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Abstract: The goal of this paper is to establish the best values for evolutionary algorithm 
main parameters. To do this, a real coded algorithm is tested on Rosenbrock, Schwefel and 
Rastrigin functions. Different genetic operators' implementation ways are described. Several 
numbers of variables have been analyzed. An original software tool has been developed in a 
Matlab environment. The most complex three mathematical test functions have been 
implemented within the software tool; these functions are considered as ideal for studying 
the behaviour of the algorithm. The settings established are crucial in the optimal power 
flow computing and the transmission network expansion planning, by means of EA 
techniques.  

Keywords: evolutionary algorithm; test function; crossover rate; mutation rate; random 
mutation; variable step mutation 

1 Introduction 

A great amount of attention is paid to Evolutionary Algorithms (EAs) for engineering 
problem-solving. These algorithms are defined in [1] as population-based 
meta-heuristic optimization algorithms, having genetics-inspired mechanisms to 
iteratively refine a set of solution candidates. While the solutions obtained are 
evaluated according to traditional methods, EAs eliminate complex mathematical 
computations. Evolutionary Algorithms include the following categories: genetic 
algorithms (GAs), evolutionary programming (EP) and evolutionary strategies 
(ESs). The GAs usually use binary digit arrays, whereas the ESs, decimal variable 
arrays. However, the GAs variables are coded as decimal numbers in several papers. 

The main concepts that have been adapted from genetics can be described as follows: 

Concept Meaning in genetics Mathematical optimization 
Phenotype Set of visible features of an individual; 

these features are developed on hereditary
basis under environmental constraints; 

A possible solution; 
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Concept Meaning in genetics Mathematical optimization 
Genotype Set of hereditary proprieties of an 

organism. Also referred to as a 
chromosome; 

A set of variables, put in a form 
that can be easy processed by the 
optimization algorithm. usually 
represented as an array;  

Phenome A group of all phenotypes that define an 
organ or an organism; 

Solution space; 

Genome The group of all different chromosomes; Search space; 
Gene The basic unit of a chromosome, which 

carries the hereditary properties; 
A decimal or binary variable;  

Locus The position of a gene in a chromosome; The variable position within 
an array; 

Alela One of the forms a gene can take; The variable value; 
Population A set of chromosomes; A small number of variable 

sets generated or selected from 
the search space; 

Generation A population with members of same age. The population on which the 
genetic operators are applied 
during iteration. 

Special interest in this kind of optimization methods has been shown in the field 
of electrical power engineering. A binary coded genetic algorithm for optimal 
power flow (OPF) is described in [2], based on the FACTS device control (Flexible 
Alternative Current Transmission Systems). Good results have been obtained for 
the IEEE14 test power system. [3] describes a binary GA that uses both continuous 
(real power and bus voltage) and discrete variables (transformer tap ratio) to solve the 
OPF. The algorithm is tested on IEEE30 and IEEE_3Area_96 systems. [4] proposes 
a new GA initialization procedure used to determine the OPF. This procedure relies 
on a voltage grading technique. The OPF problem is also discussed in [5], taking 
in to account multiple contingencies. A cost efficient OPF method is presented in 
[6], where the EA uses an adaptive mutation rate. The results refer to the IEEE30 
test system, as well as to two real power systems. In [7], the Matlab-integrated genetic 
algorithm toolbox is used to solve the OPF. The results for the IEEE30 test system 
are compared to the ones arrived at by means of a particle swarm optimization (PSO) 
algorithm. 

Kazemi et al. [8] put forward a method based on a decimal evolutionary algorithm, 
to solve the transmission network expansion planning (TNEP). The algorithm has 
been tested on a modified 6-bus Garver system. In [9], a GA is employed to determine 
the optimal expansion plan taking into consideration the power loss minimization 
and the total investment cost for the Azerbaijani power grid. In [10], a method for 
static TNEP, under deregulation, is presented. The method is based on a GA and a 
fuzzy decision-making procedure. An improved version of this method, which can 
deal with dynamic TNEP, is provided in [11]. For the short-term TNEP, a GA 
combined with a hill-climbing technique is discussed in [12]. Hill-climbing is 
used for mutation and leads to faster convergence. In [13] and [14], the Pareto 
dominance is applied to compare the solutions of a multi-objective GA for TNEP. 
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In [15], the transmission expansion is solved in relation to load uncertainty, with 
the help of scenario-based GA. 

The generation expansion planning (GEP) is also approached using EAs. In [16], the 
expansion of thermal power plants is discussed taking into account the emissions 
and their long-term effects. The algorithm is a combination of GA and Bender’s 
decomposition method. in [17] and [18], Murugan et al. apply an NSGA-II 
(non-dominated sorting genetic algorithm) to solve the GEP for the IEEE30 system. 
The distribution network expansion is approached by Wang in [19], [20]. 

