
Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 43 –

Practical Examination of Formal Methods

Transformations Properties

Slavomír Šimoňák, Daniel Harvilík

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

e-mails: slavomir.simonak@tuke.sk, daniel.harvilik@student.tuke.sk

Abstract: The paper is focused on examination of properties of transformations of Petri

nets and process algebra specifications. After a brief introduction to formal methods and

the transformations used, we provide descriptions of several experiments regarding Petri

nets and process algebra transformations we accomplished using our transformation tools.

The motivations behind this research are to practically evaluate the benefits we would gain

by transformation in the field of analysis of resulting specification as well as to verify the

accuracy and correctness of the tools by performing the transformations in both directions.

By evaluating the experiments we were able to better perceive the actual state of the tools

in practical level, the role of transformations in the field of formal methods integration and

to collect some suggestions which may stimulate our further research in the given field.

Keywords: formal methods; Petri nets; process algebra; transformations; ACP; analysis

1 Introduction

Formal methods are mathematically rigorous techniques used in development of

software, hardware and hybrid systems. The use of formal methods is motivated

by the expectation that performing appropriate mathematical analysis can

contribute to the reliability, correctness, and safeness of designed system. Formal

methods can be applied in any development phase: specification, verification and

implementation [1]. The basic element of the formal method is formal notation.

It is a language that has formally defined syntax and semantics [2] [3]. Using

formal notation a specification can be written so that their expression is clear and

unambiguous, allowing defining critical aspects of the system [4]. The advantages

of using formal methods are highlighted in [4], which include precision,

conciseness, abstraction, and reasoning.

Combining several formal methods within development of a system can provide

different views on the system and access to methods and tools of particular

formalisms. At the development of complex systems it seems to be advantageous

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 44 –

applying different methods and approaches for modeling of their particular aspects

and thus ensuring optimal conditions for development of such systems [5] [6].

From possible integration approaches [7] [8] we focus on the transformations

between selected formalisms within this work. In the following section we briefly

introduce two formalisms (Petri nets and process algebra ACP) relevant for the

purposes of the research described in this paper. The motivation behind the choice

of the two formalisms is stimulated by the following: complementary properties of

the formalisms [9], [10], current research in field of formal methods integration

[11], [12] and the availability of the transformation tools [13], [10], [14].

By the complementary properties of the considered formalisms we mainly mean

the following. While both the states and the actions of the considered system are

precisely described in a Petri net model, process algebraic specification is usually

more focused on describing its dynamic behavior, without explicit representation

of states. This also has an impact on the analytical techniques available for the

particular formalism. On the other hand, the decomposition of Petri net

specifications in general is not so natural as in case of process algebraic

specifications.

Although the properties of considered transformations have been formally

investigated in some of our work (e.g. [10], [12]), we believe it would also be

interesting to validate their implementations practically, using several

experiments. This would provide as with valuable knowledge whether the

transformation tools adhere precisely enough to definitions of transformations, or

maybe the transformations themselves would be updated in some respect. So the

following research questions are discussed within this work:

RQ1: What new analytical possibilities would become available after the

transformation?

RQ2: How well is preserved the system description after performing the

transformation in both directions (reverse transformation)?

2 Formal Methods in Use

Petri net is a powerful mathematical and graphical modeling tool applicable to

systems of various and diverse focus. Generally, Petri nets are used for description

and analysis of concurrent, asynchronous, distributed, non-deterministic or

stochastic systems [15]. According to formal definition, Petri net is a bipartite

directed graph populated by three types of objects. These objects are places,

transitions, and directed arcs. Directed arcs connect places to transitions or

transitions to places. The ability to study the dynamic behavior of a Petri net

modeled system in terms of its states and state changes is connected to occurrence

of tokens in places. Each place may potentially hold either none or a positive

number of tokens [16]. Petri net N can be mathematically defined as arranged 5-

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 45 –

tuple N = (P, T, pre, post, M0) [17], [18]. In this paper, we consider the concept of

ordinary Petri nets, which means that the weight of every arc in Petri net is 1.

The execution of Petri net is represented by the flow of tokens in given net and

flow of tokens is driven by the enabling rule and transition rule [16].

Petri nets as a mathematical tool can be characterized by several properties. These

properties can by categorized into two groups – behavioral and structural [15].

Behavioral properties depend on the initial marking, while the structural ones are

derived from the topological structure of Petri nets and are independent of some

concrete initial marking. Behavioral properties include reachability, boundedness,

liveness, reversibility and home state, coverability, persistence, synchronic

distance, and fairness [15]. On the other hand, basic structural properties include

structural liveness, structural boundedness, conservativeness, repetitiveness,

consistency, and S- and T- invariants [17], [15]. In order to gather important

insights about modeled system we need to analyze the Petri net model. In general,

there are three common approaches to Petri net analysis: 1) the coverability

(reachability) tree, 2) the matrix-equation approach, and 3) reduction or

decomposition techniques. To help us analyze Petri net models there are several

software tools available such as TINA [19], TAPAAL [20], PIPE [21], WoPeD

[22] and many others.

Table 1

Axiom system of process algebra ACP

x + y = y + x (x + y)  z = x  z + y  z

(x + y) + z = x + (y + z) ax|b = (a|b)x

x + x = x a|bx = (a|b)x

(x + y)z = xz + yz ax|by = (a|b)(x || y)

(xy)z = x(yz) (x + y) |z = x|z + y|z

x + δ = x x | (y + z) = x|y + x|z

δ ∙ x = δ ∂H(a) = a if a  H

x || y = x  y + y  x + x|y ∂H(a) = δ if a  H

a  x = ax ∂H(x + y) = ∂H(x) + ∂H(y)

ax  y = a(x || y) ∂H(xy) = ∂H(x) ∙ ∂H(y)

Process algebra is a mathematical framework in which the behavior of the system

is expressed in the form of algebraic concepts. The process refers to system

behavior. It can be perceived as a summary of discrete actions that the system can

perform, the order in which they can occur, but may take into account also other

aspects of implementation, such as the timing or likelihood. However, we always

describe only certain aspects of behavior. This means that it is an abstraction of

the real behavior of the system. Algebra refers to the choice of algebraic

(axiomatic) approach in describing behavior [23].

