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Abstract: The paper is focused on examination of properties of transformations of Petri 

nets and process algebra specifications. After a brief introduction to formal methods and 

the transformations used, we provide descriptions of several experiments regarding Petri 

nets and process algebra transformations we accomplished using our transformation tools. 

The motivations behind this research are to practically evaluate the benefits we would gain 

by transformation in the field of analysis of resulting specification as well as to verify the 

accuracy and correctness of the tools by performing the transformations in both directions. 

By evaluating the experiments we were able to better perceive the actual state of the tools 

in practical level, the role of transformations in the field of formal methods integration and 

to collect some suggestions which may stimulate our further research in the given field. 
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1 Introduction 

Formal methods are mathematically rigorous techniques used in development of 

software, hardware and hybrid systems. The use of formal methods is motivated 

by the expectation that performing appropriate mathematical analysis can 

contribute to the reliability, correctness, and safeness of designed system. Formal 

methods can be applied in any development phase: specification, verification and 

implementation [1]. The basic element of the formal method is formal notation.  

It is a language that has formally defined syntax and semantics [2] [3]. Using 

formal notation a specification can be written so that their expression is clear and 

unambiguous, allowing defining critical aspects of the system [4]. The advantages 

of using formal methods are highlighted in [4], which include precision, 

conciseness, abstraction, and reasoning. 

Combining several formal methods within development of a system can provide 

different views on the system and access to methods and tools of particular 

formalisms. At the development of complex systems it seems to be advantageous 
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applying different methods and approaches for modeling of their particular aspects 

and thus ensuring optimal conditions for development of such systems [5] [6]. 

From possible integration approaches [7] [8] we focus on the transformations 

between selected formalisms within this work. In the following section we briefly 

introduce two formalisms (Petri nets and process algebra ACP) relevant for the 

purposes of the research described in this paper. The motivation behind the choice 

of the two formalisms is stimulated by the following: complementary properties of 

the formalisms [9], [10], current research in field of formal methods integration 

[11], [12] and the availability of the transformation tools [13], [10], [14]. 

By the complementary properties of the considered formalisms we mainly mean 

the following. While both the states and the actions of the considered system are 

precisely described in a Petri net model, process algebraic specification is usually 

more focused on describing its dynamic behavior, without explicit representation 

of states. This also has an impact on the analytical techniques available for the 

particular formalism. On the other hand, the decomposition of Petri net 

specifications in general is not so natural as in case of process algebraic 

specifications. 

Although the properties of considered transformations have been formally 

investigated in some of our work (e.g. [10], [12]), we believe it would also be 

interesting to validate their implementations practically, using several 

experiments. This would provide as with valuable knowledge whether the 

transformation tools adhere precisely enough to definitions of transformations, or 

maybe the transformations themselves would be updated in some respect. So the 

following research questions are discussed within this work: 

RQ1: What new analytical possibilities would become available after the 

transformation? 

RQ2: How well is preserved the system description after performing the 

transformation in both directions (reverse transformation)? 

2 Formal Methods in Use 

Petri net is a powerful mathematical and graphical modeling tool applicable to 

systems of various and diverse focus. Generally, Petri nets are used for description 

and analysis of concurrent, asynchronous, distributed, non-deterministic or 

stochastic systems [15]. According to formal definition, Petri net is a bipartite 

directed graph populated by three types of objects. These objects are places, 

transitions, and directed arcs. Directed arcs connect places to transitions or 

transitions to places. The ability to study the dynamic behavior of a Petri net 

modeled system in terms of its states and state changes is connected to occurrence 

of tokens in places. Each place may potentially hold either none or a positive 

number of tokens [16]. Petri net N can be mathematically defined as arranged 5-
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tuple N = (P, T, pre, post, M0) [17], [18]. In this paper, we consider the concept of 

ordinary Petri nets, which means that the weight of every arc in Petri net is 1.  

The execution of Petri net is represented by the flow of tokens in given net and 

flow of tokens is driven by the enabling rule and transition rule [16]. 

Petri nets as a mathematical tool can be characterized by several properties. These 

properties can by categorized into two groups – behavioral and structural [15]. 

Behavioral properties depend on the initial marking, while the structural ones are 

derived from the topological structure of Petri nets and are independent of some 

concrete initial marking. Behavioral properties include reachability, boundedness, 

liveness, reversibility and home state, coverability, persistence, synchronic 

distance, and fairness [15]. On the other hand, basic structural properties include 

structural liveness, structural boundedness, conservativeness, repetitiveness, 

consistency, and S- and T- invariants [17], [15]. In order to gather important 

insights about modeled system we need to analyze the Petri net model. In general, 

there are three common approaches to Petri net analysis: 1) the coverability 

(reachability) tree, 2) the matrix-equation approach, and 3) reduction or 

decomposition techniques. To help us analyze Petri net models there are several 

software tools available such as TINA [19], TAPAAL [20], PIPE [21], WoPeD 

[22] and many others. 