The goal of this paper is twofold: to analyze the behaviour of EAs and to determine 
the optimal values of the main parameters (e.g. population size, mutation and 
crossover ratios, etc.). The results will be employed in OPF computing and in 
TNEP, by means of EA techniques. The real coded algorithm is tested on three 
multiple variable functions: Schwefel, Rastrigin and Rosenbrock. Section 2 describes 
the implementation of the algorithm. The results are then discussed in section 3. 

2 Evolutionary Algorithm (EA) for Test Functions 

The flow chart of the proposed EA is presented in Fig. 1. Basically, the algorithm 
starts from a randomly generated initial population, which becomes the current 
population for the first iteration (first generation). The genetic operators are applied 
within each iteration for the current population. The computation process finishes 
when at least one of the stopping criteria has been fulfilled. In what follows, every 
step presented in Fig. 1 is described in detail. 

 
Figure 1 

Evolutionary algorithm flow chart 
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2.1 Variable encoding 

The variables are stored within a structure called chromosome, which is represented 
as an array. Each variable, whether discrete or continuous, occupies a number of 
elements from the array (these elements are called genes). If binary representation 
is used, then the number of genes for each variable is set according to the function 
domain and the desired precision. In this paper, real representation is used, so 
every gene represents a variable. The chromosome can be represented as the set 

1 2{ , ,..., }dx x xx , where d stands for the number of variables. Fig. 2 shows an 

example of such a chromosome, used to optimize the Schwefel function with six 
variables. According to [21], this function can take any number of variables and is 
defined within the [-500; 500] interval. 

 
Figure 2 

Chromosome structure example 

2.2 Population size and initial population 

Several chromosomes (individuals) form the population. A t moment population is 
called a generation, where t stands for the generation counter. The population size nc, 
which is considered as fixed during one run of the algorithm, is one of the parameters 
that are studied within this paper. The initial population x0 is determined using Eq. (1).  

0 ( ) 1,2,...,,
,

[0;1], uniform at 1,2,...,,

    

 

x x a x i nmax min i j min c
i j

a random j di j

x
 (1) 

As it can be seen from Eq. (1), the initial population has a uniform random distribution 
between the domain limits [xmin; xmax] and is generated without other constraints. 
It may be necessary to consider several constraints when generating the initial 
population, so that the algorithm starts from a set of feasible solutions. 

2.3 Evaluation and selection  

The function value is evaluated for each chromosome within the population. Thus, for 
each xi array, there will be a ( )f fi  xi  value. In engineering, most of the optimization 

problems are minimization problems, the smallest fi value being the best.  

Selection ensures that the best fitted individuals have a chance to produce offsprings 
for the next generation, but it also offers a small chance to the others to be selected 
as well. The individuals are first selected according to the function values and then 
copied in a buffer matrix called the mating pool (MP). Three selection types have 
been implemented: tournament, truncation and ranking. 

Truncation selection is very easy to apply. The corresponding parameter is the 
survival rate  and it represents the population percentage that will be selected for 
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reproduction. This parameter is conventionally inputted as a number between 0 and 1 
(e.g. 0.5 represents half of the population). If the survival rate is low (e.g. 0.25), 
there is a risk of losing diversity and if it is high (e.g. 0.75), convergence may be slow.  

The stages of this selection are the following:  
 the population is sorted ascending according to the function values;  
 the best n nsel c    chromosomes are copied in the mating pool;  

 copies of these chromosomes are made until the mating pool is full (the number 
of chromosomes in the mating pool equals nc).  

Given that the truncation selection is an iterative process, the following relations 
may be established for iteration k: 

( ) min{ ( )} 1,2,..., 1 ,

1 1, 2,...,

1 \

   

  

 

k kf f i n ksel i c
k k k k nsel sel

k k k
sel

x x

MP MP x

P P x

 (2) 

Tournament selection finds the fittest individual in a small group randomly selected 
from the current population. The parameter ncomp designates the number of competitors 
(the size of the group of chromosomes to be compared).  

This is an iterative process, which comprises the following stages: 
 a group of ncomp chromosomes is randomly chosen form the current population 

(
icompx , i = 1,2,...,ncomp);  

 the function values for each chromosome are compared to find their minimum; 
 the chromosome corresponding to the minimum function value is copied in 

the mating pool; 
 the process stops if the size of the mating pool equals nc.  