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 46 –

Within this paper we focus on one of the most popular approaches – ACP

(Algebra of Communicating Processes) [24] [25]. Process algebra ACP represents

algebraic framework for the study of concurrent communicating processes which

emphasizes the algebraic aspect. In terms of syntax, process algebra ACP contains

a set of constants A, special constant δ (deadlock) and operators + (alternative

composition), ∙ (sequential composition), || (parallel composition),  (left merge), |

(communication). The axiom system of process algebra ACP can be found in

Table 1.

When dealing with more complex algebraic specifications, usually the best way to

analyze them is by using some of available tools. There are many tools available

for analysis of process algebra specifications, but each supporting usually only

one (or few) specific formalism (for example PSF Toolkit/ACP [26], mCRL2

Toolset/ACP [27], FDR/CSP [28], PEPA Workbench/PEPA (Performance

Evaluation Process Algebra) [29]).

3 Transformation as a Tool for Integration of Formal

Methods

Applying different formal methods and different verification techniques can be

helpful when using formal methods within the design and analysis of real-life

sized systems. The reasons may include that a particular formal technique is the

most appropriate for individual components of designed system, the designer

wishes to investigate different system properties, or just to manage the complexity

of the system [30]. There are several approaches to the integration of different

formal methods [17]. The approach employed in this work is based on

transformation as tool for integration of formal methods, namely Petri nets and

process algebra ACP. In order to support the effectiveness of formal methods

integration, we need to choose formalisms whose properties are complementary in

some respects. In [10] we mentioned several aspects in which Petri nets and

process algebra ACP can be considered mutually complementary.

To perform transformations on selected formal specifications we use several of

our software tools. In the process of transformation of algebraic ACP specification

to Petri net one PATool and ACP2Petri are used. The main feature of the PATool

[14] used here is its ability to convert formats used by external tools. The tool thus

represents an interface to multiple process algebra notations. At the moment, it

provides standard text editor and format conversions, supporting formats CSP,

ACP textual, APC textual and PAML. In context of this research, we use the

PATool for conversion of ACP textual format (ACP TXT) to XML-based PAML

format [31].

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 47 –

The ACP2Petri tool performs transformation of source algebraic ACP

specification in PAML format into the resulting Petri net represented in PNML

format [31]. The tool was implemented using the Java programming platform and

it has the intuitive graphical user interface. It allows stepping through the process

of transformation by individual elementary actions performed during the

transformation process and provides also the functionality for exporting the Petri

net in PNML and PNG formats. The tool also allows modifying the resulting Petri

net layout. Principles, limitations, and further information on this tool can be

found in [31] and [13]. The theoretical principles of construction of a Petri net are

based on the composition of elementary nets, which represent individual atomic

actions of algebraic ACP specification. The composition of elementary nets is

performed on the basis of net operations, which correspond to the individual

operators of process algebra ACP. A detailed description of Petri net composition

rules corresponding to a given ACP term can be found in [32].

For transformation of a Petri net to corresponding algebraic ACP specification we

use Petri2ACP tool. The tool is based on research described in [32] and represents

a command-line software which transform initial Petri net in PNML format into

the resulting algebraic ACP specification represented in PSF format [26].

The theoretical principles behind the transformation implemented within the

Petri2ACP tool can be found in [10] and [32].

We also developed another transformation (Petri2APC [33]) which translates a

Petri net into an original process algebra APC (Algebra of Process Components)

specification, but it is not used in this practical examination. Compared to

Petri2ACP transformation it often provides simpler resulting algebraic

specifications since in APC there are special constructs available for modeling the

synchronization of processes. Currently, there is no tool support for analysis of

APC specifications, which limits its practical applications.

3.1 Transformation of Algebraic ACP Specification to Petri

Net

Transformations from algebraic ACP specification to Petri net model are

evaluated on two simple specifications (Experiment 1 and Experiment 2). Each of

these two experiments is described using algebraic process specification (text

form of algebraic ACP specification is used within the paper), resulting Petri net

model exported using ACP2Petri and results of analysis of corresponding Petri

net. For purposes of analysis of resulting Petri nets, several analytical tools can be

used, e.g. TAPAAL, TINA, PIPE or WoPeD.

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 48 –

3.1.1 Experiment 1 (MathOP)

In this experiment we start with an algebraic ACP specification of a simple system

[34] that performs the calculation of the expression a2 + b2, which consists of two

partial, parallel, and independent computations: a2 = a * a and b2 = b * b.

Subsequently, the addition operation can be performed only when the values of

the given partial calculations are available. The algebraic representation of the

system follows:

A = mula

B = mulb

C = (A || B).add

Using the conversion function of the PATool, we can convert the text

representation of specification into PAML format, which is then used as an input

for ACP2Petri tool (Figure 1) to transform algebraic ACP specification to

corresponding Petri net (Figure 2) in PNML format.

Figure 1

Process of transformation using the ACP2Petri tool

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 49 –

Figure 2

Petri net model of expression calculation corresponding to given algebraic ACP specification

Following the process of transformation, we performed the analysis of Petri net

model shown in Figure 2, with the results:

 the net contains 12 nodes (7 places, 5 transitions) and has initial marking

M0(1 0 0 0 0 0 0)

 the net is bounded, safe, contains a deadlock,

 the net has 7 different reachable states,

 the net is not covered by positive T- invariants and is covered by 2

positive S- invariants.