Table 1 

Axiom system of process algebra ACP 

x + y = y + x (x + y)  z = x  z + y  z 

(x + y) + z = x + (y + z) ax|b = (a|b)x 

x + x = x a|bx = (a|b)x 

(x + y)z = xz + yz ax|by = (a|b)(x || y) 

(xy)z = x(yz) (x + y)  |z = x|z + y|z 

x + δ = x x | (y  + z) = x|y + x|z 

δ ∙ x = δ ∂H(a) = a if a  H 

x || y = x  y + y  x + x|y ∂H(a) = δ if a  H 

a  x = ax ∂H(x + y) = ∂H(x) + ∂H(y) 

ax  y = a(x || y) ∂H(xy) = ∂H(x) ∙ ∂H(y) 

Process algebra is a mathematical framework in which the behavior of the system 

is expressed in the form of algebraic concepts. The process refers to system 

behavior. It can be perceived as a summary of discrete actions that the system can 

perform, the order in which they can occur, but may take into account also other 

aspects of implementation, such as the timing or likelihood. However, we always 

describe only certain aspects of behavior. This means that it is an abstraction of 

the real behavior of the system. Algebra refers to the choice of algebraic 

(axiomatic) approach in describing behavior [23]. 
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Within this paper we focus on one of the most popular approaches – ACP 

(Algebra of Communicating Processes) [24] [25]. Process algebra ACP represents 

algebraic framework for the study of concurrent communicating processes which 

emphasizes the algebraic aspect. In terms of syntax, process algebra ACP contains 

a set of constants A, special constant δ (deadlock) and operators + (alternative 

composition), ∙ (sequential composition), || (parallel composition),  (left merge), | 

(communication). The axiom system of process algebra ACP can be found in 

Table 1. 

When dealing with more complex algebraic specifications, usually the best way to 

analyze them is by using some of available tools. There are many tools available 

for analysis of process algebra specifications, but each supporting usually only 

one (or few) specific formalism (for example PSF Toolkit/ACP [26], mCRL2 

Toolset/ACP [27], FDR/CSP [28], PEPA Workbench/PEPA (Performance 

Evaluation Process Algebra) [29]). 

3 Transformation as a Tool for Integration of Formal 

Methods 

Applying different formal methods and different verification techniques can be 

helpful when using formal methods within the design and analysis of real-life 

sized systems. The reasons may include that a particular formal technique is the 

most appropriate for individual components of designed system, the designer 

wishes to investigate different system properties, or just to manage the complexity 

of the system [30]. There are several approaches to the integration of different 

formal methods [17]. The approach employed in this work is based on 

transformation as tool for integration of formal methods, namely Petri nets and 

process algebra ACP. In order to support the effectiveness of formal methods 

integration, we need to choose formalisms whose properties are complementary in 

some respects. In [10] we mentioned several aspects in which Petri nets and 

process algebra ACP can be considered mutually complementary. 

To perform transformations on selected formal specifications we use several of 

our software tools. In the process of transformation of algebraic ACP specification 

to Petri net one PATool and ACP2Petri are used. The main feature of the PATool 

[14] used here is its ability to convert formats used by external tools. The tool thus 

represents an interface to multiple process algebra notations. At the moment, it 

provides standard text editor and format conversions, supporting formats CSP, 

ACP textual, APC textual and PAML. In context of this research, we use the 

PATool for conversion of ACP textual format (ACP TXT) to XML-based PAML 

format [31]. 
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The ACP2Petri tool performs transformation of source algebraic ACP 

specification in PAML format into the resulting Petri net represented in PNML 

format [31]. The tool was implemented using the Java programming platform and 

it has the intuitive graphical user interface. It allows stepping through the process 

of transformation by individual elementary actions performed during the 

transformation process and provides also the functionality for exporting the Petri 

net in PNML and PNG formats. The tool also allows modifying the resulting Petri 

net layout. Principles, limitations, and further information on this tool can be 

found in [31] and [13]. The theoretical principles of construction of a Petri net are 

based on the composition of elementary nets, which represent individual atomic 

actions of algebraic ACP specification. The composition of elementary nets is 

performed on the basis of net operations, which correspond to the individual 

operators of process algebra ACP. A detailed description of Petri net composition 

rules corresponding to a given ACP term can be found in [32]. 

For transformation of a Petri net to corresponding algebraic ACP specification we 

use Petri2ACP tool. The tool is based on research described in [32] and represents 

a command-line software which transform initial Petri net in PNML format into 

the resulting algebraic ACP specification represented in PSF format [26].  

