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Abstract: The Gibbs paradox does not exist at all. Entropy is an additive quantity but not an 
extensive quantity. Neither entropy nor the increment of entropy is an extensive quantity. 
When T denotes thermodynamic temperature, lnT does not make sense. The correctness of 
dimension is a necessary condition for proper formulas. The definite integral is preferable to 
the indefinite integral; it should be used in science instead of the latter. The Gibbs correction 
factor is not only cumbersome but also erroneous; it causes some contradictions in statistical 
mechanics. Entropy is not a quantity that can be measured, but the increment of entropy can 
be measured. So what the experiment can check is not entropy but the increment of entropy. 
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1 Introduction 
In many textbooks on thermodynamics and statistical physics, there are some 
erroneous formulas. The causes are: 1. The dimension is not correct; 2. When the 
definite integral should be used on all terms of a differential equation, some terms 
are integrated definitely but others not; 3. The basic notion is wrong; 4. The 
argumentation is illogical. This article solves these problems exemplarily. 

2 Does lnT Make Sense? 

Symbol explanation：“≡ ”denotes identity; |
( , )

x x y
y

f x y ff f
x x

∂ ∂⎛ ⎞≡ ≡ ≡⎜ ⎟∂ ∂⎝ ⎠
. 

As is well known, the argument of lnx is a pure number, either a real number or a 
complex number. So when T denotes a pure number, lnT makes sense; when T 
denotes thermodynamic temperature, lnT does not make sense, nor does lnV when 
V denotes thermodynamic volume. If a quantity x is not a pure number, neither lnx 
nor xe  makes sense. Only when we specify the unit of quantity x so that x 
denotes a pure number can lnx or xe  make sense. 
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2.1 There Are Two Erroneous Formulas in Literature [1, p. 53] 

, 0

0 0

ln ln   <1.15.4>
( ln )               <1.15.5>
V m

m

S nC T nR V S
S n S R n
= + +

= −  
Because lnT , lnV , ln n do not make sense, the above formulas are wrong. Let 

VC  be the heat capacity of ideal gas at constant volume, N the number of 
molecules of the gas, and let k denote Boltzmann’s constant. 
dU TdS pdV= − , pV = NkT , so the correct formulas are as follows: 

 0 0 0 0 0

   (1)

  (2)

V V

S T V T VV V
S T V T V

C Cp NkdS dT dV dT dV
T T T V

C Cp NkdS dT dV dT dV
T T T V

= + = +

= + = +∫ ∫ ∫ ∫ ∫
 

0 0
0    (3)

T VV
T V

C NkS S dT dV
T V

∴ − = +∫ ∫
 

For monatomic ideal gas： 
3
2VC Nk=  

3 5
02 2

0
0 0 0 0 0

3 ln ln ln[ ( ) ] ln[ ( ) ]  (4)
2

pT V V T TS S Nk Nk Nk  Nk
T V V T p T

∴ − = + = =
 

2.2 There Are The Following Two Formulas in Literature [1, p. 
81] 

|

| 0

       <2.4.4>

  <2.4.5>

V
T V

V
T V

CdS dT p dV
T
CS dT p dV S
T

= +

= + +∫
 

Formula <2.4.5> is wrong because when equation <2.4.4> is integrated, some 
terms use the definite integral but others not. The correct method is that all terms 
should use the definite integral as follows: 

0 0 0

0 0

|

0 |

(5)

(6)

S T VV
T VS T V

T VV
T VT V

CdS dT p dV
T
CS S dT p dV
T

= +

= + +

∫ ∫ ∫

∫ ∫
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The merit of the definite integral is clear and explicit. The indefinite integral has 
an arbitrary constant; it causes misunderstanding and erroneous argumentation 
easily, so it should only be used as a training method in calculus. In order to avoid 
ambiguity, the definite integral should be used in science instead of the indefinite 
integral. 

2.3 There Are The Following Two Formulas in Literature [1, p. 
346] 

 

Apparently formula <9.3.26> is wrong because when 0EΔ → + , 

ln E
E
Δ

→ −∞ , we cannot get it from the former formula. This kind of error is 

illogical argumentation. It is an exemplary case of omitting some terms 
unreasonably. It shows that an ideal isolated system which does not exchange 
mass and energy with its surroundings does not exist. Furthermore, the 
micro-canonical ensemble should not be used in the case in question. 