In the case of process algebra ACP we can distinguish between successful and

unsuccessful termination (deadlock) [24]. There is no such possibility to

distinguish the type of termination in Petri nets used in this research, so the

deadlock in the case of resulting Petri net simply means the termination of

calculation here.

3.1.2 Experiment 2 (DoubleBuffering)

The next experiment [34] illustrates a general principle of operation of two buffers

(primary and secondary) in a process called double buffering, which is used to

effectively render graphic information on an output device. While the content of

primary buffer is drawn on displaying device, a new graphic information is written

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 50 –

into secondary buffer by graphic hardware. When both operations are finished, the

roles are switched. The primary buffer becomes secondary, the secondary one

becomes primary and the process repeats. The algebraic specification is given

below.

gamma (b1ready,b2ready) = ready

encset[H] (b1ready,b2ready)

B1 = draw.b1ready.B1

B2 = read.b2ready.B2

S = encaps[H] (B1||B2)

Within the above specification, the first line expresses communication between

two actions (b1ready, b2ready). The second line defines encapsulation set.

The next two lines express definitions of processes B1 and B2 and the last line

shows the composition of overall process. Again, using conversion capabilities of

PATool, we can convert the text representation into PAML format, which

represents an input format of the ACP2Petri tool. Next, using the ACP2Petri, we

can transform the PAML file to Petri net model (Figure 3).

Figure 3

Petri net model of double buffering system corresponding to algebraic ACP specification

After the transformation, we are able to perform analysis of resulting Petri net by

means of above-mentioned analytical tools. Results of analysis of double

buffering system represented by Petri net model in Figure 3 can be summarized as

follows:

 the net contains 9 nodes (5 places, 4 transitions) and has initial marking

M0(1 0 0 0 0),

 the net is bounded, safe and does not contain a deadlock,

 the net has 5 different reachable states,

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 51 –

 the net is not covered by positive T- invariants and is covered by 2

positive S- invariants.

More details on analysis of resulting Petri nets can be found in [34].

3.2 Transformation of Petri Net to Algebraic ACP

Specification

Since Petri nets are commonly used to model finite-state machines, dataflow

computations [35], communication protocols, multiprocessor systems, etc. [15] we

chose to transform a Petri net model of dataflow (Figure 4) and a simple

communication protocol (Figure 6) to algebraic ACP specification.

The Petri2ACP tool can be used here that performs transformation of Petri net

model (PNML format) to algebraic ACP specification (PSF format).

Within the Petri2ACP tool a PNML Framework [36] is used for parsing input

PNML files. Although there are several tools supporting PNML interchange

format, their PNML variants can differ slightly. We found that while TINA

PNML files can be processed by Petri2ACP directly quite well (when using basic

features only), WoPeD or TAPAAL PNML files can be processed after some

small edits.

In the following two experiments the analysis of resulting algebraic specifications

(in PSF format) was performed using the PSF Toolkit. Analytical possibilities of

the toolkit are slightly limited, but we believe, they are sufficient to be used here.

3.2.1 Experiment 3 (Dataflow)

The model of dataflow computation system [37] can be expressed by the

following pseudocode:

BEGIN

 REAL X,Y,R,S;

 X = A + B;

 Y = A – B;

 R = X * Y;

 S = X / Y;

END

Next, the dataflow computation expressed by the above pseudocode is represented

by the following Petri net model (Figure 4).

In the Petri net (Figure 4) markings in places indicate data availability. Transitions

add, sub, mul and div represent various operations performed over the actual data

values. Operations of addition/subtraction, and multiplication/division

respectively, are independent of each other. Depending on data availability in

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 52 –

variables A and B operations of addition and subtraction can be performed at the

same time. The same applies to operations of multiplication and division, if data

are available in X and Y.

Algebraic ACP specification in PSF format can be found in Appendix A at the end

of this paper. The analysis of this algebraic specification will focus on the

sequence of steps and available executable atomic events and processes at some

point of execution. In Figure 5 we can see a simulation of process Sys,

representing overall composition of processes in algebraic ACP specification.

Simulation was performed using the sim function of the PSF Toolkit.

Figure 4

Petri net model of dataflow computation

Figure 5

Simulation of algebraic ACP specification of dataflow computation system

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 53 –

Within the process of transformation, some of the names were slightly modified,

but we believe that the simulation of the system behavior (Figure 5) is still clear.

The inability to perform further actions (after completing the computation) by the

Petri net model of simple dataflow computation means that the Petri net contains a

deadlock. This state can be reached for example by executing the following

sequence of actions: copy0, copy1, add, copy2, sub, copy3, div, mul. The behavior

is preserved also by the corresponding ACP specification.

3.2.2 Experiment 4 (CommProtocol)

Using Petri nets we can also clearly specify the main characteristics of the

communication protocols [38]. The properties like liveness and safeness of a Petri

net are usually used as criteria for evaluation of communication protocols.

The Petri net shown in Figure 6 is a simplified model of a communication

between two processes [15].

Figure 6

Petri net model of simple communication protocol [15]

Short description of Petri net model from the Figure 6 can be found in Table 2.

The resulting algebraic specification in PSF format of a simplified communication

protocol, corresponding to the Petri net in Figure 6, can be found in Appendix B at

the end of the paper. The results of simulation of process Sys using the simulation

functionality of PSF Toolkit, which represent the overall composition of processes

in algebraic ACP specification can be seen in Figure 7.