The following relations may be written for iteration k: 

{1,2,..., }, at random

1, 2,...,

( ) min{ ( )} 1,2,...,

1

1



 

 

 

 

ka ni c
k k i ncomp a compi i

k kf f k nsel comp ci
k k k

sel
k k

x x

x x

MP MP x

P P

 (3) 

Note that a chromosome can be selected several times. If parameter ncomp has a high 
value, it may lose diversity, because a good chromosome is chosen too many times. 
However, if it is too low, suitable chromosomes may be omitted in the selection 
process. 
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Ranking selection is derived from roulette wheel selection. Unlike the latter, it can 
manage negative function values, by working with ranks instead. For a better 
understanding, a detailed description of each stage of this process is presented below: 

 the population is sorted descending according to the function values;  
 each chromosome in the sorted population is ranked from 1 to nc - 1 being 

the worst and being nc best: 

( ) 1, 2,...,  rank rank i i ni i cx  (4) 

 the selection probability of a chromosome is computed: 

( ) / 1,2,...,  p p rank rank i ni i i i c
i

x  (5) 

 the cumulative sum of these probabilities is expressed as: 

( ) 1,2,...,
1

  


i
Cs Cs p i ni i j c

j
x  (6) 

 a number is randomly generated within the interval [0; 1); the first chromosome 
that has the corresponding cumulative sum of probabilities greater than the 
random number is copied in the mating pool; 

 the process stops if the size of the mating pool equals nc.  

As in the previous case, a chromosome can be selected several times. This is an 
iterative process. The following relations may be written for iteration k: 

[0;1], uniform and random

( ) min{ ( ) | ( ) } 1,2,...,

1 1, 2,...,

1



  

  

 

a

k k kCs Cs Cs a i nsel i i c
k k k k nsel c

k k

x x x

MP MP x

P P

 (7) 

2.4 Mating and Crossover 

The next step in the algorithm is to create pairs of parents (mating) from the 
chromosomes copied in the mating pool. The pairs are chosen by randomly selecting 
two different positions in the mating pool until / 2nc  pairs are created. Various 

situations may arise: a chromosome is never chosen to mate; a chromosome is chosen 
to mate several times; if a chromosome was selected several times, it may mate 
with another copy of itself. Not all the pairs of parents will undergo crossing-over; 
some will be copied in the new generation as they are. The number of pairs that will 
undergo crossing-over is given by the crossover rate , which is conventionally 
considered as a number between 0 and 1. In this paper, the crossover rate ranges 
from 0.5 to 0.9. 

Crossing-over generates two new sets of variables from two sets of parent variables, 
based on a mathematical relation. Three crossover types are discussed in this 
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paper: discrete (uniform), intermediate and linear. The number of pairs that 
undergo crossing-over is / 2n nrp c   , irrespective of the type used. 

All the three crossover types are based on relations 8 [22] 

 
 

1 (1 )

2 (1 )

o M Fr x r xi i

o F Mr x r xi i

    

    

x

x
           1, 2,...,i d  (8) 

where  xM, xF
 – parents and xo1, xo2 – offsprings. 

Variable r is randomly generated. The way it is represented as well as the sets and 
intervals of its values defines the crossover type. For discrete crossover, r is a 2 x 
d matrix containing zeros and ones, as illustrated by the following relation: 

...1,1 1,2 1,
, {0,1}, at random

...2,1 2, 2 2,

r r r d
r

r r r d

 
  
 
 

r  (9) 

Relation 8 thus becomes: 

 
 

1 (1 )1, 1,

2 (1 )2, 2,

o M Fr x r xi i i i

o F Mr x r xi i i i

    

    

x

x
           1, 2,...,i d  (10) 

Intermediate crossover produces the most changes in the population. In this case, 
r is a 2xd matrix containing random values between 0 and 1, as described by 
relation (11). Relation 10 can be used to calculate the values of the offspring 
variables. 

r r ... r
, [0;1], uniform and random

r r ... r

1,1 1,2 1,d
r

2,1 2,2 2,d

 
  
  

r  (11) 

In the case of linear crossover,e, r is a 2x1 matrix containing random values 
between 0 and 1. 

1 , [0;1], uniform and random
2

r
r

r

 
  
  

r  (12) 

Relation 8 thus becomes: 

 
 

1 (1 )1 1

2 (1 )2 2

o M Fr x r xi i

o F Mr x r xi i

    

    

x

x
           1, 2,...,i d  (13) 
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2.5 Mutation 

Mutation in EA mimics the natural process by changing the values of a small number 
of randomly selected genes. Mutation is subsequently applied after crossover and 
the authors refer to both as reproduction. 

Mutation is performed according to the mutation rate , which represents the 
percentage of genes that are subjected to mutation. The mutation rate conventionally 
ranges between 0 and 1. Therefore, the number of mutated genes is n d nmg c   . 