3 Is Entropy an Extensive Quantity? 
Many textbooks [2-4] classify thermodynamic quantities as two classes: extensive 
or intensive. The following is a typical definition [3]: 

The quantities we use to describe the macroscopic behavior of a system in 
equilibrium are called properties, the observable characteristics of a system. 
Other names are thermodynamic variables or thermodynamic coordinates. An 
extremely important concept is that of a state variable, a property whose 
differential is exact. 

Properties are extensive or intensive. An extensive is proportional to the mass. An 
example is the volume V; if the mass is doubled, the volume is doubled (assuming 
that the density remains constant). An intensive property is independent of the 
mass. Temperature T is an intensive property; its value is not affected by a change 
of mass. Pressure p and density ρ are further examples of intensive properties. 

3
4 5 32ln ln[ ( ) ] (ln ln ) 3 3 2 2

3
4 52ln[ ( ) ]    <9.3.26>3 3 2

V mE N ES k Nk  Nk k
N ENh

V mES Nk  Nk
NNh

π

π

Δ
= Ω = + + +

= +
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In other words, extensive quantities are ones that are proportional to the number of 
molecules and are additive; intensive quantities are ones that are got by an 
extensive quantity divided by another extensive quantity and are non-additive. But 
this kind of classification is not complete. The complete classification is as 
follows: 

extensive and additive (mass, volume, 
number of particles etc.)

additive scalar
non-extensive but additive (time, entropy, 
probability etc.)

scalar
intensive and non-additive (te

non-additive scalar

⎧
⎪
⎪
⎨
⎪
⎪⎩

mperature, 
density etc.)
nonintensive and nonadditive (speed, 
rate of increase etc.)

⎧
⎪
⎪
⎪
⎪
⎪
⎨

⎧⎪
⎪⎪ ⎪⎪ ⎨

⎪ ⎪
⎪ ⎪⎩⎩

 

From Boltzmann entropy 
1

ln ln( ! )
!

inl
i

i i

gS k k N
n=

= Ω = Π  and Gibbs entropy 

[4] lnj j
j

S k P P= − ∑ ,we can know that entropy is not an extensive quantity. 

A system is an entity which consists of many particles and has a definite volume 
and temperature. The equation for the entropy of a monatomic gas is: 

( )
3
2

3

3 ln 2 (7)
2

VS Nk mkT
h

π⎧ ⎫⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭  
It follows that entropy is a systematic quantity, a measure of disorder of the 
system. 

Let Ω  be the number of microstates for a system in equilibrium. If the system is 
composed of two independent subsystems, then 1 2Ω = Ω Ω ，

1 2 1 2 1 2ln ln( ) ln lnS k k k k S S= Ω = Ω Ω = Ω + Ω = + ，so entropy is an 
additive quantity. For a system in equilibrium, all the extensives are accumulations 
of the corresponding quantity of a particle and are proportional to the number of 
particles. A particle has mass but not entropy, so mass is extensive but entropy is 

not. If entropy S were extensive, then 
S
N

would be the entropy of a particle, 

which (like the temperature of a particle) is meaningless. 

Some people confuse additive quantity with extensive quantity, others confuse 
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entropy with the increment of entropy, which brings about some erroneous notions 
in thermodynamics and statistical mechanics. Correcting these wrong notions is 
one of the main reasons why I have written this article. 

4 Is the Gibbs Correction Factor Right? 
There is the following problem in literature [5]: 

There are two ideal monatomic gases in an adiabatic container with volume V. The 
number of molecules are 1N  and 2N respectively. The temperature of the system 
in equilibrium is T. Find the equation of state, internal energy and entropy of the 
system, starting with canonical ensemble. 

Solution: Let 1m  and 2m be the molecular mass of the two gases respectively, 

the energy of the system is 
1 2 223 3

11

1 11 2

    (8)
2 2

N N
ji

i j

ppE
m m= =

= +∑ ∑ . 

1 2

1 21 2

1 2

3 3
1 2

3 3
1 22 2

1 23 3
1 2

1Partion function is :  
! !

2 2( ) ( )   (9)
! !

E
A BN N

N NN N

N N

Z e d d
N N h h

m mV V Z Z
N h N h

β

π π
β β

−= Γ Γ

= =

∫

  
The pressure of the mixed ideal gases is: 

1 2 1 2( )1 (ln )   (10)V
N kT N kT N N kTp Z

V V Vβ
+

= = + =
 

The equation of state is: 1 2( )   (11)pV N N kT= +  

The pressure of the mixed ideal gases is equal to the sum of the pressures 
generated by all the constituent gases; this is Dalton’s law of partial pressures. 
When the molecules are of the same kind, formula (10) still holds, which means 
that the pressure of the ideal gas is equal to the sum of the pressures generated by 
all the constituent subsystems. 