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 54 –

Table 2

Description of communication protocol Petri net model

The process does not contain a deadlock therefore it leads to its re-execution, after

the second execution of the sndMsg action. Also, in this case we can see some

composite names as they were constructed in the process of transformation.

Figure 7

Simulation of algebraic ACP specification for communication protocol model

3.3 Reverse Transformations

The motivation behind reverse transformations is the practical validation of

ACP2Petri and Petri2ACP tools used for transformations of Petri net models and

algebraic ACP specifications. The goal is to verify the behavior and properties of

the system by comparing the initial specification and the specification produced

after the reverse transformation. Within this comparison we are interested in

 Object name Object type Description

Sender

(Process 1)

SndReady Place Information ready to send

sndMsg Transition Sending information

WaitAck Place Waiting for acknowledgement

rcvAck Transition Receiving acknowledgement

AckRcvd Place Acknowledgement received

process1Ready Transition Get ready to send information

medium
Bocc0 Place Buffer occupied

Bocc1 Place Buffer occupied

Receiver

(Process 2)

RcvReady Place Receiver ready to receive information

rcvMsg Transition Receiving information

MsgRcvd Place Information received

sndAck Transition Sending acknowledgement

AckSnt Place Acknowledgement sent

process2Ready Transition Get ready to receive information

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 55 –

comparing the possible behavior (e.g. sequences of performed actions) of the

system, rather than solely syntactical similarity of specifications.

In case of reverse transformation in direction algebraic ACP specification – Petri

net – algebraic ACP specification (APA), we are dealing with different formats of

algebraic ACP specifications. We start with textual ACP format (and converting it

into PAML format using PATool), going through the intermediate PNML

specification after ACP2Petri transformation, and finally receive the algebraic

specification in PSF format after Petri2ACP transformation.

We performed reverse transformations of this type using specifications

(Experiment 1 and Experiment 2) from the section 3.1 of the paper. Resulting

algebraic specifications in PSF format can be found as Appendix C and Appendix

D, respectively. PSF specifications seem to be more complicated, compared to

corresponding textual ACP specifications. This may have several reasons, first of

them being a fact that PSF files have a dedicated structure with sections like

atoms, processes, sets of atoms, etc. The second reason is more profound, as it

is connected with transformations used. For example, synchronization of

processes in Petri2ACP transformation is provided by defining new auxiliary

synchronization process (e.g. wseps1 in case of specification in Appendix C),

corresponding communication functions, set of actions (I) to hide (rename to

internal action), and set of actions (H) to encapsulate (rename to δ). More details

on principles and properties of Petri2ACP transformation can be found in [10].

So in the end, more atomic actions and more processes can be present in PSF

specification as in corresponding textual ACP specification. But since we are

interested in behavior described by corresponding algebraic specifications, we

used the PSF Toolkit again. In Figure 8 are depicted simulations of specification

manually rewritten to PSF format from Experiment 1 (MathOP) (case a)) and

specification resulting from reverse transformation (case b)). Actions eps0 and

eps1 are special actions representing empty process (ε) [39].

a) b)

Figure 8

Simulation of algebraic ACP specifications based on Experiment 1 (MathOP)

Similarly, the results of simulations for the system specified in Experiment 2

(DoubleBuffering) are available in Figure 9. The simulation of specification

manually rewritten to PSF format is on the left side (case a)) and the simulation of

specification after reverse transformation on the right side of the figure (case b)).

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 56 –

a) b)

Figure 9

Simulation of algebraic ACP specifications based on Experiment 2 (DoubleBuffering)

Now, we would like to discuss the reverse transformation in opposite direction

Petri net – algebraic ACP specification – Petri net (PAP). The transformation in

this direction is more demanding and restrictive due to difficulty of (currently)

manual conversion between PSF format and textual ACP format. Hence, the

reverse transformation was performed on a simple concurrent composition of

processes, for which the Petri net model is available in Figure 10.

Figure 10

Petri net model of concurrent processes [34]

After performing the first part of this reverse transformation (which is the

Petri2ACP transformation) we have gained the algebraic specification in PSF

format (Appendix E). The simulation in PSF Toolkit environment confirmed the

expected orderings of executed actions (Figure 11).

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 57 –

Figure 11

The simulation of simple concurrent system in PSF Toolkit environment

Within the next step, the manual rewriting the PSF specification into the textual

ACP format, we initially intended to preserve the original meaning of the PSF

specification, where the synchronization of processes is expressed using an

auxiliary process (Wsr). The ACP specification is available in Table 3, case a).

However, after converting this specification using PATool (into PAML format)

and transforming to Petri net using the ACP2Petri tool, the resulting Petri net was

too complicated and except the execution of expected actions, using the

simulation we were able to disclose also the possibility of calculation termination

(deadlock), while the original Petri net and the corresponding PSF specification

did not exhibit such possibility.

Table 3

ACP specifications of simple concurrent system

gamma(ars,arp) = arc

gamma(brs,brp) = brc

encset[H] (brs,brp,arp,ars)

tauset[I] (brc,arc)

P = e . (A||B)

A = a . Ar

B = b . Br

Ar = arp

Br = brp

Wsr = (ars||brs) . r .

(P||Wsr)

Sys =

tau[I](encaps[H](Wsr||P))

P = e . (A||B) . r . P

A = a

B = b

a) b)

After this experience we prepared also more simplified version of the specification

in textual ACP format (Table 3, case b)) and transformed it into Petri net (Figure

12). By simulation of this Petri net using TINA environment we have confirmed

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 58 –

the expected orderings of actions (e, a, b, and r) without the possibility of

deadlock.

Figure 12

Petri net model of concurrent system after reverse transformation

4 Results and Discussion

Transformations of algebraic ACP specifications to Petri Nets, realized using the

PATool and ACP2Petri tools, can be considered convenient and efficient.