The theoretical principles behind the transformation implemented within the 

Petri2ACP tool can be found in [10] and [32]. 

We also developed another transformation (Petri2APC [33]) which translates a 

Petri net into an original process algebra APC (Algebra of Process Components) 

specification, but it is not used in this practical examination. Compared to 

Petri2ACP transformation it often provides simpler resulting algebraic 

specifications since in APC there are special constructs available for modeling the 

synchronization of processes. Currently, there is no tool support for analysis of 

APC specifications, which limits its practical applications. 

3.1 Transformation of Algebraic ACP Specification to Petri 

Net 

Transformations from algebraic ACP specification to Petri net model are 

evaluated on two simple specifications (Experiment 1 and Experiment 2). Each of 

these two experiments is described using algebraic process specification (text 

form of algebraic ACP specification is used within the paper), resulting Petri net 

model exported using ACP2Petri and results of analysis of corresponding Petri 

net. For purposes of analysis of resulting Petri nets, several analytical tools can be 

used, e.g. TAPAAL, TINA, PIPE or WoPeD. 
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3.1.1 Experiment 1 (MathOP) 

In this experiment we start with an algebraic ACP specification of a simple system 

[34] that performs the calculation of the expression a2 + b2, which consists of two 

partial, parallel, and independent computations: a2 = a * a and b2 = b * b. 

Subsequently, the addition operation can be performed only when the values of 

the given partial calculations are available. The algebraic representation of the 

system follows: 

A = mula 

B = mulb 

C = (A || B).add 

Using the conversion function of the PATool, we can convert the text 

representation of specification into PAML format, which is then used as an input 

for ACP2Petri tool (Figure 1) to transform algebraic ACP specification to 

corresponding Petri net (Figure 2) in PNML format. 

 

Figure 1 

Process of transformation using the ACP2Petri tool 
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Figure 2 

Petri net model of expression calculation corresponding to given algebraic ACP specification 

Following the process of transformation, we performed the analysis of Petri net 

model shown in Figure 2, with the results: 

 the net contains 12 nodes (7 places, 5 transitions) and has initial marking 

M0(1 0 0 0 0 0 0) 

 the net is bounded, safe, contains a deadlock, 

 the net has 7 different reachable states, 

 the net is not covered by positive T- invariants and is covered by 2 

positive S- invariants. 

In the case of process algebra ACP we can distinguish between successful and 

unsuccessful termination (deadlock) [24]. There is no such possibility to 

distinguish the type of termination in Petri nets used in this research, so the 

deadlock in the case of resulting Petri net simply means the termination of 

calculation here. 

3.1.2 Experiment 2 (DoubleBuffering) 

The next experiment [34] illustrates a general principle of operation of two buffers 

(primary and secondary) in a process called double buffering, which is used to 

effectively render graphic information on an output device. While the content of 

primary buffer is drawn on displaying device, a new graphic information is written 



S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties 

 – 50 – 

into secondary buffer by graphic hardware. When both operations are finished, the 

roles are switched. The primary buffer becomes secondary, the secondary one 

becomes primary and the process repeats. The algebraic specification is given 

below. 

gamma (b1ready,b2ready) = ready 

encset[H] (b1ready,b2ready) 

B1 = draw.b1ready.B1 

B2 = read.b2ready.B2 

S = encaps[H] (B1||B2) 

Within the above specification, the first line expresses communication between 

two actions (b1ready, b2ready). The second line defines encapsulation set.  

The next two lines express definitions of processes B1 and B2 and the last line 

shows the composition of overall process. Again, using conversion capabilities of 

PATool, we can convert the text representation into PAML format, which 

represents an input format of the ACP2Petri tool. Next, using the ACP2Petri, we 

can transform the PAML file to Petri net model (Figure 3). 

 

Figure 3 

Petri net model of double buffering system corresponding to algebraic ACP specification 

After the transformation, we are able to perform analysis of resulting Petri net by 

means of above-mentioned analytical tools. Results of analysis of double 

buffering system represented by Petri net model in Figure 3 can be summarized as 

follows: 

 the net contains 9 nodes (5 places, 4 transitions) and has initial marking 

M0(1 0 0 0 0), 

 the net is bounded, safe and does not contain a deadlock, 

 the net has 5 different reachable states, 
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 the net is not covered by positive T- invariants and is covered by 2 

positive S- invariants. 

More details on analysis of resulting Petri nets can be found in [34]. 

3.2 Transformation of Petri Net to Algebraic ACP 

Specification 

Since Petri nets are commonly used to model finite-state machines, dataflow 

computations [35], communication protocols, multiprocessor systems, etc. [15] we 

chose to transform a Petri net model of dataflow (Figure 4) and a simple 

communication protocol (Figure 6) to algebraic ACP specification.  