In this paper, the mutation rate ranges from 0.05 to 0.5. 

For real coded EA, mutation can be performed by replacing a randomly chosen 
gene from a randomly chosen chromosome with a randomly generated value in 
the function domain. This method is addressed to as random mutation. For any 
chromosome xi , the position of a gene to be mutated is considered mut . The 

new value of the gene is calculated as follows:  

( ) , {1,2,..., },

[0;1], uniform ant random

x x a x i ni mut max min min c

a

    



x   (14) 

The authors have also tested another kind of mutation – variable step mutation. 
For any chromosome xi and position mut  of a gene to be mutated, the new value 

of the gene is established according to the relation:  

( ), ,

[0;1], uniform at random

x x x x a stepi mut i mut max min

a

    


   (15) 

The value of a gene is altered by a quantity proportional to the domain. The variable 
step represents that proportion and it is divided by 10, after a number of iterations, 
to refine the current solution. The initial step size is 0.1. This particular mutation type 
may cause a variable to exceed the domain. If this case, the variable is assigned 
the value of the limit it has exceeded. 

2.6 Elitism 

Elitism implies that a small number of the most suitable solutions are copied 
unaltered to the next generation. The approach put forth in this paper copies only 
one solution (the best), as described by Eq. 16. 

( ) min{ ( )}, 1,2,...,

1
1

t tf f i nelit i c
t t

elit

 

 

x x

x x
 (16) 
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2.7 Stopping criteria 

Once a solution has been found, one has determine the extent to which this solution 
provides a fair answer to the problem. The best solution is usually a compromise 
between quality and computational effort. Consequently, EA performance has been 
analyzed under different conditions, considering the following two stopping criteria: 

 the quality of the solution no longer improves after a certain number of iterations; 
 the maximum number of generations is reached (backup criterion). 

3 Results and Discussion 

Based on the above algorithm, a software tool has been developed in MatLab 2012. 
This software tool allows the user to change the values of basic parameters, such 
as population size, crossover rate and mutation rate. Moreover, the user can change 
between the different selection, reproduction and mutation types, and can set specific 
parameters. 

The EA settings are the following: 
 the number of variables for each function is 10; 
 truncation selection is used, with  = 0.5 survival rate (as a result, the best 

individuals are selected in a reduced computing time); 
 the intermediate crossover method is used, which ensures a high population 

diversity is assured; 
 both mutation methods are tested. In the case of variable step mutation, the 

step decreases every 200 iterations; 
 the maximum iteration number is 5000; 
 for each situation, the algorithm runs 20 times. 

The influence of the parameters is analyzed for the following values: 
 population size: nc = {20; 40; 60; 80; 100}; 
 crossover rate:  = {0.5; 0.6; 0.7; 0.8; 0.9}; 
 mutation rate:  = {0.01; 0.05; 0.1; 0.25; 0.5}. 

Once the optimal parameters have been established for each function, the provided 
values are presented for different configurations of genetic operators. The cases 
under discussion are summarized in Table 1. When not subjected to analysis, the size 
of the population counts 20 individuals, and the crossover probability is 0.8. 
Mutation probability is set after running a test. 

Table 1 
 Cases under discussion for EA testing 

 EA1 EA2 EA3 EA4 EA5 
Selection: 

  Survival rate: 
  Number of competitors: 

Truncation 
 = 0.5 

- 

Tournament 
- 

ncomp = nc /4

Ranking 
- 
- 

Truncation
 = 0.5 

- 

Truncation 
 = 0.5 

- 
Crossover Intermediate Intermediate Intermediate Discrete Linear 
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Three mathematical test functions have been implemented within the software tool: 
Schwefel, Rastrigin and Rosenbrock. The definitions of these functions, the intervals 
of their variables and their three-dimensional representation are presented below. 

3.1 Rastrigin function 

The Rastrigin function is a nonlinear function (relation (17)). It is based on De 
Jong function, additionally including the cosine term, which periodically generates 
local minimum values with regulated distribution [21]. Due to the great number of 
local minimum values, the optimization EAs have difficulties in finding the global 
minimum [23]. The corresponding 3D plot is presented in Fig. 3. The global 
optimum value is recorded for x = 0 ( f(x) = 0). 

( cos( ), , . .
n

2
i i i

i 1

f 10 n x 10 2 x i 1 n ;    5 12 x 5 12


             (17) 

 
Figure 3 

 3D Rastrigin's plot 

The evolution of minimum, average and maximum function values are presented 
in Fig. 4.a. The average variable values are presented in Fig. 4.b. Random mutation 
for a 0.05 rate constantly leads to very good results. Variable step mutation produces 
inadequate results (Fig. 5), even for reduced mutation rates. 