The advantages in our opinion include the possibility of preparing an algebraic

specification in compact ACP textual format and converting it into XML-based

PAML format using the PATool, intuitive graphical user interface and overall

functionality of the tools. It is necessary to highlight the great contribution that the

transformation provides in the field of system analysis. The resulting PNML

format is generally supported by many Petri net tools. Therefore, it is possible to

perform an extensive and detailed analysis of the considered system and its

behavior.

In case of transformations of Petri nets into algebraic ACP specifications, the

Petri2ACP tool was used. One of the biggest advantages of algebraic

specifications is the support for de/composition, so we are able to explore

individual processes, which can be especially useful in case of more complicated

systems. However, there have been also several limitations we would take into

account. PNML files produced by some of Petri net tools cannot be processed by

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 59 –

the Petri2ACP tool directly. We found that PNML files produced for instance by

TINA [19] were generally accepted well by the tool. For some users, the absence

of a graphical user interface can be considered a disadvantage, too. And currently,

only one output format (PSF) is supported by the tool. Also, there have been

several complications while installing the PSF Toolkit. Thanks to the willing

support of PSF Toolkit administrator and his feedback, we were able to resolve

some of the issues and use the toolkit for the purposes of this research.

We appreciated the simulation capabilities of the toolkit. So the transformation of

Petri nets to algebraic specifications using the Petri2ACP tool can be considered

less comfortable in some respects.

The answer to the RQ1 thus depends on the transformation performed. Using the

ACP2Petri transformation we can gain the access to many Petri net tools and their

strong analytical capabilities, based on structural analysis, state space analysis,

model checking, or reachability graphs. Some of those capabilities are quite

unique, like computation of S- and T- invariants. In the case of the Petri2ACP

transformation we mentioned the support for de/composition of specification to

individual processes, which, in our opinion, can be done in more natural way with

process algebra. Also, a simple possibility of renaming actions to internal ones can

be useful when investigating behavior of systems at different levels of abstraction

[12].

We also performed a practical validation of both transformation tools (ACP2Petri

and Petri2ACP) by the means of reverse transformations. In the case of reverse

APA transformation we were quite satisfied with the results we achieved. There is

a small complication, however. Since there is currently no conversion option to

PSF format in PATool, we were forced to rewrite the source ACP specifications

into PSF format to be able to compare them with the resulting algebraic

specifications using the simulations in the PSF Toolkit environment.

In the case of the reverse PAP transformation we needed a manual conversion

from the PSF format (resulting from the first step of PAP transformation) into

textual ACP format. Then, after automated conversion into PAML format we were

able to perform the second part of the reverse PAP transformation using the

ACP2Petri tool. Using the simulations we found a possibility of deadlock in

resulting Petri net, while the original Petri net and the corresponding PSF

specification did not exhibit such possibility. This finding is worthy of further

investigation.

So the definitive answer to the RQ2 would require additional research. On the one

hand the results of the APA reverse transformation are quite promising. On the

other hand, based on the results of the PAP reverse transformation, there is a

possibility of unwanted behavior in the ACP2Petri transformation. We would like

to investigate this issue further, as we would like to keep the original behavior,

including the possibility of deadlock also after the transformation. Also, there are

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 60 –

some limitations given by the requirement of manual conversions between formats

of algebraic specifications.

Conclusions

Based on results of this work, transformations of formalisms with complementary

properties like Petri nets and process algebra ACP represent powerful and

effective tool in field of integration of formal methods. Combination of formal

methods allows us to explore the different aspects of system behavior. Since we

only used specifications of relatively modest size in our experiments, there is still

a possibility that some benefits or imperfections of considered transformations and

associated tools were not fully revealed. Even if the results may not be exactly as

we would like to see at the beginning in every aspect, they are very valuable in

order to stimulate our further research in this field.

In the future we would like to investigate in deeper detail the possible issue in the

ACP2Petri transformation implementation. As it was mentioned above, we would

like to preserve the possibility of deadlock behavior before and after the

transformation. When comparing our integration method to other approaches

combining Petri nets and process algebra we consider the availability of

corresponding software tools to be a real benefit supporting its practical

application. So it is also our priority to keep the transformation tools in good

condition. Another possibility is also an extension of the PATool’s conversion

capabilities. The most obvious would be the support for PSF format, but we may

also consider other formats, like mCRL2 [27] in order to extend the available

analytical options for algebraic specifications.

It would be also interesting to explore the possibilities of involving in

transformations higher-level Petri nets [19] [20] and corresponding process

algebras [40]. Incorporating also the concept of time into the transformations

would provide the support for studying time-critical systems [41].

References

[1] J. Woodcock, P. Gorm Larsen, J. Bicarregui, J. Fitzgerald: Formal

methods: Practice and experience. ACM Computing Surveys, Vol. 41, No.

4, October 2009

[2] A. Funes, A. Dasso: Formal methods overview. Encyclopedia of

Information Science and Technology, 3rd Ed., IGI Global, 2014, pp. 7152-

7161

[3] W. Steingartner: On some innovations in teaching the formal semantics

using software tools. Open Computer Science, Vol. 11, Issue 1, 2020, pp.

