑖𝑖−1)

0(𝑖𝑖−1)×1 ⋮ Γ∗ � 

where Γ∗ is a Hurwitz matrix, with all the eigenvalues in the left half plane [21, 27]. 
Define the transformed vector 𝑔𝑔�(𝑡𝑡) = 𝑇𝑇−1𝑔𝑔(𝑡𝑡), where 𝑔𝑔�(𝑡𝑡) = �𝑔𝑔�(𝑡𝑡)[1]  𝑔𝑔�(𝑡𝑡)[2]𝑇𝑇�

𝑇𝑇
, 

with 𝑔𝑔�(𝑡𝑡)[1] = 𝑔𝑔�1(𝑡𝑡) and 𝑔𝑔�(𝑡𝑡)[2] = [𝑔𝑔�2(𝑡𝑡)⋯𝑔𝑔�𝑖𝑖(𝑡𝑡)]𝑇𝑇 . 

After applying transformation 𝑇𝑇 to (9), one obtains 

𝑔𝑔�(𝑡𝑡 + 𝜏𝜏) = [𝐼𝐼 + 𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝑇𝑇−1𝛼𝛼2𝛤𝛤𝑇𝑇]𝑔𝑔�(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)𝑇𝑇−1𝑁𝑁(𝑡𝑡) (10) 

or 

𝑔𝑔�(𝑡𝑡 + 𝜏𝜏)[1] = 𝑔𝑔�(𝑡𝑡)[1] + 𝛿𝛿(𝑡𝑡)𝑁𝑁(𝑡𝑡)[1] (11) 

𝑔𝑔�(𝑡𝑡 + 𝜏𝜏)[2] = [𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝛤𝛤∗]𝑔𝑔�(𝑡𝑡)2 + 𝛿𝛿(𝑡𝑡)𝑁𝑁(𝑡𝑡)[2] (12) 

where 𝑁𝑁(𝑡𝑡)[1]) and𝑁𝑁(𝑡𝑡)[2] are obtained from the vector 𝑇𝑇−1𝑁𝑁(𝑡𝑡) as its first and the 
remaining (𝑛𝑛 − 1) components, respectively, satisfying𝐸𝐸{𝑁𝑁(𝑡𝑡)[1]|𝐹𝐹𝑜𝑜} = 0 and 
𝐸𝐸{𝑁𝑁(𝑡𝑡)[2]|𝐹𝐹𝑜𝑜} = 0. It is possible to show that 𝑁𝑁(𝑡𝑡)[1] = 𝜋𝜋𝑁𝑁(𝑡𝑡) and 𝑁𝑁(𝑡𝑡)[2] =
𝑆𝑆𝑁𝑁(𝑡𝑡), where 𝜋𝜋 is the left eigenvector of 𝛼𝛼2𝛤𝛤 corresponding to the zero eigenvalue 

and 𝑆𝑆 the block matrix in the representation 𝑇𝑇−1 = �
𝜋𝜋
⋯
𝑆𝑆
�, with (dim𝑆𝑆 = (𝑛𝑛 − 1) ×

𝑛𝑛) (see [21]). 

Consequently, there exists a symmetric positive definite matrix 𝑅𝑅 such that the 
following Lyapunov equation is satisfied 
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𝛤𝛤∗𝑇𝑇𝑅𝑅 + 𝑅𝑅𝛤𝛤∗ = −𝑄𝑄 (13) 

where 𝑄𝑄 is a symmetric positive definite matrix. Define the following Lyapunov 
functions 𝑠𝑠(𝑡𝑡) = 𝐸𝐸{�𝑔𝑔�(𝑡𝑡)[1]�

2
} and 𝑣𝑣(𝑡𝑡) = 𝐸𝐸{𝑔𝑔�(𝑡𝑡)[2]𝑇𝑇𝑅𝑅𝑔𝑔�(𝑡𝑡)[2]}. 

Remark 2. The applied methodology of convergence analysis of stochastic 
consensus schemes based on the quadratic Lyapunov functions originates from 
[21]. This approach starts from the stability criteria of the underlying stochastic 
difference equations (11) and (12), and derives the convergence results w.p.1 and 
in the m.s.s. under appropriate assumptions. In this sense, the result of Theorem 2 
givenbelow becomes even more important, having in mind its potential application 
to the convergence rate analysis of the stochastic consensus schemes in general (not 
yet existing in literature) 

Starting from the adopted assumptions, we immediately obtain 

𝑠𝑠(𝑡𝑡 + 𝜏𝜏) ≤ 𝑠𝑠(𝑡𝑡) + 𝐶𝐶1𝛿𝛿(𝑡𝑡)2�1 + 𝑠𝑠(𝑡𝑡)� (14) 

where 𝐶𝐶1 > 0. 