In what follows, a 0.05 mutation rate will be used. 

Fig. 6 describes the influence of the crossover rate. For a 0.7 or a 0.8 rate, the 
solutions are concentrated in the neighbourhood of the global minimum. Fig. 7 
illustrates the population influence. It should be emphasized that a large 
population size has a negative effect on the quality of the solution.  

The numerical results corresponding to the Rastrigin function, algorithms EA1-
EA5 (Table 1), are summarized in Table 2. The settings used in the analyses are: 
population size nc = 20; crossover rate  = 0.8; mutation type – random; mutation 
rate  = 0.05. 
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a) 

 
b) 

Figure 4 
Mutation rate influence – random mutation; a) function value; b) average variables' values 

 
a) 

 
b) 

Figure 5 
Mutation rate influence – variable step mutation; a) function value; b) average variables' values 

 
a) 

 
b) 

Figure 6 
Crossover rate influence a) function value; b) average variables' values 

 
a) 

 
b) 

Figure 7 
Population size influence a) function value; b) average variables' values 
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Table 2 
Rastrigin function numerical results' synthesis 

 EA1 EA2 EA3 EA4 EA5 
f(xi) average value 0.1509 0.1714 0.5227 0.2596 0.2847 

f(xi) minimum value 0.0094 0.0012 0.0221 0.0147 0.0039 
 x1 average value -0.0002 0.0000 0.0035 0.0000 0.0035 
 x2 average value 0.0000 0.0029 -0.0001 0.0029 -0.0001 
 x3 average value -0.0009 0.0004 -0.0022 0.0004 -0.0022 
 x4 average value -0.0006 -0.0016 0.0392 -0.0016 0.0392 
 x5 average value -0.0002 -0.0015 -0.0189 -0.0015 -0.0189 
 x6 average value 0.0004 -0.0012 -0.0000 -0.0012 -0.0000 
 x7 average value 0.0007 -0.0001 -0.0018 -0.0001 -0.0018 
 x8 average value 0.0017 0.0004 -0.0204 0.0004 -0.0204 
x9 average value -0.0005 -0.0007 0.0189 -0.0007 0.0189 

x10 average value 0.0011 0.0000 -0.0008 0.0000 -0.0008 

These results are graphically presented in Fig. 8. 
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Figure 8 

Rastrigin function values in case of each algorithm EA1-EA5 

Fig. 8 and Table 2 highlight the following aspects: 
 EA1 produces the best results (truncation selection and intermediate crossover); 
 the average function values range from 0.1509 to 0.5227; 
 the average variable values are range from -0.0204 to 0.0392; both limits are 

recorded for EA3 (ranking selection and intermediate crossover); 
 truncation selection induces high quality behaviour, if associated with 

powerful crossover methods; 
 compared to the EA3, other combinations lead to insignificant variations when 

the number of variables is increased. 

3.2 Schwefel function 

The Schwefel function is a nonlinear function (relation (18)). This function in 
characterized by an increased distance between the global minimum and the sub-
sequent one [21], could lead to a wrong direction of the EA [23]. The corresponding 
3D plot is presented in Fig. 9. The global optimum value is recorded for x = 420.9687 
(f(x) = 0). 
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, [ sin( ), ,
n

i 1 i
i 1

f 418 9829 n- x x i 1 n ;     500 x 500


          (18) 

 
Figure 9 

3D Schwefel's plot 

The evolution of minimum, average and maximum function values are presented 
in Fig. 10.a. The average variable values are presented in Fig. 10.b. Random mutation 
for a 0.05 rate constantly leads to very good results.  

 
a) 

 
b) 

Figure 10 
Mutation rate influence – random mutation; a) function value; b) average variables' values 

 
a) 

 
b) 

Figure 11 
Mutation rate influence – variable step mutation; a) function value; b) average variables' values 

In what follows, a 0.05 mutation rate will be used. 
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Fig. 12 describes the influence of the crossover rate. The solution quality is improving 
for high crossover rate values. Fig. 13 illustrates the population influence. It should 
be emphasized that a large population size has a negative effect on the quality of 
the solution.  

 
a) 

 
b) 

Figure 12 
Crossover rate influence: a) function value; b) average variables' values 

 
a) 

 
b) 

Figure 13 
Population size influence: a) function value; b) average variables' values 

The numerical results corresponding to the Schwefel function, algorithms EA1-EA5 
(Table 1) are summarized in Table 3. The settings used in the analyses are: population 
size nc = 20; crossover rate  = 0.7; mutation type – random; mutation rate  = 0.05. 