2-11, https://doi.org/10.1515/comp-2020-0130

[4] C. Rouff, M. Hinchey, J. Rash, W. Truszkowski, D. F. Gordon-Spears,

(Eds.): Agent Technology from a Formal Perspective. London: Springer-

Verlag, 2006

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 61 –

[5] E. M. Clarke, J. M. Wing: Formal Methods: State of the Art and Future

Directions. ACM Computing Surveys, Vol. 28, Issue 4, Dec. 1996, pp. 626-

643, https://doi.org/10.1145/242223.242257

[6] R. Boute: Integrating Formal Methods by Unifying Abstractions. Integrated

Formal Methods, 4th International Conference, IFM 2004, LNCS 2999,

Springer-Verlag, 2004

[7] W. Grieskamp, T. Santen, B. Stoddart, (Eds.): Integrated Formal Methods,

Second International Conference, IFM 2000 Dagstuhl Castle, Germany,

November 1-3, 2000, Lecture Notes in Computer Science, Vol. 1945,

Springer-Verlag, 2000

[8] E. A. Boiten, J. Derrick, G. Smith, (Eds.): Integrated Formal Methods, 4th

International Conference, IFM 2004, Lecture Notes in Computer Science

2999, Springer-Verlag, 2004

[9] T. Basten: In Terms of Nets: System Design With Petri Nets and Process

Algebra. Eindhoven University of Technology, 1998

[10] S. Šimoňák, M. Tomášek: ACP Semantics for Petri Nets. Computing and

Informatics, 2018, 37(6), pp. 1464-1484

[11] R. Gorrieri: Language Representability of Finite P/T Nets. In:

Programming Languages with Applications to Biology and Security,

Volume 9465 of the series Lecture Notes in Computer Science, pp. 262-

282, Springer International Publishing, 2015

[12] S. Šimoňák, et al.: Abstraction-enriched Formal Methods Integration. Acta

Polytechnica Hungarica, Budapest, Óbuda University, Vol. 15, No. 7, 2018,

pp. 179-200

[13] S. Šimoňák, M. Šolc: Enhancing Formal Methods Integration with

ACP2Petri. Journal of Informational and Organizational Sciences, Vol. 40,

No. 2, 2016, pp. 221-235

[14] S. Šimoňák, I. Peťko: PATool – A tool for design and analysis of discrete

systems using process algebras with fdt integration support. Acta

Electrotechnica et Informatica, Vol. 10, No. 1, 2010, pp. 59-67

[15] T. Murata: Petri-Nets: Properties, Analysis and Applications. In:

Proceedings of the IEEE, Vol. 77, No. 4, 1989

[16] J. Wang: Petri Nets for Dynamic Event-Driven System Modeling. In:

Handbook of System Modeling. West Long Branch (New Jersey):

Monmouth University, Department of Software Engineering, 2007

[17] S. Šimoňák: Modeling and analysis of systems based on formal methods

integration. habilitation thesis, TU FEEI, DCI, Košice, Slovakia, 2018 (in

Slovak)

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 62 –

[18] A. Halder: A Study of Petri Nets: Modeling, Analysis and Simulation.

Department of Aerospace Engineering, Indian Institute of Technology

Kharagpur, August 2006

[19] B. Berthomieu, F. Vernadat: Time Petri Nets Analysis with TINA. tool

paper, In: Proceedings of 3rd Int. Conf. on The Quantitative Evaluation of

Systems (QEST 2006), IEEE Computer Society, 2006

[20] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller, J.

Srba: TAPAAL 2.0: Integrated Development Environment for Timed-Arc

Petri Nets. In: Flanagan C., König B. (eds.) Tools and Algorithms for the

Construction and Analysis of Systems. TACAS 2012. Lecture Notes in

Computer Science, Vol. 7214, Springer, Berlin, Heidelberg

[21] N. J. Dingle, W. J. Knottenbelt, T. Suto: PIPE2: A Tool for the

Performance Evaluation of Generalised Stochastic Petri Nets. ACM

SIGMETRICS Performance Evaluation Review (Special Issue on Tools for

Computer Performance Modelling and Reliability Analysis), Vol. 36(4),

March 2009, pp. 34-39

[22] T. Freytag, P. Allgaier, A. Burattin, A. Danek-Bulius: WoPeD – A “Proof-

of-Concept” Platform for Experimental BPM Research Projects. In:

Proceedings of the BPM Demo Sessions, Barcelona/Spain, September 2017

[23] W. Fokkink: Introduction to Process Algebra. Computer Science –

Monograph (English), 2nd edition, Springer-Verlag, 2007

[24] J. C. M. Baeten, W. P. Weijland: Process Algebra. Cambridge University

Press, 1990

[25] R. De Nicola: A gentle introduction to Process Algebras. IMT – Institute

for Advanced Studies Lucca, Italy, 2013

[26] B. Diertens: Software Engineering with Process Algebra. Ph.D. Thesis,

University of Amsterdam, 2009, http://staff.fnwi.uva.nl/b.diertens/phd/

[27] J. F. Groote, J. J. A. Keiren, B. Luttik, E. P. de Vink, T. A. C. Willemse:

Modelling and Analysing Software in mCRL2. FACS 2019, LNCS Vol.

12018, pp. 25-48, https://doi.org/10.1007/978-3-030-40914-2_2

[28] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, A. W. Roscoe: FDR3

— A Modern Refinement Checker for CSP. In: E. Ábrahám, K. Havelund

(eds.) Tools and Algorithms for the Construction and Analysis of Systems,

TACAS 2014, Lecture Notes in Computer Science, Vol. 8413, Springer,

Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-54862-8_13

[29] A. M., Abhilash, R. P. Mahapatra: Evaluation of Parallel System using

Process Algebra. International Journal of Innovative Technology and

Exploring Engineering, 2019, Vol. 8, Issue 9S2, pp. 177-182

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 63 –

[30] E. Ábrahám, M. Huisman (Eds.): Integrated Formal Methods, 12th

International Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016,

Proceedings

[31] S. Šimoňák, Š. Hudák, Š. Korečko: ACP2PETRI: a tool for FDT

integration support. In: Proceedings of 8th International Conference

EMES´05, 2005, pp. 122-127

[32] S. Šimoňák: Formal Methods Integration Using Transformations of Petri

Nets and Process Algebra. Ph.D. dissertation, TU FEEI, DCI, Košice,

Slovakia, 2003 (in Slovak)