On the other hand, 

𝑣𝑣(𝑡𝑡 + 𝜏𝜏)
= 𝐸𝐸 �𝑔𝑔�(𝑡𝑡)[2]𝑇𝑇𝐸𝐸�(𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝛤𝛤∗)𝑇𝑇𝑅𝑅(𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝛤𝛤∗)𝑔𝑔�(𝑡𝑡)[2]�ℱ𝑜𝑜��
+ 𝛿𝛿(𝑡𝑡)2𝐸𝐸{∥ 𝑁𝑁(𝑡𝑡) ∥2} 

For the linear term in 𝛿𝛿(𝑡𝑡) we have the following inequality 

𝐸𝐸�𝑔𝑔�(𝑡𝑡)[2]𝑇𝑇𝐸𝐸{𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝑄𝑄|ℱ𝑜𝑜}𝑔𝑔�(𝑡𝑡)[2]� ≥ 𝑐𝑐1min
𝑖𝑖
𝜆𝜆𝑖𝑖(𝑄𝑄) �max

𝑖𝑖
𝜆𝜆𝑖𝑖(𝑄𝑄)�

−1

𝑣𝑣(𝑡𝑡)   

≥ 𝑐𝑐3𝑣𝑣(𝑡𝑡), 

(0 < 𝑐𝑐3 < ∞), and for the quadratic term 

𝐸𝐸{𝑔𝑔�(𝑡𝑡)[2]𝑇𝑇𝛤𝛤𝑇𝑇𝐸𝐸{𝑥𝑥(𝑡𝑡)2𝑥𝑥(𝑡𝑡 − 𝜏𝜏)2|ℱ𝑜𝑜}𝑅𝑅𝛤𝛤𝑔𝑔�(𝑡𝑡)[2]} ≤ 𝑐𝑐4𝑣𝑣(𝑡𝑡). 

(0 < 𝑐𝑐4 < ∞). In such a way one obtains 

𝑣𝑣(𝑡𝑡 + 𝜏𝜏) ≤ (1 − 𝛿𝛿(𝑡𝑡)𝑘𝑘1)𝑣𝑣(𝑡𝑡) + 𝑘𝑘2𝛿𝛿(𝑡𝑡)2) (15) 

where 𝑘𝑘1 and 𝑘𝑘2 are positive constants [14]. 

Using the result of Huang and Manton [21], Theorem 11, (14) and (15) imply that 
𝑣𝑣(𝑡𝑡) tends to zero w.p.1 and in m.s.s., that sup𝑜𝑜𝑠𝑠(𝑡𝑡) < ∞ and that 𝑔𝑔�(𝑡𝑡)[1] tends to 
a finite random variable 𝑔𝑔�∞

[1]. According to [21], it follows that 𝑔𝑔�(𝑡𝑡) tends w.p.1 

and in the m.s.s. �𝑔𝑔�∞
[1]  0�

𝑇𝑇
, where 𝐸𝐸{𝑔𝑔�∞

[1]2} < ∞. Using the proof of Theorem 11 

in [21], one obtains that 𝑔𝑔(𝑡𝑡) tends to 𝑔𝑔�∞
[1]𝟏𝟏 w.p.1 and in m.s.s. ◻ 
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The following theorem is devoted to a modification of the general results from [17], 
Chapter 3, making them applicable to the formulation of the convergence rate of the 
gain correction algorithm. 

Theorem 2 (Convergence rate of the quadratic Lyapunov functions). Let 

𝑉𝑉(𝑡𝑡 + 1) ≤ [1 − 𝛿𝛿(𝑡𝑡)𝐴𝐴]𝑉𝑉(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)2𝐵𝐵 (16) 

where 𝑉𝑉(𝑡𝑡) ≥ 0, 𝐴𝐴 > 0, 𝐵𝐵 > 0, and 𝛿𝛿(𝑡𝑡) satisfies (A.2), with 

(A.7)𝛿𝛿(𝑜𝑜)−𝛿𝛿(𝑜𝑜+1)
𝛿𝛿(𝑜𝑜)𝛿𝛿(𝑜𝑜+1)

→𝑜𝑜→∞ 𝜀𝜀 > 0 

(A.8)∑ 𝛿𝛿𝑜𝑜 (𝑡𝑡)2(1−𝑑𝑑) < ∞ for some 𝑑𝑑 > 0. 

Then 𝑉𝑉(𝑡𝑡) = 𝑜𝑜(𝛿𝛿(𝑡𝑡)2𝑑𝑑). 

Remark 3. The result given above has its roots in the approach to the analysis of 
the convergence w.p.1 of stochastic approximation schemes from [17], Theorem 
3.1.1.. The above theorem is focused on quadratic Lyapunov function in order to 
achieve full compatibility with Theorem 1. 

Proof: From (16) we directly obtain 

𝑉𝑉(𝑜𝑜+1)
𝛿𝛿(𝑜𝑜+1)2𝑑𝑑

≤ � 𝛿𝛿(𝑜𝑜)
𝛿𝛿(𝑜𝑜+1)

�
2𝑑𝑑
�[1 − 𝛿𝛿(𝑡𝑡)𝐴𝐴] 𝑉𝑉(𝑜𝑜)

𝛿𝛿(𝑜𝑜)2𝑑𝑑
 + 𝛿𝛿(𝑡𝑡)2(1−𝑑𝑑)𝐵𝐵� (17) 

As 

� 𝛿𝛿(𝑜𝑜)
𝛿𝛿(𝑜𝑜+1)

�
2𝑑𝑑

= 1 + 2𝑑𝑑 𝛿𝛿(𝑜𝑜)−𝛿𝛿(𝑜𝑜+1)
𝛿𝛿(𝑜𝑜+1)