1 2
3(ln ) ( )   (12)
2

U Z N N kTβ= − = +
 

The internal energy of the mixed ideal gases is equal to the sum of the internal 
energies of all the constituent gases. When the molecules are of the same kind, 
formula (12) still holds, which means that the internal energy of the ideal gas is 
equal to the sum of the internal energies of all the constituent subsystems. 
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3
52[ln (ln ) ] ln[ (2 ) ]1 1 13 2

1
3

52ln[ (2 ) ]    (13)2 2 23 2
2

VS k Z Z N k m kT N k
N h

VN k m kT N k
N h

ββ π

π

= − = +

+ +

 

The entropy of the mixed ideal gases is equal to the sum of the entropies of all the 
constituent gases. When the molecules are of the same kind, it follows from 
formula (13): 

3 3
5 52 2ln[ (2 ) ] ln[ (2 ) ] (14)

1 1 2 23 32 2
1 2

V V
S N k mkT N k N k mkT N k

N h N h
π π= + + +  

According to the Sackur-Tetrode formula, the entropy of monatomic ideal gas is: 
3

' 2
3

3
2

1 2 1 23

5ln[ (2 ) ]
2

5( ) ln[ (2 ) ] ( )  (15)
2

VS Nk mkT Nk
Nh

VN N k mkT N N k
Nh

π

π

= +

= + + +

 

' 1 2
1 1 2 2

1 2

( ln ln ln ) ( ln ln ) 0
N NN N

S S N N N N N N k Nk
N N N N

− = − − = + >  

Apparently S S'≠ , which means that the entropy of the ideal gas is not equal to 
the sum of the entropies of all the constituent subsystems. This is contradictory to 
the additive quality of entropy. The cause that makes the error is introducing the 

Gibbs correction factor 
1

!N
 to the partition function of canonical ensemble. The 

introduction of the Gibbs correction factor 
1

!N
 to the partition function is not 

only cumbersome, in that it does not change the probability distribution of the 
system in question; but it is also erroneous: in that it is based on the wrong notion 
that entropy is an extensive quantity, it leads to some contradictions in statistical 
mechanics [6-9]. It may be justified in the grand canonical ensemble as an ad hoc 

prescription [8]: the statistical weight of a state (l) must be weighted by 
1

!lN
. 
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The correct calculation for the entropy is by using formula (7): 

( ) ( )
3 3
2 2

1 1 1 2 2 23 3

3 3
ln 2 ; ln 2

2 2
V V

S N k m kT S N k m kT
h h

π π= + = +⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

； 

3 3
2 2

1 2 1 1 2 23 3

3
ln[ (2 ) ] ln[ (2 ) ](13')

2
V V

S S S N k m kT Nk N k m kT
h h

π π= + = + + . 

The entropy of the mixed ideal gases is equal to the sum of the entropies of all the 
constituent gases. When the molecules are of the same kind, formula (13') still 
holds, which means that the entropy of the ideal gas is equal to the sum of the 
entropies of all the constituent subsystems. 

5 Does the Gibbs Paradox Exist? 
There are two different, classical, ideal monatomic gases initially in the two 
compartments (volumes 1V  and 2V , 1 2V V V+ = ) of a rigid adiabatic container, 
separated by a diathermal diaphragm. They have the same pressure and 
temperature, the number of molecules of each compartment are 1N  and 

2N respectively, 1 2N N N+ = . If the diaphragm is removed, calculate the 
increment of entropy of the system. 

Solution 1(thermodynamic method): Let 1m  and 2m be the molecular mass of 
the two gases respectively. 

Initial state: 1 1 0 0 2 2 0 0system , , ;system , ,N V T P N V T P→ →  

Final state: 1 1 2 2system , , ;system , ,N V T P N V T P→ → . 

Because there is no energy, heat introducing and chemical reaction, the 
temperature of the system remains constant, i.e. 0T T= . Using Dalton’s law of 
partial pressure, we know: 

1 2
1 2

1 2 1 2
1 2 0

1 2

;

( )

N kT N kTp p
V V

N N kT N kT N kTNkTp p p p
V V V V

= =

+
∴ = + = = = = =

 

From formula (4), we have: 
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3
2

1 1 10 1 1 1
1 0 1 1

3
2

2 2 20 2 2 2
2 0 2 2

ln[ ( ) ] ln( ) ln( )

ln[ ( ) ] ln( ) ln( )

V T V NS S S N k  N k N k
V T V N

V T V NS S S N k  N k N k
V T V N

Δ = − = = =

Δ = − = = =
 

So the increment of entropy after mixing is: 

( )

1 2 1 2 1 2
1 2 1 2

ln( ) ln( ) ln( ) ln( )

0 16

V V N NS S S N k N k N k N k
V V N N

Δ = Δ + Δ = + = +

>

 

Apparently the increment of entropy after mixing is the same whether the two 
gases are different or not, because the two gases will occupy the total volume 
finally and homogeneously. Meanwhile, from formula (16) we can see that the 
increment of entropy is not an extensive quantity. 