The Petri2ACP tool can be used here that performs transformation of Petri net 

model (PNML format) to algebraic ACP specification (PSF format). 

Within the Petri2ACP tool a PNML Framework [36] is used for parsing input 

PNML files. Although there are several tools supporting PNML interchange 

format, their PNML variants can differ slightly. We found that while TINA 

PNML files can be processed by Petri2ACP directly quite well (when using basic 

features only), WoPeD or TAPAAL PNML files can be processed after some 

small edits. 

In the following two experiments the analysis of resulting algebraic specifications 

(in PSF format) was performed using the PSF Toolkit. Analytical possibilities of 

the toolkit are slightly limited, but we believe, they are sufficient to be used here. 

3.2.1 Experiment 3 (Dataflow) 

The model of dataflow computation system [37] can be expressed by the 

following pseudocode: 

BEGIN 

  REAL X,Y,R,S; 

  X = A + B; 

  Y = A – B; 

  R = X * Y; 

  S = X / Y; 

END 

Next, the dataflow computation expressed by the above pseudocode is represented 

by the following Petri net model (Figure 4). 

In the Petri net (Figure 4) markings in places indicate data availability. Transitions 

add, sub, mul and div represent various operations performed over the actual data 

values. Operations of addition/subtraction, and multiplication/division 

respectively, are independent of each other. Depending on data availability in 



S. Šimoňák et al. Practical Examination of Formal Methods Transformations Properties 

 – 52 – 

variables A and B operations of addition and subtraction can be performed at the 

same time. The same applies to operations of multiplication and division, if data 

are available in X and Y. 

Algebraic ACP specification in PSF format can be found in Appendix A at the end 

of this paper. The analysis of this algebraic specification will focus on the 

sequence of steps and available executable atomic events and processes at some 

point of execution. In Figure 5 we can see a simulation of process Sys, 

representing overall composition of processes in algebraic ACP specification. 

Simulation was performed using the sim function of the PSF Toolkit. 

 

Figure 4 

Petri net model of dataflow computation 

 

Figure 5 

Simulation of algebraic ACP specification of dataflow computation system 
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Within the process of transformation, some of the names were slightly modified, 

but we believe that the simulation of the system behavior (Figure 5) is still clear. 

The inability to perform further actions (after completing the computation) by the 

Petri net model of simple dataflow computation means that the Petri net contains a 

deadlock. This state can be reached for example by executing the following 

sequence of actions: copy0, copy1, add, copy2, sub, copy3, div, mul. The behavior 

is preserved also by the corresponding ACP specification. 

3.2.2 Experiment 4 (CommProtocol) 

Using Petri nets we can also clearly specify the main characteristics of the 

communication protocols [38]. The properties like liveness and safeness of a Petri 

net are usually used as criteria for evaluation of communication protocols.  

The Petri net shown in Figure 6 is a simplified model of a communication 

between two processes [15]. 

 

Figure 6 

Petri net model of simple communication protocol [15] 

Short description of Petri net model from the Figure 6 can be found in Table 2. 

The resulting algebraic specification in PSF format of a simplified communication 

protocol, corresponding to the Petri net in Figure 6, can be found in Appendix B at 

the end of the paper. The results of simulation of process Sys using the simulation 

functionality of PSF Toolkit, which represent the overall composition of processes 

in algebraic ACP specification can be seen in Figure 7. 
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Table 2 

Description of communication protocol Petri net model 

The process does not contain a deadlock therefore it leads to its re-execution, after 

the second execution of the sndMsg action. Also, in this case we can see some 

composite names as they were constructed in the process of transformation. 

 

Figure 7 

Simulation of algebraic ACP specification for communication protocol model 

3.3 Reverse Transformations 

The motivation behind reverse transformations is the practical validation of 

ACP2Petri and Petri2ACP tools used for transformations of Petri net models and 

algebraic ACP specifications. The goal is to verify the behavior and properties of 

the system by comparing the initial specification and the specification produced 

after the reverse transformation. Within this comparison we are interested in 

 Object name Object type Description 

Sender 

(Process 1) 

SndReady Place Information ready to send 

sndMsg Transition Sending information 

WaitAck Place Waiting for acknowledgement 

rcvAck Transition  Receiving acknowledgement 

AckRcvd Place  Acknowledgement received 

process1Ready Transition Get ready to send information 

medium 
Bocc0 Place Buffer occupied 

Bocc1 Place Buffer occupied 

Receiver 

(Process 2) 

RcvReady Place Receiver ready to receive information 

rcvMsg Transition Receiving information 

MsgRcvd Place Information received 

sndAck Transition Sending acknowledgement 

AckSnt Place Acknowledgement sent 

process2Ready Transition Get ready to receive information 
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comparing the possible behavior (e.g. sequences of performed actions) of the 

system, rather than solely syntactical similarity of specifications. 