+ 𝑂𝑂 ��𝛿𝛿(𝑜𝑜)−𝛿𝛿(𝑜𝑜+1)
𝛿𝛿(𝑜𝑜+1)

�
2
� (18) 

one obtains 

𝑊𝑊(𝑡𝑡 + 1) ≤ [1 − 𝛿𝛿(𝑡𝑡)(𝐴𝐴 − 2𝑑𝑑𝜀𝜀)]𝑊𝑊(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)2(1−𝑑𝑑)𝐵𝐵 (19) 

where 𝑊𝑊(𝑡𝑡) = 𝑉𝑉(𝑡𝑡)/𝛿𝛿(𝑡𝑡)2𝑑𝑑, having in mind that 

𝑂𝑂��
𝛿𝛿(𝑡𝑡) − 𝛿𝛿(𝑡𝑡 + 1)

𝛿𝛿(𝑡𝑡 + 1) �
2

� (𝛿𝛿(𝑡𝑡)−1 − 𝐴𝐴) →
𝑜𝑜→∞

0 

2𝑑𝑑
𝛿𝛿(𝑡𝑡) − 𝛿𝛿(𝑡𝑡 + 1)

𝛿𝛿(𝑡𝑡 + 1)
(𝛿𝛿(𝑡𝑡)−1 − 𝐴𝐴) →

𝑜𝑜→∞
= −(𝐴𝐴 − 2𝑑𝑑𝜀𝜀). 

Therefore, according to [17], 𝑊𝑊(𝑡𝑡) tends to zero. Thus, the result follows. ◻ 

Theorem 3 (Convergence rate of the gain correction algorithm). Let 
assumptions (A.1)-(A.8) be satisfied. Then, the gain correction algorithm (6) 
converges to consensus at the rate 

∥ 𝑔𝑔�(𝑡𝑡)[2] ∥= 𝑜𝑜(𝛿𝛿(𝑡𝑡)𝑑𝑑) (20) 

Proof: Direct application of Theorem 2 gives directly that 𝑔𝑔�(𝑡𝑡)[2]/𝛿𝛿(𝑡𝑡)𝑑𝑑 converges 
to zero in the m.s.s. (compare (19) and (15)). In order to prove convergence w.p.1, 
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one has simply to take into account that 𝑁𝑁(𝑡𝑡) is a martingale difference process with 
bounded 𝐸𝐸{∥ 𝑁𝑁(𝑡𝑡 ∥2}. Application of Theorem B.6.1 from [17] leads to the 
conclusion that ∑ 𝛿𝛿∞

𝑜𝑜=1 (𝑡𝑡)1−𝑑𝑑𝑁𝑁(𝑡𝑡) < ∞ if ∑ 𝛿𝛿∞
𝑜𝑜=1 (𝑡𝑡)2(1−𝑑𝑑) < ∞, as it is assumed 

by Theorem 2. Therefore, we can apply Theorem 3.1.1. from [17] to (6) and 
conclude that ∥ 𝑔𝑔�(𝑡𝑡)[2] ∥= 𝑜𝑜(𝛿𝛿(𝑡𝑡)𝑑𝑑) w.p.1.◻ 

Remark 4. The practical meaning of the above theorems becomes clearer in the 
case when 𝛿𝛿(𝑡𝑡) = 1/𝑡𝑡𝜇𝜇 , 𝜇𝜇 ∈ (0.5,1]. Sufficient conditions for convergence of 𝑊𝑊(𝑡𝑡) 
are then  𝐴𝐴 − 2𝑑𝑑𝜀𝜀 > 0 and 1/𝑡𝑡2𝛽𝛽(1−𝑑𝑑) < ∞, implied by 𝑑𝑑 < 1 − 1

2𝜇𝜇
. For 𝜇𝜇 = 1 

(which is the maximal value) one obtains 𝑑𝑑 < 0.5. The convergence rate decreases 
to 0.5 when 𝜇𝜇 decreases; for 𝜇𝜇 = 0.5 convergence cannot be guaranteed. In the 
case when 𝛿𝛿(𝑡𝑡) = 1/𝑡𝑡𝜇𝜇  we have ∥ 𝑔𝑔�(𝑡𝑡)[2] ∥= 𝑜𝑜(1/𝑡𝑡𝜇𝜇𝑑𝑑). 

4 Offset Correction 

The basic local algorithm for offset correction results from the general idea from 
[14, 15] 
𝑏𝑏�𝑖𝑖(𝑡𝑡 + 1) = 𝑏𝑏�𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖

𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡) (21) 

where 𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝑦𝑦𝑖𝑖(𝑡𝑡) + 𝑏𝑏�𝑖𝑖(𝑡𝑡) + 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝑦𝑦𝑖𝑖(𝑡𝑡) − 𝑏𝑏�𝑖𝑖(𝑡𝑡), 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡) 
representing the communication noise when sending �̂�𝑧𝑖𝑖(𝑡𝑡) = 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝑦𝑦𝑖𝑖(𝑡𝑡) + 𝑏𝑏�𝑖𝑖(𝑡𝑡) 
from node 𝑗𝑗 to node 𝑖𝑖;oneassumes 𝑏𝑏�𝑖𝑖(0) = 0 [14, 15]. The corrected offsets𝑓𝑓𝑖𝑖(𝑡𝑡) =
𝛽𝛽𝑖𝑖𝑎𝑎�𝑖𝑖(𝑡𝑡) + 𝑏𝑏�𝑖𝑖(𝑡𝑡) are given by 