Table 3 
Schwefel function numerical results' synthesis 

 EA1 EA2 EA3 EA4 EA5 
f(xi) average value 0.7936 0.6936 22.6335 1.7793 1.6594 

f(xi) minimum value 0.0293 0.0053 0.8711 0.1681 0.0281 
 x1 average value 420.82 420.88 418.85 420.80 420.96 
 x2 average value 421.02 420.86 418.46 420.82 420.78 
 x3 average value 420.74 420.92 419.34 420.84 420.60 
 x4 average value 420.94 420.64 417.94 421.00 420.66 
 x5 average value 420.70 421.00 418.96 420.90 420.68 
 x6 average value 420.90 420.98 419.18 420.76 420.90 
 x7 average value 420.80 420.82 418.74 421.02 420.98 
 x8 average value 421.00 421.08 417.68 420.82 420.78 
x9 average value 420.86 420.96 418.78 421.18 420.66 

x10 average value 420.87 420.87 418.00 421.09 420.67 
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Figure 14 

Schwefel function values in case of each algorithm EA1-EA5 

Fig. 14 and Table 3 highlight the following aspects: 
 EA2 produces the best results (tournament selection and intermediate crossover); 
 the average function values range from 0.6936 to 22.6335; 
 the average variable values are range from 420.64 to 421.08; both limits are 

recorded for EA3 (ranking selection and intermediate crossover); 
 truncation selection and tournament selection induce high quality behaviour, 

if associated with powerful crossover methods; 
 other combinations lead to insignificant variations when the number of variables 

is increased. 

3.3 Rosenbrock function 

Rosenbrock function (relation (19)) represents a classical optimization problem. 
The global optimum is situated inside a long and narrow valley. The searching 
algorithms reache the valley easily, but the convergence to the global optimum 
is difficult. This function is used fortest test the performance of the searching 
algorithm [21]. The corresponding 3D plot is presented in Fig. 15. The global 
optimum value is recorded for x = 1, f(x) = 0. 

[ ( ) ( ) ] , ,
n 1

2 2 2
i 1 i i i
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f 100 x x 1 x  ;      2 048 x 2 048





         (19) 

 
Figure 15 

 Rosenbrock function 3D plot 
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The variable step mutation proves to be the most suitable mutation method for 
determining the global minimum of this function (Fig. 16). 

 
a) 

 
b) 

Figure 16 
Mutation rate influence – random mutation; a) function value; b) average variables' values 

Variable step mutation with mutation rates greater than 0.05 leads to the right 
solution, as seen in Fig. 17. In what follows, a 0.25 mutation rate will be used. 
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b) 

Figure 17 
Mutation rate influence – random mutation; a) function value; b) average variables' values 

Fig. 18 describes the influence of the crossover rate. Fig. 19 illustrates the population 
influence. It should be emphasized that their influence is not significant on the 
quality of the solution.  

 
a) 

 
b) 

Figure 18 
Crossover rate influence: a) function value; b) average variables' values 
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a) 

 
b) 

Figure 19 
Population size influence: a) function value; b) average variables' values 

The numerical results corresponding to the Rosenbrock function, algorithms EA1-EA5 
are summarized in Table 4. The settings used in the analyses are: population size 
nc = 20; crossover rate  = 0.8; mutation type – variable step; mutation rate  = 0.25. 

Table 4 
Rosenbrock numerical results' synthesis 

 EA1 EA2 EA3 EA4 EA5 
f(xi) average value 0.0001 0.0001 0.0000 0.0001 0.0001 

f(xi) minimum value 0 0 0 0 0 
 x1 average value 1.0000 1.0001 1.0000 1.0000 0.9999 
 x2 average value 1.0000 1.0000 1.0000 0.9999 1.0000 
 x3 average value 1.0000 1.0000 1.0000 0.9999 0.9999 
 x4 average value 1.0000 1.0000 0.9999 1.0000 0.9999 
 x5 average value 1.0000 1.0000 0.9999 0.9999 0.9999 
 x6 average value 0.9999 0.9999 0.9999 0.9999 0.9999 
 x7 average value 1.0000 0.9999 0.9999 0.9999 0.9999 
 x8 average value 0.9999 0.9999 0.9999 0.9999 0.9999 
x9 average value 0.9999 0.9999 0.9999 0.9998 0.9999 

x10 average value 0.9999 0.9998 0.9999 0.9998 0.9998 
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Figure 20 

Rosenbrock function values in case of each algorithm EA1-EA5 

Fig. 20 and Table 4 highlight the following aspects: 
 EA2 produces the best results (tournament selection, intermediate crossover); 
 the average function values range from 0.0000 to 0.0001; 
 the average variable values are range from 0.9998 to 1.0001; 
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 EA2 and EA5 algorithms are constantly producing very good results; 
 variable step mutation having high mutation rate could be considered the 

main mechanism. 
 