In case of reverse transformation in direction algebraic ACP specification – Petri 

net – algebraic ACP specification (APA), we are dealing with different formats of 

algebraic ACP specifications. We start with textual ACP format (and converting it 

into PAML format using PATool), going through the intermediate PNML 

specification after ACP2Petri transformation, and finally receive the algebraic 

specification in PSF format after Petri2ACP transformation. 

We performed reverse transformations of this type using specifications 

(Experiment 1 and Experiment 2) from the section 3.1 of the paper. Resulting 

algebraic specifications in PSF format can be found as Appendix C and Appendix 

D, respectively. PSF specifications seem to be more complicated, compared to 

corresponding textual ACP specifications. This may have several reasons, first of 

them being a fact that PSF files have a dedicated structure with sections like 

atoms, processes, sets of atoms, etc. The second reason is more profound, as it 

is connected with transformations used. For example, synchronization of 

processes in Petri2ACP transformation is provided by defining new auxiliary 

synchronization process (e.g. wseps1 in case of specification in Appendix C), 

corresponding communication functions, set of actions (I) to hide (rename to 

internal action), and set of actions (H) to encapsulate (rename to δ). More details 

on principles and properties of Petri2ACP transformation can be found in [10].  

So in the end, more atomic actions and more processes can be present in PSF 

specification as in corresponding textual ACP specification. But since we are 

interested in behavior described by corresponding algebraic specifications, we 

used the PSF Toolkit again. In Figure 8 are depicted simulations of specification 

manually rewritten to PSF format from Experiment 1 (MathOP) (case a)) and 

specification resulting from reverse transformation (case b)). Actions eps0 and 

eps1 are special actions representing empty process (ε) [39]. 

 

 
a) b) 

Figure 8 

Simulation of algebraic ACP specifications based on Experiment 1 (MathOP) 

Similarly, the results of simulations for the system specified in Experiment 2 

(DoubleBuffering) are available in Figure 9. The simulation of specification 

manually rewritten to PSF format is on the left side (case a)) and the simulation of 

specification after reverse transformation on the right side of the figure (case b)). 
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a) b) 

Figure 9 

Simulation of algebraic ACP specifications based on Experiment 2 (DoubleBuffering) 

Now, we would like to discuss the reverse transformation in opposite direction 

Petri net – algebraic ACP specification – Petri net (PAP). The transformation in 

this direction is more demanding and restrictive due to difficulty of (currently) 

manual conversion between PSF format and textual ACP format. Hence, the 

reverse transformation was performed on a simple concurrent composition of 

processes, for which the Petri net model is available in Figure 10. 

 

Figure 10 

Petri net model of concurrent processes [34] 

After performing the first part of this reverse transformation (which is the 

Petri2ACP transformation) we have gained the algebraic specification in PSF 

format (Appendix E). The simulation in PSF Toolkit environment confirmed the 

expected orderings of executed actions (Figure 11). 
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Figure 11 

The simulation of simple concurrent system in PSF Toolkit environment 

Within the next step, the manual rewriting the PSF specification into the textual 

ACP format, we initially intended to preserve the original meaning of the PSF 

specification, where the synchronization of processes is expressed using an 

auxiliary process (Wsr). The ACP specification is available in Table 3, case a). 

However, after converting this specification using PATool (into PAML format) 

and transforming to Petri net using the ACP2Petri tool, the resulting Petri net was 

too complicated and except the execution of expected actions, using the 

simulation we were able to disclose also the possibility of calculation termination 

(deadlock), while the original Petri net and the corresponding PSF specification 

did not exhibit such possibility. 

Table 3 

ACP specifications of simple concurrent system 

gamma(ars,arp) = arc 

gamma(brs,brp) = brc 

encset[H] (brs,brp,arp,ars) 

tauset[I] (brc,arc) 

P = e . (A||B) 

A = a . Ar 

B = b . Br 

Ar = arp 

Br = brp 

Wsr = (ars||brs) . r . 

(P||Wsr) 

Sys = 

tau[I](encaps[H](Wsr||P)) 

P = e . (A||B) . r . P 

A = a 

B = b 

a) b) 

After this experience we prepared also more simplified version of the specification 

in textual ACP format (Table 3, case b)) and transformed it into Petri net (Figure 

12). By simulation of this Petri net using TINA environment we have confirmed 
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the expected orderings of actions (e, a, b, and r) without the possibility of 

deadlock. 

 

Figure 12 

Petri net model of concurrent system after reverse transformation 

4 Results and Discussion 

Transformations of algebraic ACP specifications to Petri Nets, realized using the 

PATool and ACP2Petri tools, can be considered convenient and efficient.  