𝑓𝑓𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 �𝑓𝑓𝑖𝑖(𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝑡𝑡)� + 𝛿𝛿(𝑡𝑡)[𝑥𝑥(𝑡𝑡)+ 

𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁𝑖𝑖
𝑖𝑖𝑖𝑖 �𝑔𝑔𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝑡𝑡)� + 𝛿𝛿(𝑡𝑡)[𝑛𝑛𝑖𝑖(𝑡𝑡) + 𝜈𝜈𝑖𝑖(𝑡𝑡)] (22) 

where 𝑛𝑛𝑖𝑖(𝑡𝑡) is defined above and 𝜈𝜈𝑖𝑖(𝑡𝑡) = 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝜁𝜁𝑖𝑖(𝑡𝑡) − 𝑎𝑎�𝑖𝑖(𝑡𝑡)𝜁𝜁𝑖𝑖(𝑡𝑡) + 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡). 

The overall global model at the network levelis given by 

𝑓𝑓(𝑡𝑡 + 1) = (𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛤𝛤)𝑓𝑓(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)𝐺𝐺(𝑡𝑡)𝑔𝑔�(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)𝑀𝑀(𝑡𝑡) (23) 

where𝑓𝑓(𝑡𝑡) = [𝑓𝑓1(𝑡𝑡) …𝑓𝑓𝑖𝑖(𝑡𝑡)]𝑇𝑇 ,𝐺𝐺(𝑡𝑡) = [𝑥𝑥(𝑡𝑡)𝐼𝐼 + 𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝛼𝛼𝛽𝛽]𝛤𝛤, 𝛽𝛽 =
diag{𝛽𝛽1 ⋯𝛽𝛽𝑖𝑖},      𝑀𝑀(𝑡𝑡) = [𝑚𝑚1(𝑡𝑡)⋯𝑚𝑚𝑖𝑖(𝑡𝑡)]𝑇𝑇, 𝑚𝑚𝑖𝑖(𝑡𝑡) = 𝑛𝑛𝑖𝑖(𝑡𝑡) + 𝜈𝜈𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1, … ,𝑛𝑛. 

Theorem 4 (Convergence of the offset correction algorithm). Let the 
assumptions of Theorems 1 and 3 be satisfied, and let 

(A.9) ∑ 𝛿𝛿𝑘𝑘 (𝑘𝑘)𝑜𝑜(𝛿𝛿(𝑘𝑘)𝑑𝑑) < ∞. 

Then, 𝑓𝑓(𝑡𝑡) generated by (23) converges to 𝑤𝑤′𝟏𝟏, where 𝑤𝑤′ is a random variable 
(𝐸𝐸{(𝑤𝑤′)2} < ∞). 
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Remark 5. The above theorem shows an important fact that convergence of the 
corrected offsets to consensus cannot be always obtained. It is important, however, 
that this fact does not represent a serious limitation for practice. 

Proof:As in Theorem 1, at the first step we introduce a transformation 𝑇𝑇′ =
�𝟏𝟏  𝑇𝑇′𝑖𝑖×(𝑖𝑖−1)�, where span�𝑇𝑇′𝑖𝑖×(𝑖𝑖−1)� = span(𝛤𝛤), i.e. 

(𝑇𝑇′)−1Γ𝑇𝑇′ = �
0 ⋮ 01×(𝑖𝑖−1)

0(𝑖𝑖−1)×1 ⋮ Γ′
� 

where 𝛤𝛤′ is Hurwitz [21]. After applying transformation 𝑇𝑇′ to (23), we obtain 

𝑓𝑓(𝑡𝑡 + 1)[1] = 𝑓𝑓(𝑡𝑡)[1] + 𝛿𝛿(𝑡𝑡)�𝐺𝐺(𝑡𝑡)[1]𝑔𝑔�(𝑡𝑡)[2] + 𝑀𝑀(𝑡𝑡)[1]� (24) 

𝑓𝑓(𝑡𝑡 + 1)[2] = (𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛤𝛤′)𝑓𝑓(𝑡𝑡)[2] + 𝛿𝛿(𝑡𝑡)�𝐺𝐺(𝑡𝑡)[2]𝑔𝑔�(𝑡𝑡)[2] + 𝑀𝑀(𝑡𝑡)[2]�. (25) 

where 𝐺𝐺(𝑡𝑡)[1] and 𝐺𝐺(𝑡𝑡)[2] are 1 × (𝑛𝑛 − 1) and (𝑛𝑛 − 1) × (𝑛𝑛 − 1) matrices 
obtained from 

(𝑇𝑇′)−1Γ𝑇𝑇 = �
0 ⋮ 𝐺𝐺(𝑡𝑡)[1]