3.4    A contrastive analysis of the three functions 

Table 5 shows the best parameter values for the three functions discussed above. 

Table 5 
Results and settings for 20, 50 and 100 variables 

Function Variables
Population 

size 
Mutation type

Mutation 
rate 

Crossover rate
Function 

value 
Variables' 

average value 
Rastrigin 20 50 Random 0.01 0.8 0.0029 -0.0005 
Rastrigin 50 100 Random 0.01 0.8 0.0170 0.0001 

Rastrigin 100 200 Random 0.01 0.8 2.9807 0.0005 
Schwefel 20 20 Random 0.01 0.7 0.0074 420.9936 
Schwefel 50 100 Random 0.01 0.7 0.0039 420.9975 
Schwefel 100 200 Random 0.01 0.7 1.7627 420.9068 

Rosenbrock 20 20 Variable step 0.25 0.8 0.0000 0.9999 
Rosenbrock 50 50 Variable step 0.25 0.8 0.0003 0.9999 
Rosenbrock 100 100 Variable step 0.25 0.8 0.0158 0.9996 

The computing process stops if during 200 iterations the result does not improve or the 
maximum number of iterations is reached (in this case – 5000 iterations). Truncation 
selection produces good results, characterized by reduced computational effort. 
A 0.5 survival rate has been used. Intermediate crossover produces the greatest 
population diversity.  

Conclusion 

The present research is not only necessary, but also extremely useful step to further 
developments in EA based OPF computing and TNEP analysis. 

In this paper the authors have attempted to discuss the behaviour of the EAs in several 
scenarios. A suitable software tool has been developed for the EAs benchmark. Different 
combinations between the genetic operators and their values have been analyzed for 
several number of variables. The results can be applied to power systems analysis. 

The values of the EA parameters are directly influenced by the nature of the 
optimization problem and by the number of variables. 

For a small number of variables, ranking selection leads to very good results.  

It is recommended that the population size should not to be too large.  

High rate values are recommended for crossover, while reduced rate values for 
random mutation. If variable step mutation is used, high mutation rate values are 
can be employed (0.05-0.5). A 0.25 value has been adopted for the analyzed cases. 
This strategy leads to a decrease in population size. Such an algorithm is very 
close to the evolutionary computing strategy. 



Acta Polytechnica Hungarica Vol. 11, No. 1, 2014 

 – 171 – 

Variable step mutation offers the best results for Rosenbrock function, when used 
with high probability. Rastrigin and Schwefel functions can be solved using 
random mutation and a low mutation rate.  

If variable step mutation is employed, the influence of the crossover rate and of the 
population size is less significant; the algorithm is mutation driven. 

Satisfactory results have been obtained for a bigger number of variables 

Acknowledgement 

This work was supported by the strategic grant POSDRU/89/1.5/S/57649, Project 
ID 57649 (PERFORM-ERA), co-financed by the European Social Fund – Investing in 
People, within the Sectoral Operational Programme Human Resources Development 
2007-2013 and by the strategic grant POSDRU/ 88/1.5/S/50783 (2009) of the 
Ministry of Labour, Family and Social Protection, Romania, co-financed by the 
European Social Fund – Investing in people. 

References 
[1] Weise T., Global optimization algorithms – theory and application, 2nd Edition, 

http://www.it-weise.de/, 2010; 
[2] Chung T.S., Li Y.Z., A Hybrid GA Approach for OPF with Consideration of 

FACTS Devices, IEEE Power Engineering Review, vol.21, no.2, 2001, pp.47-50; 
[3] Bakirtzis A. G., Biskas P. N., Zoumas C. E., Petridis V., Optimal Power Flow 

by Enhanced Genetic Algorithm, IEEE Power Engineering Review, vol.22, 
no.2, 2002, pp.60-66; 

[4] Todorovski M., Rajicic D., An initialization procedure in solving optimal 
power flow by genetic algorithm, IEEE Transactions on Power Systems, 
vol.21, no.2, 2006, pp.480-487; 

[5] Chan K.Y., Ling S.H., Chan K.W., Iu H.H.C., Pong G.T.Y., Solving multi-
contingency transient stability constrained optimal power flow problems with 
an improved GA, IEEE Congress on Evolutionary Computation, CEC 2007, 
pp.2901-2908; 

[6] Malik I.M., Srinivasan D., Optimum power flow using flexible genetic algorithm 
model in practical power systems, 9th International Power and Energy 
Conference IPEC 2010, pp.1146-1151; 