The advantages in our opinion include the possibility of preparing an algebraic 

specification in compact ACP textual format and converting it into XML-based 

PAML format using the PATool, intuitive graphical user interface and overall 

functionality of the tools. It is necessary to highlight the great contribution that the 

transformation provides in the field of system analysis. The resulting PNML 

format is generally supported by many Petri net tools. Therefore, it is possible to 

perform an extensive and detailed analysis of the considered system and its 

behavior. 

In case of transformations of Petri nets into algebraic ACP specifications, the 

Petri2ACP tool was used. One of the biggest advantages of algebraic 

specifications is the support for de/composition, so we are able to explore 

individual processes, which can be especially useful in case of more complicated 

systems. However, there have been also several limitations we would take into 

account. PNML files produced by some of Petri net tools cannot be processed by 
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the Petri2ACP tool directly. We found that PNML files produced for instance by 

TINA [19] were generally accepted well by the tool. For some users, the absence 

of a graphical user interface can be considered a disadvantage, too. And currently, 

only one output format (PSF) is supported by the tool. Also, there have been 

several complications while installing the PSF Toolkit. Thanks to the willing 

support of PSF Toolkit administrator and his feedback, we were able to resolve 

some of the issues and use the toolkit for the purposes of this research.  

We appreciated the simulation capabilities of the toolkit. So the transformation of 

Petri nets to algebraic specifications using the Petri2ACP tool can be considered 

less comfortable in some respects. 

The answer to the RQ1 thus depends on the transformation performed. Using the 

ACP2Petri transformation we can gain the access to many Petri net tools and their 

strong analytical capabilities, based on structural analysis, state space analysis, 

model checking, or reachability graphs. Some of those capabilities are quite 

unique, like computation of S- and T- invariants. In the case of the Petri2ACP 

transformation we mentioned the support for de/composition of specification to 

individual processes, which, in our opinion, can be done in more natural way with 

process algebra. Also, a simple possibility of renaming actions to internal ones can 

be useful when investigating behavior of systems at different levels of abstraction 

[12]. 

We also performed a practical validation of both transformation tools (ACP2Petri 

and Petri2ACP) by the means of reverse transformations. In the case of reverse 

APA transformation we were quite satisfied with the results we achieved. There is 

a small complication, however. Since there is currently no conversion option to 

PSF format in PATool, we were forced to rewrite the source ACP specifications 

into PSF format to be able to compare them with the resulting algebraic 

specifications using the simulations in the PSF Toolkit environment. 

In the case of the reverse PAP transformation we needed a manual conversion 

from the PSF format (resulting from the first step of PAP transformation) into 

textual ACP format. Then, after automated conversion into PAML format we were 

able to perform the second part of the reverse PAP transformation using the 

ACP2Petri tool. Using the simulations we found a possibility of deadlock in 

resulting Petri net, while the original Petri net and the corresponding PSF 

specification did not exhibit such possibility. This finding is worthy of further 

investigation. 

So the definitive answer to the RQ2 would require additional research. On the one 

hand the results of the APA reverse transformation are quite promising. On the 

other hand, based on the results of the PAP reverse transformation, there is a 

possibility of unwanted behavior in the ACP2Petri transformation. We would like 

to investigate this issue further, as we would like to keep the original behavior, 

including the possibility of deadlock also after the transformation. Also, there are 
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some limitations given by the requirement of manual conversions between formats 

of algebraic specifications. 

Conclusions 

Based on results of this work, transformations of formalisms with complementary 

properties like Petri nets and process algebra ACP represent powerful and 

effective tool in field of integration of formal methods. Combination of formal 

methods allows us to explore the different aspects of system behavior. Since we 

only used specifications of relatively modest size in our experiments, there is still 

a possibility that some benefits or imperfections of considered transformations and 

associated tools were not fully revealed. Even if the results may not be exactly as 

we would like to see at the beginning in every aspect, they are very valuable in 

order to stimulate our further research in this field. 

In the future we would like to investigate in deeper detail the possible issue in the 

ACP2Petri transformation implementation. As it was mentioned above, we would 

like to preserve the possibility of deadlock behavior before and after the 

transformation. When comparing our integration method to other approaches 

combining Petri nets and process algebra we consider the availability of 

corresponding software tools to be a real benefit supporting its practical 

application. So it is also our priority to keep the transformation tools in good 

condition. Another possibility is also an extension of the PATool’s conversion 

capabilities. The most obvious would be the support for PSF format, but we may 

also consider other formats, like mCRL2 [27] in order to extend the available 

analytical options for algebraic specifications. 