[33] S. Šimoňák, Š. Hudák, Š. Korečko: APC semantics for Petri nets. in:

Informatica, Vol. 32, No. 3, 2008, pp. 253-260

[34] D. Harvilík: Examination of Formal Methods Transformations Properties.

master’s thesis, TU FEEI, DCI, Košice, Slovakia, 2021 (in Slovak)

[35] B. Madoš, N. Ádám, A. Baláž, K. Šinaľová: The CASE tool for

programming of the multi-core System-on-a-Chip with the data flow

computation control. In: SAMI 2017. Danvers, IEEE, 2017, pp. 165-168

[36] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves: PNML Framework: an

extendable reference implementation of the Petri Net Markup Language.

Petri Nets 2010, LNCS 6128, pp. 318-327

[37] S. F. Jennings: Petri net models of program execution in data flow

environments. Retrospective Theses and Dissertations, 1981

[38] S. Šimoňák: Verification of Communication Protocols Based on Formal

Methods Integration. Acta Polytechnica Hungarica, Vol. 9, No. 4, 2012

[39] S. Šimoňák: Formal Methods Transformation Optimizations within the

ACP2PETRI Tool. Acta Electrotechnica et Informatica, Vol. 6, No. 1,

2006, pp. 75-80

[40] O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P. de Vink,

J. W. Wesselink, A. J. Wijs, T. A. C. Willemse: The mCRL2 Toolset for

Analysing Concurrent Systems: Improvements in Expressivity and

Usability. TACAS 2019, LNCS Vol. 11428, pp. 21-39

[41] Š. Hudák, Š. Korečko, S. Šimoňák: Reachability analysis of time-critical

systems. Petri Nets: Applications. Vukovar, In-Tech, 2010, pp. 253-280

Appendix A – algebraic specification (PSF format) of

dataflow computation (Experiment 3)

process module SYSdataflow

begin

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 64 –

 atoms

sub,subeBcopy2s,subeBcopy2p,mul,div,subeBcopy2c,muleXcopy1c,muleYcopy

1p,muleYcopy1s,add,muleXcopy1p,addeBcopy1c,subeAcopy2p,muleXcopy1s,di

veXcopy2s,subeAcopy2c,diveYcopy2c,diveXcopy2p,addeAcopy1s,addeAcopy1p

,muleYcopy1c,addeBcopy1s,diveXcopy2c,addeBcopy1p,copy3,subeAcopy2s,di

veYcopy2s,copy2,diveYcopy2p,copy1,addeAcopy1c,copy0

 processes

eBcopy1,eAcopy2,wssub,eAcopy1,wsadd,wsmul,eR,eXcopy2,eS,eXcopy1,eYcop

y2,eYcopy1,eX,eY,wsdiv,eA,eBcopy2,eB,Sys

 sets of atoms

 H =

{muleXcopy1p,subeBcopy2s,subeBcopy2p,subeAcopy2p,muleXcopy1s,diveXcop

y2s,diveXcopy2p,addeAcopy1s,addeAcopy1p,addeBcopy1s,addeBcopy1p,subeA

copy2s,diveYcopy2s,diveYcopy2p,muleYcopy1p,muleYcopy1s}

 I =

{addeBcopy1c,subeBcopy2c,muleXcopy1c,diveXcopy2c,subeAcopy2c,diveYcop

y2c,addeAcopy1c,muleYcopy1c}

 communications

 muleXcopy1s|muleXcopy1p = muleXcopy1c

 diveYcopy2s|diveYcopy2p = diveYcopy2c

 addeAcopy1s|addeAcopy1p = addeAcopy1c

 addeBcopy1s|addeBcopy1p = addeBcopy1c

 muleYcopy1s|muleYcopy1p = muleYcopy1c

 subeBcopy2s|subeBcopy2p = subeBcopy2c

 diveXcopy2s|diveXcopy2p = diveXcopy2c

 subeAcopy2s|subeAcopy2p = subeAcopy2c

 definitions

 eR = delta

 eS = delta

 eAcopy1 = addeAcopy1p

 eYcopy1 = muleYcopy1p

 eAcopy2 = subeAcopy2p

 eXcopy1 = muleXcopy1p

 eXcopy2 = diveXcopy2p

 eB = copy1 . (eBcopy1||eBcopy2)

 eA = copy0 . (eAcopy1||eAcopy2)

 eY = copy3 . (eYcopy2||eYcopy1)

 eX = copy2 . (eXcopy1||eXcopy2)

 eBcopy2 = subeBcopy2p

 eBcopy1 = addeBcopy1p

 eYcopy2 = diveYcopy2p

 wsadd = (addeAcopy1s||addeBcopy1s) . add . (eX||wsadd)

 wsmul = (muleXcopy1s||muleYcopy1s) . mul . (eR||wsmul)

 wssub = (subeAcopy2s||subeBcopy2s) . sub . (eY||wssub)

 wsdiv = (diveYcopy2s||diveXcopy2s) . div . (eS||wsdiv)