[7] Rahul J., Sharma Y., Birla D., A New Attempt to Optimize Optimal Power 
Flow Based Transmission Losses Using Genetic Algorithm, 4th International 
Conference on Computational Intelligence and Communication Networks, 
CICN 2012, pp.566-570; 

[8] Kazemi A., Jalilzadeh S., Mahdavi M., Haddadian H., Genetic algorithm-
based investigation of load growth factor effect on the network loss in 
TNEP, 3rd IEEE Conference on Industrial Electronics and Applications ICIEA 
2008, pp.764-769; 

[9] Jalilzadeh S., Kazemi A., Mahdavi M., Haddadian H., TNEP considering voltage 
level, network losses and number of bundle lines using GA, 3rd International 
Conference Electric Utility Deregulation and Restructuring and Power 
Technologies DRPT 2009, pp.1580-1585; 



F. Solomonesc et al. EA Techniques for Optimal Power Flow. Parameters Tuning by Mathematical Test Functions 

 – 172 – 

[10] Maghouli P., Hosseini S.H., Buygi M.O., Shahidehpour M., A Multi-
Objective Framework for Transmission Expansion Planning in Deregulated 
Environments, IEEE Transactions on Power Systems, vol.24, no.2, 2009, 
pp.1051-1061; 

[11] Maghouli P., Hosseini S.H., Buygi M.O., Shahidehpour M., A Scenario-Based 
Multi-Objective Model for Multi-Stage Transmission Expansion Planning, 
IEEE Transactions on Power Systems, vol.26, no.1, 2011, pp.470-478; 

[12] Rodriguez J., Falcao D.M., Taranto G.N., Almeida H., Short-Term Transmission 
Expansion Planning by a Combined Genetic Algorithm and Hill-Climbing 
Technique, 15th International Conference on Intelligent System Applications 
to Power Systems, ISAP 2009, pp.1-6; 

[13] F. Cadini, E. Zio, C.A. Petrescu, Optimal expansion of an existing electrical 
power transmission network by multi-objective genetic algorithms, Reliability 
Engineering & System Safety, Volume 95, Issue 3, 2010, pp. 173-181; 

[14] Huang Wei, Feng Li, He Zijun, Cui Junzhao, Zhang Li, Transmission network 
planning with N-1 security criterion based on improved multi-objective genetic 
algorithm, 4th International Conference on Electric Utility Deregulation and 
Restructuring and Power Technologies DRPT 2011, pp.1250-1254; 

[15] Asadzadeh V., Golkar M.A., Moghaddas-Tafreshi S.M., Economics-based 
transmission expansion planning in restructured power systems using decimal 
codification genetic algorithm, IEEE Jordan Conference on Applied Electrical 
Engineering and Computing Technologies AEECT 2011, pp.1-8; 

[16] Sirikum J., Techanitisawad A., Kachitvichyanukul V., A New Efficient 
GA-Benders' Decomposition Method: For Power Generation Expansion 
Planning With Emission Controls, IEEE Transactions on Power Systems, 
vol.22, no.3, 2007, pp.1092-1100; 

[17] Murugan P., Kannan S., Baskar S., Application of NSGA-II Algorithm to 
Single-Objective Transmission Constrained Generation Expansion Planning, 
IEEE Transactions on Power Systems, vol.24, no.4, 2009, pp.1790-1797; 

[18] Kannan S., Baskar S., McCalley J.D., Murugan P., Application of NSGA-II 
Algorithm to Generation Expansion Planning, IEEE Transactions on Power 
Systems, vol.24, no.1, 2009, pp.454-461; 

[19] Wang D.T., Ochoa L.F., Harrison G.P., Expansion planning of distribution 
networks considering uncertainties, Proceedings of the 44th International 
Universities Power Engineering Conference UPEC 2009, pp.1-5; 

[20] Wang D.T., Ochoa L.F., Harrison G.P., Modified GA and data envelopment 
analysis for distribution network expansion planning under uncertainty, IEEE 
Transactions on Power Systems, vol.26, no.2, 2011, pp.897-904; 

[21] Molga M., Test functions for optimization needs, http://www.zsd.ict.pwr.wroc.pl/ 
files/docs/functions.pdf, 2005; 

[22] Haupt R.L., Haupt S.E., Practical genetic alghorithms, 2nd Edition, John 
Wiley & Sons, 2004; 

[23] Digalakis J.G., Margaritis K.G., An experimental study of benchmarking 
functions for genetic algorithms, IEEE International Conference on Systems, 
Management and Cybernetics, 2000 , vol.5, pp.3810-3815. 

 