It would be also interesting to explore the possibilities of involving in 

transformations higher-level Petri nets [19] [20] and corresponding process 

algebras [40]. Incorporating also the concept of time into the transformations 

would provide the support for studying time-critical systems [41]. 
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Appendix A – algebraic specification (PSF format) of 

dataflow computation (Experiment 3) 

process module SYSdataflow 

begin 
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  atoms 

sub,subeBcopy2s,subeBcopy2p,mul,div,subeBcopy2c,muleXcopy1c,muleYcopy

1p,muleYcopy1s,add,muleXcopy1p,addeBcopy1c,subeAcopy2p,muleXcopy1s,di

veXcopy2s,subeAcopy2c,diveYcopy2c,diveXcopy2p,addeAcopy1s,addeAcopy1p

,muleYcopy1c,addeBcopy1s,diveXcopy2c,addeBcopy1p,copy3,subeAcopy2s,di

veYcopy2s,copy2,diveYcopy2p,copy1,addeAcopy1c,copy0 

  processes 

eBcopy1,eAcopy2,wssub,eAcopy1,wsadd,wsmul,eR,eXcopy2,eS,eXcopy1,eYcop

y2,eYcopy1,eX,eY,wsdiv,eA,eBcopy2,eB,Sys 

  sets of atoms 

    H = 

{muleXcopy1p,subeBcopy2s,subeBcopy2p,subeAcopy2p,muleXcopy1s,diveXcop

y2s,diveXcopy2p,addeAcopy1s,addeAcopy1p,addeBcopy1s,addeBcopy1p,subeA

copy2s,diveYcopy2s,diveYcopy2p,muleYcopy1p,muleYcopy1s} 

    I = 

{addeBcopy1c,subeBcopy2c,muleXcopy1c,diveXcopy2c,subeAcopy2c,diveYcop

y2c,addeAcopy1c,muleYcopy1c} 

  communications 

    muleXcopy1s|muleXcopy1p = muleXcopy1c 

    diveYcopy2s|diveYcopy2p = diveYcopy2c 

    addeAcopy1s|addeAcopy1p = addeAcopy1c 

    addeBcopy1s|addeBcopy1p = addeBcopy1c 

    muleYcopy1s|muleYcopy1p = muleYcopy1c 

    subeBcopy2s|subeBcopy2p = subeBcopy2c 

    diveXcopy2s|diveXcopy2p = diveXcopy2c 

    subeAcopy2s|subeAcopy2p = subeAcopy2c 

  definitions 

    eR = delta 

    eS = delta 

    eAcopy1 = addeAcopy1p 

    eYcopy1 = muleYcopy1p 

    eAcopy2 = subeAcopy2p 

    eXcopy1 = muleXcopy1p 

    eXcopy2 = diveXcopy2p 

    eB = copy1 . (eBcopy1||eBcopy2) 

    eA = copy0 . (eAcopy1||eAcopy2) 

    eY = copy3 . (eYcopy2||eYcopy1) 

    eX = copy2 . (eXcopy1||eXcopy2) 

    eBcopy2 = subeBcopy2p 

    eBcopy1 = addeBcopy1p 

    eYcopy2 = diveYcopy2p 

    wsadd = (addeAcopy1s||addeBcopy1s) . add . (eX||wsadd) 

    wsmul = (muleXcopy1s||muleYcopy1s) . mul . (eR||wsmul) 

    wssub = (subeAcopy2s||subeBcopy2s) . sub . (eY||wssub) 

    wsdiv = (diveYcopy2s||diveXcopy2s) . div . (eS||wsdiv) 

    Sys = hide(I,encaps(H,(wsadd||wsdiv||wssub||wsmul||eB||eA))) 

end SYSdataflow 
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Appendix B – algebraic specification (PSF format) of 

simple communication protocol (Experiment 4) 

process module SYSCommProtocolTINA 

begin 

  atoms   

rcvAckeBocc1s,sndMsg,process1Ready,rcvMsgeRcvReadys,rcvMsgeBocc0c,rcv

Msg,rcvMsgeRcvReadyp,rcvAckeWaitAcks,rcvAckeBocc1c,rcvMsgeBocc0p,rcvA

ckeWaitAckp,rcvAck,process2Ready,sndAck,rcvMsgeRcvReadyc,rcvAckeBocc1

p,rcvMsgeBocc0s,rcvAckeWaitAckc 

  processes 

eAckSnt,eBocc1,eBocc0,wsrcvMsg,eRcvReady,eAckRcvd,eWaitAck,eSndReady,

wsrcvAck,eMsgRcvd,Sys 

  sets of atoms 

    H = 

{rcvAckeBocc1s,rcvMsgeBocc0p,rcvAckeWaitAckp,rcvMsgeRcvReadys,rcvAcke

Bocc1p,rcvMsgeBocc0s,rcvMsgeRcvReadyp,rcvAckeWaitAcks} 

    I = 

{rcvAckeBocc1c,rcvMsgeRcvReadyc,rcvMsgeBocc0c,rcvAckeWaitAckc} 

  communications 

    rcvAckeBocc1s|rcvAckeBocc1p = rcvAckeBocc1c 

    rcvMsgeBocc0s|rcvMsgeBocc0p = rcvMsgeBocc0c 

    rcvMsgeRcvReadys|rcvMsgeRcvReadyp = rcvMsgeRcvReadyc 

    rcvAckeWaitAcks|rcvAckeWaitAckp = rcvAckeWaitAckc 

  definitions 

    eMsgRcvd = sndAck . (eBocc1||eAckSnt) 