0(𝑖𝑖−1)×1 ⋮ 𝐺𝐺(𝑡𝑡)[2]� 

a) We shall first analyze (25) using the methodology derived from [17], Chapter 3. 
It is possible to start from Theorem 3.1.1 in [17] and to verify that: a) 
𝐺𝐺(𝑡𝑡)[2]𝑔𝑔�(𝑡𝑡)[2] → 0 as 𝑡𝑡 → ∞ and b) 𝐸𝐸�∥ 𝑀𝑀(𝑡𝑡)[2] ∥2� < ∞, so that ∑ 𝛿𝛿𝑜𝑜 (𝑡𝑡)2𝐸𝐸{∥
𝑀𝑀(𝑡𝑡)[2] ∥2} < ∞, implying further that ∑ 𝛿𝛿𝑜𝑜 (𝑡𝑡)𝑀𝑀(𝑡𝑡)[2] < ∞ (according to 
Theorem B.6.1 in [17]). By direct inspection we realize that the assumptions of 
Theorem 3.1.1 are satisfied and that 𝑓𝑓(𝑡𝑡)[2] tends to zero w.p.1. 

b) Analysis of (24) does not follow strictly the lines of the general arguments from 
[17]. However, a direct insight shows that 

𝑓𝑓(𝑡𝑡 + 1)[1] = 𝑓𝑓(0)[1] + ∑ 𝛿𝛿𝑘𝑘 (𝑘𝑘)𝐺𝐺(𝑘𝑘)[1]𝑔𝑔�(𝑘𝑘)[2] + ∑ 𝛿𝛿𝑘𝑘 (𝑘𝑘)𝑀𝑀(𝑘𝑘)[1], (26)  

For the second term we have 

∥ �𝛿𝛿
𝑘𝑘

(𝑘𝑘)𝐺𝐺(𝑘𝑘)[1]𝑔𝑔�(𝑘𝑘)[2] ∥≤ 𝑘𝑘3�𝛿𝛿
𝑘𝑘

(𝑘𝑘)𝑜𝑜(𝛿𝛿(𝑘𝑘)𝑑𝑑), 

𝑘𝑘3 > 0. Boundedness of this term is ensured by (A.7). For the third term we 
conclude that 𝐸𝐸{∥ 𝑀𝑀(𝑘𝑘)[1] ∥2} is bound and (A.2) holds; it follows, using again 
Theorem B.6.1 from [17], that ∥ ∑ 𝛿𝛿𝑘𝑘 (𝑘𝑘)𝑀𝑀(𝑘𝑘)[1] ∥ < ∞. As a consequence, there 
exists a random variable 𝑓𝑓∞

[1] (as in the case of Theorem 1) such that lim 𝑜𝑜→∞ = 𝑓𝑓∞
[1] 

w.p.1. 

Thus, the result follows.◻ 

Remark 6. It is clear that in the standard case when 𝛿𝛿(𝑡𝑡) = 1/𝑡𝑡𝜇𝜇 , 0.5 < 𝜇𝜇 ≤ 1, 
(A.9) becomes 1

𝑜𝑜𝜇𝜇+𝑑𝑑
< ∞; this inequality can be easily fulfilled in practice for a 
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given 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑑𝑑, by choosing 𝜇𝜇 close enough to 1. This is an example of how the 
above analysis can be applied to predict the algorithm behaviour in practice. 
However, one should bear in mind that all the above results are based on sufficient 
conditions, depending to a great extent on the chosen methodology of analysis and 
operating conditions. 

Convergence rate of the offset correction algorithm will be formulated using the 
second recursion (25) for the transformed variables, having in mind the existence 
of an additional exogenous term resulting from the gain correction recursion. 
Therefore, we shall apply Theorem 3.1.1 from [17] in its original form, dealing with 
the convergence w.p.1. 

Theorem 5 (Convergence rate of the offset correction algorithm). Let 
assumptions (A.1) - (A.9) be satisfied. Then ,�𝑓𝑓(𝑡𝑡)[2]� = 𝑜𝑜(𝛿𝛿(𝑡𝑡)𝑑𝑑) w.p.1. 

Proof: The methodology is based on a modification of the approach in Theorem 2. 
We first have for 𝑡𝑡 large enough that 

𝑓𝑓(𝑡𝑡 + 1)[2]

𝛿𝛿(𝑡𝑡 + 1)𝑑𝑑 = �
𝛿𝛿(𝑡𝑡)

𝛿𝛿(𝑡𝑡 + 1)�
𝑑𝑑

�
1

𝛿𝛿(𝑡𝑡)𝑑𝑑
(𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛤𝛤′)𝑓𝑓(𝑡𝑡)[2] + 

+𝛿𝛿(𝑡𝑡)�𝐺𝐺(𝑡𝑡)[2]𝑔𝑔�(𝑡𝑡)[2] + 𝑀𝑀(𝑡𝑡)[2]�� (27) 

After applying consecutively the steps analogous to those in the proof of Theorem 
2, we obtain 