 Sys = hide(I,encaps(H,(wsadd||wsdiv||wssub||wsmul||eB||eA)))

end SYSdataflow

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 65 –

Appendix B – algebraic specification (PSF format) of

simple communication protocol (Experiment 4)

process module SYSCommProtocolTINA

begin

 atoms

rcvAckeBocc1s,sndMsg,process1Ready,rcvMsgeRcvReadys,rcvMsgeBocc0c,rcv

Msg,rcvMsgeRcvReadyp,rcvAckeWaitAcks,rcvAckeBocc1c,rcvMsgeBocc0p,rcvA

ckeWaitAckp,rcvAck,process2Ready,sndAck,rcvMsgeRcvReadyc,rcvAckeBocc1

p,rcvMsgeBocc0s,rcvAckeWaitAckc

 processes

eAckSnt,eBocc1,eBocc0,wsrcvMsg,eRcvReady,eAckRcvd,eWaitAck,eSndReady,

wsrcvAck,eMsgRcvd,Sys

 sets of atoms

 H =

{rcvAckeBocc1s,rcvMsgeBocc0p,rcvAckeWaitAckp,rcvMsgeRcvReadys,rcvAcke

Bocc1p,rcvMsgeBocc0s,rcvMsgeRcvReadyp,rcvAckeWaitAcks}

 I =

{rcvAckeBocc1c,rcvMsgeRcvReadyc,rcvMsgeBocc0c,rcvAckeWaitAckc}

 communications

 rcvAckeBocc1s|rcvAckeBocc1p = rcvAckeBocc1c

 rcvMsgeBocc0s|rcvMsgeBocc0p = rcvMsgeBocc0c

 rcvMsgeRcvReadys|rcvMsgeRcvReadyp = rcvMsgeRcvReadyc

 rcvAckeWaitAcks|rcvAckeWaitAckp = rcvAckeWaitAckc

 definitions

 eMsgRcvd = sndAck . (eBocc1||eAckSnt)

 eSndReady = sndMsg . (eWaitAck||eBocc0)

 eRcvReady = rcvMsgeRcvReadyp

 eAckSnt = process2Ready . eRcvReady

 eBocc0 = rcvMsgeBocc0p

 eAckRcvd = process1Ready . eSndReady

 eWaitAck = rcvAckeWaitAckp

 eBocc1 = rcvAckeBocc1p

 wsrcvMsg = (rcvMsgeRcvReadys||rcvMsgeBocc0s) . rcvMsg .

(eMsgRcvd||wsrcvMsg)

 wsrcvAck = (rcvAckeBocc1s||rcvAckeWaitAcks) . rcvAck .

(eAckRcvd||wsrcvAck)

 Sys =

hide(I,encaps(H,(wsrcvAck||wsrcvMsg||eSndReady||eRcvReady)))

end SYSCommProtocolTINA

Appendix C – algebraic specification (PSF format) of

simple calculation (Experiment 1)

process module SYSMathOPrev

begin

S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties

 – 66 –

 atoms

add,eps1eBmc,eps1eBms,eps1eAmc,eps1eAms,eps1,eps1eBmp,eps0,eps1eAmp,m

ulb,mula

 processes

 eAm,eBm,wseps1,eP,eA,eR,eB,eC,Sys

 sets of atoms

 H = {eps1eBms,eps1eAms,eps1eBmp,eps1eAmp}

 I = {eps1eBmc,eps1eAmc}

 communications

 eps1eBms|eps1eBmp = eps1eBmc

 eps1eAms|eps1eAmp = eps1eAmc

 definitions

 eR = delta

 eB = mulb . eBm

 eA = mula . eAm

 eBm = eps1eBmp

 eP = add . eR

 eAm = eps1eAmp

 eC = eps0 . (eB||eA)

 wseps1 = (eps1eAms||eps1eBms) . eps1 . (eP||wseps1)

 Sys = hide(I,encaps(H,(wseps1||eC)))

end SYSMathOPrev

Appendix D – algebraic specification (PSF format) of

double buffering system (Experiment 2)

process module SYSDoubleBufferingrev

begin

 atoms

readyeB1finDrp,readyeB1finDrc,readyeB1finDrs,read,ready,readyeB2finRd

c,readyeB2finRds,eps,readyeB2finRdp,draw

 processes

 eB2,eB1,eB2finRd,eB1finDr,eS,wsready,Sys

 sets of atoms

 H = {readyeB1finDrp,readyeB1finDrs,readyeB2finRds,readyeB2finRdp}

 I = {readyeB1finDrc,readyeB2finRdc}

 communications

 readyeB2finRds|readyeB2finRdp = readyeB2finRdc

 readyeB1finDrs|readyeB1finDrp = readyeB1finDrc

 definitions

 eB2finRd = readyeB2finRdp

 eB1 = draw . eB1finDr

 eB1finDr = readyeB1finDrp

 eS = eps . (eB2||eB1)

 eB2 = read . eB2finRd

Acta Polytechnica Hungarica Vol. 19, No. 5, 2022

 – 67 –

 wsready = (readyeB2finRds||readyeB1finDrs) . ready .

(eB1||eB2||wsready)

 Sys = hide(I,encaps(H,(wsready||eS)))

end SYSDoubleBufferingrev

Appendix E – algebraic specification (PSF format) of

simple concurrent system

process module SYSInverznyPrevod-BackTransfTINA

begin

 atoms

 a,r,b,e,reBrc,reBrs,reBrp,reArp,reArc,reArs

 processes

 eBr,eAr,wsr,eP,eA,eB,Sys

 sets of atoms

 H = {reBrs,reBrp,reArp,reArs}

 I = {reBrc,reArc}

 communications

 reArs|reArp = reArc

 reBrs|reBrp = reBrc

 definitions

 eAr = reArp

 eP = e . (eA||eB)

 eA = a . eAr

 eBr = reBrp

 eB = b . eBr

 wsr = (reArs||reBrs) . r . (eP||wsr)

 Sys = hide(I,encaps(H,(wsr||eP)))

end SYSInverznyPrevod-BackTransfTINA