    eSndReady = sndMsg . (eWaitAck||eBocc0) 

    eRcvReady = rcvMsgeRcvReadyp 

    eAckSnt = process2Ready . eRcvReady 

    eBocc0 = rcvMsgeBocc0p 

    eAckRcvd = process1Ready . eSndReady 

    eWaitAck = rcvAckeWaitAckp 

    eBocc1 = rcvAckeBocc1p 

    wsrcvMsg = (rcvMsgeRcvReadys||rcvMsgeBocc0s) . rcvMsg . 

(eMsgRcvd||wsrcvMsg) 

    wsrcvAck = (rcvAckeBocc1s||rcvAckeWaitAcks) . rcvAck . 

(eAckRcvd||wsrcvAck) 

    Sys = 

hide(I,encaps(H,(wsrcvAck||wsrcvMsg||eSndReady||eRcvReady))) 

end SYSCommProtocolTINA 

Appendix C – algebraic specification (PSF format) of 

simple calculation (Experiment 1) 

process module SYSMathOPrev 

begin 
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  atoms    

add,eps1eBmc,eps1eBms,eps1eAmc,eps1eAms,eps1,eps1eBmp,eps0,eps1eAmp,m

ulb,mula 

  processes 

    eAm,eBm,wseps1,eP,eA,eR,eB,eC,Sys 

  sets of atoms 

    H = {eps1eBms,eps1eAms,eps1eBmp,eps1eAmp} 

    I = {eps1eBmc,eps1eAmc} 

  communications 

    eps1eBms|eps1eBmp = eps1eBmc 

    eps1eAms|eps1eAmp = eps1eAmc 

  definitions 

    eR = delta 

    eB = mulb . eBm 

    eA = mula . eAm 

    eBm = eps1eBmp 

    eP = add . eR 

    eAm = eps1eAmp 

    eC = eps0 . (eB||eA) 

    wseps1 = (eps1eAms||eps1eBms) . eps1 . (eP||wseps1) 

    Sys = hide(I,encaps(H,(wseps1||eC))) 

end SYSMathOPrev 

Appendix D – algebraic specification (PSF format) of 

double buffering system (Experiment 2) 

process module SYSDoubleBufferingrev 

begin 

  atoms    

readyeB1finDrp,readyeB1finDrc,readyeB1finDrs,read,ready,readyeB2finRd

c,readyeB2finRds,eps,readyeB2finRdp,draw 

  processes 

    eB2,eB1,eB2finRd,eB1finDr,eS,wsready,Sys 

  sets of atoms 

    H = {readyeB1finDrp,readyeB1finDrs,readyeB2finRds,readyeB2finRdp} 

    I = {readyeB1finDrc,readyeB2finRdc} 

  communications 

    readyeB2finRds|readyeB2finRdp = readyeB2finRdc 

    readyeB1finDrs|readyeB1finDrp = readyeB1finDrc 

  definitions 

    eB2finRd = readyeB2finRdp 

    eB1 = draw . eB1finDr 

    eB1finDr = readyeB1finDrp 

    eS = eps . (eB2||eB1) 

    eB2 = read . eB2finRd 
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    wsready = (readyeB2finRds||readyeB1finDrs) . ready . 

(eB1||eB2||wsready) 

    Sys = hide(I,encaps(H,(wsready||eS))) 

end SYSDoubleBufferingrev 

Appendix E – algebraic specification (PSF format) of 

simple concurrent system 

process module SYSInverznyPrevod-BackTransfTINA 

begin 

  atoms 

    a,r,b,e,reBrc,reBrs,reBrp,reArp,reArc,reArs 

  processes 

    eBr,eAr,wsr,eP,eA,eB,Sys 

  sets of atoms 

    H = {reBrs,reBrp,reArp,reArs} 

    I = {reBrc,reArc} 

  communications 

    reArs|reArp = reArc 

    reBrs|reBrp = reBrc 

  definitions 

    eAr = reArp 

    eP = e . (eA||eB) 

    eA = a . eAr 

    eBr = reBrp 

    eB = b . eBr 

    wsr = (reArs||reBrs) . r . (eP||wsr) 

    Sys = hide(I,encaps(H,(wsr||eP))) 

end SYSInverznyPrevod-BackTransfTINA 