ℎ(𝑡𝑡 + 1) = [𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛤𝛤′]ℎ(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)�𝐺𝐺(𝑡𝑡)[2]𝑔𝑔�(𝑡𝑡)[2] + 𝑀𝑀(𝑡𝑡)[2]� (28) 

where ℎ(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)[2]/𝛿𝛿(𝑡𝑡)𝑑𝑑. As𝛤𝛤′ is Hurwitz and (A.8) holds, 𝐸𝐸{∥ 𝑀𝑀(𝑡𝑡)[2] ∥2} <
∞ and the proposition of Theorem 3 holds. Therefore, we can apply Theorem 3.1.1 
from [17] and directly conclude that ℎ(𝑡𝑡) tends to zero w.p.1. Thus, the result 
follows.◻ 

5 Calibration with Reference 

A modification of the basic algorithm is obtained when one fixed sensor (e.g., 
sensor 𝑘𝑘) is preliminarily micro-calibrated using the fixed values 𝑎𝑎�𝑘𝑘 and 𝑏𝑏�𝑘𝑘 ; 
practical importance of such a modification has been pointed out in [14,15,16]. 
Formally, we have the relations 𝑎𝑎�𝑘𝑘(𝑡𝑡 + 1) = 𝑎𝑎�𝑘𝑘(𝑡𝑡) = 𝑎𝑎�𝑘𝑘 and 𝑏𝑏�𝑘𝑘(𝑡𝑡 + 1) = 𝑏𝑏�𝑘𝑘(𝑡𝑡) =
𝑏𝑏�𝑘𝑘 for some 𝑘𝑘 (we say that the network is pinned to node 𝑘𝑘).Assuming that the 
sensor parameters 𝛼𝛼𝑘𝑘 and 𝛽𝛽𝑘𝑘 are known (e.g., as a consequence of the micro-
calibration done preliminarily for sensor 𝑘𝑘), we also have 𝑔𝑔𝑘𝑘(𝑡𝑡 + 1) = 𝑔𝑔𝑘𝑘(𝑡𝑡) =
𝑔𝑔𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑎𝑎�𝑘𝑘 and 𝑓𝑓𝑘𝑘(𝑡𝑡 + 1) = 𝑓𝑓𝑘𝑘(𝑡𝑡) = 𝑓𝑓𝑘𝑘 = 𝛽𝛽𝑘𝑘𝑎𝑎�𝑘𝑘 + 𝑏𝑏�𝑘𝑘. We will show below that 
under these conditions the proposed calibration algorithms (9) and (23) ensure 
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convergence of all the corrected gains and offsets exactly as desired to the given 
reference values 𝑔𝑔𝑘𝑘 and 𝑓𝑓𝑘𝑘. 

Assume without loss of generality that 𝑘𝑘 = 1 and 𝑔𝑔𝑘𝑘 = 𝑔𝑔. Then, (9) gives, after 
simple technical transformations, 

𝑟𝑟(𝑡𝑡 + 𝜏𝜏) = [𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝛼𝛼�2𝛤𝛤�]𝑟𝑟(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)𝑁𝑁�(𝑡𝑡) (29) 

where 𝑟𝑟(𝑡𝑡) is an (𝑛𝑛 − 1)-vector defined as 𝑟𝑟(𝑡𝑡) = �̅�𝑔(𝑡𝑡) − 𝑔𝑔𝟏𝟏, with �̅�𝑔(𝑡𝑡) =
[𝑔𝑔2(𝑡𝑡)⋯𝑔𝑔𝑖𝑖(𝑡𝑡)]𝑇𝑇 , while 𝛼𝛼�2 and 𝛤𝛤� are (𝑛𝑛 − 1) × (𝑛𝑛 − 1) matrices obtained from 
𝛼𝛼2 and 𝛤𝛤 after deleting their first row and the first column; (𝑛𝑛 − 1)-vector 𝑁𝑁�(𝑡𝑡) =
[𝑁𝑁2(𝑡𝑡)⋯𝑁𝑁𝑖𝑖(𝑡𝑡)]𝑇𝑇  is obtained from 𝑁𝑁(𝑡𝑡) after deleting its first component. 
Convergence properties of the recursion (29) can be easily analyzed by applying the 
methodology of Theorem 1, in relation with the recursion for 𝑔𝑔�(𝑡𝑡)[2] in (12). 
Namely, it is possible to show that the matrix 𝛼𝛼�2𝛤𝛤� is Hurwitz, making possible 
direct application of the procedure used in Theorem 1 for analysing the Lyapunov 
function 𝑣𝑣(⋅) (having in mind that 𝛤𝛤� is quasi-diagonally dominant and therefore 
Hurwitz [28]). Consequently, we have: 

Theorem 6 (Convergence to the reference gain). Let the assumptions (A.1) - (A.6) 
be satisfied and let node 1 be a center node of 𝑡𝑡ℎ𝑣𝑣 𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔ℎ 𝒢𝒢. Then r(𝑡𝑡) generated 
by (29) tends to zero w.p.1 and in the m.s.s. for any given value of the reference 𝑔𝑔. 

In the same way we have a modification of Theorem 3, dealing with the 
corresponding rate of convergence: 

Theorem 7 (Convergence rate to the reference gain) Let assumptions (A.1)-(A.8) 
be satisfied and let node 1 be a center node of 𝑡𝑡ℎ𝑣𝑣 𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔ℎ 𝒢𝒢.  Then, r(𝑡𝑡) generated 
by (29) converges to zero w.p.1 at the rate ∥ 𝑟𝑟(𝑡𝑡) ∥= 𝑜𝑜(𝛿𝛿(𝑡𝑡)𝑑𝑑) 

Similarly as in the case of gain correction in the last subsection, we can start from 
(23) and obtain for 𝑓𝑓1 = 𝑓𝑓 the following recursion for offset correction 

𝑠𝑠(𝑡𝑡 + 1) = [𝐼𝐼 + 𝛿𝛿(𝑡𝑡)𝛤𝛤�]𝑠𝑠(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)�̅�𝐺(𝑡𝑡)s(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)𝑀𝑀�(𝑡𝑡) (30) 

where s(𝑡𝑡) is an (𝑛𝑛 − 1)-vector defined as 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(̅𝑡𝑡) − 𝑓𝑓𝟏𝟏, with 𝑓𝑓(̅𝑡𝑡) =
[𝑓𝑓2(𝑡𝑡)⋯𝑓𝑓𝑖𝑖(𝑡𝑡)]𝑇𝑇, �̅�𝐺(𝑡𝑡) is an (𝑛𝑛 − 1) × (𝑛𝑛 − 1) matrix obtained from 𝐺𝐺(𝑡𝑡) by 
deleting its first row and its first column, while 𝑀𝑀�(𝑡𝑡) is an (𝑛𝑛 − 1)-vector obtained 
from 𝑀𝑀(𝑡𝑡) bydeleting its first element. Theorem 4 can be directly applied in the 
following way: 

Theorem 8 (Convergence to the reference offset). Let assumptions (A.1)-(A.9) 
hold and let node 1 be a center node of 𝑡𝑡ℎ𝑣𝑣 𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔ℎ 𝒢𝒢. Then, 𝑠𝑠(𝑡𝑡) tends to zero w.p.1. 
for any given value of the reference 𝑓𝑓. 

The proof follows from the proof of Theorem 4. Notice here only that the rate of 
convergence of (29) defined by Theorem 7 is not a prerequisite for obtaining the 
result of Theorem 8. Additional restrictions related to the behaviour of (24) in 
Theorem 4 do not exist in the case of calibration with reference. 
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Convergence rate for the corrected offset follows simply from Theorem 5. 

Notice here only that the results of this section have great practical implications: a 
combination of the micro calibration procedure of a selected sensor and the 
distributed blind macro calibration algorithm applied to the network pinned to the 
same sensor seems to be a practically very efficient tool for macro calibration of 
large sensor networks. Some simulation results will be presented below. 

6 Simulation Results 

In spite of the fact that the paper has a predominantly theoretical character, some 
simulation results are presented in order to provide a reader with a feeling about 
noise immunity and achievable performance of the analyzed distributed macro-
calibration algorithm in the case of stochastic disturbances. The role of the 
numerical results in the paper is, in fact, to provide an illustration of the functioning 
of the algorithm in the presence of communication and measurement noise, rather 
than to directly validate the main theoretical results related to the convergence rate. 
This is clear from the character of the main theoretical results themselves. Also, one 
should bear in mind that we are dealing in this paper with the asymptotic 
convergence rate, which is characterized by the asymptotic mean square value of 
the error, and cannot be directly observed through finite time transients w.r.t. the 
initial conditions (the form of these transients represents a completely different 
phenomenon). 

In order to make the computational aspects of the algorithm more transparent, 
Algorithm 1 below is introduced, containing a corresponding pseudo-code which 
can be easily programmed using any language (the results given below are obtained 
using a Matlab program directly derived from Algorithm 1). The given pseudo code 
represents also a nucleus for any type of real-time implementation. 

ALGORITHM 1: Computation of the calibration parameters 

Initial values𝑎𝑎�𝑖𝑖(0), 𝑏𝑏�𝑖𝑖(0),𝑍𝑍𝑖𝑖(0), step sizes𝛿𝛿(𝑡𝑡), 𝑡𝑡 ≥ 0, weights 𝛾𝛾𝑖𝑖𝑖𝑖  

Initialize the iteration counter 𝑡𝑡← 0 

Repeat 

For all  𝒊𝒊 ∈ 𝓝𝓝 do 

            Observe measurements 𝛥𝛥𝑦𝑦𝑖𝑖(𝑡𝑡)and 𝑦𝑦𝑖𝑖(𝑡𝑡) according to (1) and (3) 

            Compute 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡)and �̂�𝑧𝑖𝑖(𝑡𝑡) using (5) and (21) 

            Send 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡)and �̂�𝑧𝑖𝑖(𝑡𝑡) to all the nodes 𝑗𝑗 ∈ 𝒩𝒩𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜  

            Get data 𝛥𝛥�̂�𝑧𝑖𝑖(𝑡𝑡) + 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡) and �̂�𝑧𝑖𝑖(𝑡𝑡) + 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡) from all 𝑗𝑗 ∈ 𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖  
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            Update  𝑎𝑎�𝑖𝑖(𝑡𝑡 + 𝜏𝜏) ← 𝑎𝑎�𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 𝛥𝛥𝜀𝜀𝑖𝑖,𝑖𝑖𝛥𝛥 (𝑡𝑡)𝑍𝑍𝑖𝑖(𝑡𝑡) using (7) 

            Update  𝑏𝑏�𝑖𝑖(𝑡𝑡 + 1) ← 𝑏𝑏�𝑖𝑖(𝑡𝑡) + 𝛿𝛿(𝑡𝑡)∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩𝑖𝑖
𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡) using (21) 

end for 

      Update the iteration countert←t+1 

Until convergence 

It is obvious that the algorithm is extremely simple, requiring a small number of 
operations and small memory, and, thus, allowing implementation by using very 
cheap processing units. 

Some basic properties of the proposed algorithm are illustrated by Monte Carlo 
simulations related to a sensor network with ten nodes, under the presence of both 
communication and measurement noise. Digraphs satisfying (A.1) and parameters 
𝛾𝛾𝑖𝑖𝑖𝑖 have been selected at random, as well as the local sensor parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 
about one and zero, respectively, with standard deviations 0.2. The signal 𝑥𝑥(𝑡𝑡) 
(supposed to be unknown) has been generated by a second order ARMA process, 
with standard deviation 1. It has been adopted that the step size is defined by the 
decreasing function 𝛿𝛿(𝑡𝑡) = 𝑘𝑘/𝑡𝑡𝜇𝜇, 𝜇𝜇 ∈ (0.5,1]. 

Figure 1 corresponds to the gain correction alone (offset is set to zero), with k=0.1 
and 𝜇𝜇 = 0.6, and noise standard deviation equal to 0.3. Figure 1a) is obtained by 
the algorithm with the instrumental variables defined above; the quality of the 
estimates is evidently high. It is obvious that the algorithm can handle the 
measurement noise efficiently. Figure 1b) illustrates the situation in which the 
instrumental variables are not applied (noisy gradient is applied directly); the 
corrected gains diverge, as a consequence of the correlated noise terms. Figure 2a) 
shows the behavior of the algorithm in the case when the network is pinned to node 
1 (𝑔𝑔1 = 1 is taken as a reference). Convergence is visible, but the initial 
convergence rate is lower than in the case of the maximal number of degrees of 
freedom in adjusting calibration parameters (see also [14, 15, 16]). 

  
a) b) 

Figure 1 
Corrected gains: a) algorithm with instrumental variables, b) gradient scheme 
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a) b) 

Figure 2 
a) corrected gains (node 1 taken as a reference), b) corrected offsets 

  
a) b) 

Figure 3 
Simultaneously corrected gains and offsets: a) low level noise, b) high level noise 

 
Figure 4 

Simultaneously corrected gains and offsets: high-level noise, node 1 taken as reference 
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Figure 2b) corresponds to offset correction, when the corrected gain is fixed to one, 
under the same noise characteristics as in the case of Figure 1. 

Simultaneous correction of both gains and offsets is theoretically in the focus of the 
whole paper. Figure 3a) corresponds to this situation, under the same noise 
characteristics as in the case of Figure 1. The estimation quality is high in spite of 
the noise presence. In Figure 3b) the noise standard deviation is increased ten times 
w.r.t. the conditions related to Figure 3a). The estimation quality is still completely 
acceptable, although the noise level surpasses all that can be expected in reality 
(having in mind the signal level). Figure 4 depicts the situation corresponding to 
Figure 3b), but when node 1 is taken as a reference. Notice that the estimates can 
be additionally smoothed by choosing parameters k and 𝜇𝜇, but then the convergence 
rate may become much lower. 

The highly acceptable character of the estimates in Figures 3 and 4 is a consequence 
of an achieved high asymptotic convergence rate in the theoretical sense. 

Conclusion 

In this paper, the distributed blind macro-calibration algorithm based on consensus 
proposed in [14, 15] is analysed in detail in the case of the presence of 
communication and measurement noise; the existing literature covers the 
convergence properties of this algorithm only partially, e.g. [15, 21]. 

The main original contribution of the paper is the formulation of the asymptotic 
convergence rate of the algorithm for gain correction, not yet existing in the 
literature. Convergence analysis of the gain correction parameters is done at the first 
step, showing that under very general conditions the corrected gains become 
asymptotically equal w.p.1and in the m.s.s. The expression for the convergence 
rateof the gain correction algorithm is derived using the general results of H.F. 
Chen in [17], adapted in an original way to the application to quadratic Lyapunov 
functions, The obtained formulation of the convergence rate of the gain correction 
algorithm enables obtaining a proof of convergence w.p.1 of the offset correction 
algorithm, including the formulation of the corresponding convergence rate. To our 
knowledge, such a result is not available in the literature. 

The paper also contains an extension of the obtained general results to the case when 
the observed sensor network contains a reference node. An original proof is 
provided that the corrected gains and offsets converge in this case to the given 
reference values (under very general conditions). 

A number of simulation results serve as an illustration of the typical behaviour of 
the proposed calibration algorithm under stochastic disturbances. 

Further research could be directed to the generalization of the obtained results to 
more general sensor models involving nonlinearities; this is especially important in 
the case of the existence of a reference node, having in mind that the error due to 
nonlinearities may prevent ideal convergence to consensus. As stated above, it 
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would be a challenge to apply the methodology used in the paper to the convergence 
rate analysis of the calibration algorithms proposed earlier in [9-12]. 
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