Solution 2(statistical mechanics method): From formula (7) we have: 

( ) ( )
3 3

1 2 2
10 1 1 1 1 13 3

3 3
ln 2 ; ln 2

2 2
V V

S N k m kT S N k m kT
h h

π π= + = +⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎩ ⎭⎩ ⎭

1 1 10 1 2 2 20 2
1 2

ln( ). Similarly, ln( ).V VS S S N k S S S N k
V V

∴Δ = − = Δ = − =

1 2 1 2
1 2

ln( ) ln( )V VS S S N k N k
V V

∴Δ = Δ + Δ = + . The result is the same as 

solution 1. 

Some people think that if the two gases are identical, there can be no change in 
entropy when the diaphragm is removed ( 0SΔ = ). This is the so-called Gibbs 
paradox. 

Firstly, neither entropy nor the increase of entropy is an extensive quantity. Based 
on the wrong notion that entropy is an extensive quantity, some people argue that 

0SΔ = . 

Secondly, after the diaphragm is removed, each gas moves into the other, and a 
new equilibrium state is obtained in which both gases occupy the total volume. It 
is clear that the process of mixing is irreversible: once the mixing is done, the two 
gases, whether they are different or not, will not return spontaneously to their 
initial compartments. The final state is more disordered than the initial one. 

According to the second law of thermodynamics, 
dQ dU pdVdS
T T

+
≥ = . For 

adiabatic process, 0dQ = . For irreversible adiabatic process, 0dS > . 
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Thirdly, if we re-install the diaphragm, we will not regain the initial state. The 
number of molecules in 1V  may not be exactly 1N , let alone they are the same 

initial 1N  molecules. The reason why mixing takes place is that molecules move 
randomly and forever. 

Fourthly, the above two solutions give the same result whether the gases are 
different or not. For the mixing of two identical gases, literature [3] gives the third 
solution. Before the diaphragm is removed, there are 1 2,N N  molecules in 

1 2,V V  respectively. This is only one method of arranging the N molecules with 

1N  in one container and 2N  in the other, but arranging the N molecules with 

1N  in one container and 2N  in the other has 
1 2

!
! !
N

N N
methods, so the 

increment of entropy after the diaphragm is removed 

is: 0
0 1 2

!ln ln ln ln
! !
NS k k k k

N N
Ω

Δ = Ω− Ω = =
Ω

. 

Using Stirling’s approximation, ln ! lnN N N N= − , we obtain: 

1 2 1 2
1 2 1 2 1 2

!ln ln( ) ln( ) ln( ) ln( )
! !
N N N V VS k N k N k N k N k

N N N N V V
Δ = = + = +

Lastly, classical particles are distinguishable by their positions in the phase lattice 
and may be traced by their trajectory. They obey the Maxwell-Boltzmann 
distribution [3]. The total number of microstates corresponding to an allowable 

configuration is 
1

!
!

inl
i

MB
i i

gN
n=

Ω = ∑ . Quantum particles, both bosons and 

fermions, are indistinguishable. The total number of microstates obeying the 

Bose-Einstein distribution is 
1

( 1)!
!( 1)!

l
i i

BE
i i i

g n
n g=

+ −
Ω =

−∑ ; while those obeying the 

Fermi-Dirac distribution is 
1

!
!( )!

l
i

FD
i i i i

g
n g n=

Ω =
−∑ . Apparently 

!
MB

MB BE FDN
Ω

Ω > Ω > > Ω . Because lnS k= Ω , 

;   MB BE MB FDS S S S> > . 

A particle cannot be distinguishable and indistinguishable simultaneously, so it 
cannot obey the Maxwell-Boltzmann distribution and quantum distribution (either 
the Bose-Einstein distribution or the Fermi-Dirac distribution) simultaneously. 
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Therefore the classic Maxwell-Boltzmann distribution is not the limit case of 
quantum distributions. They have their respective ranges of applicability. Different 
particles obey different distribution. Under standard temperature and pressure [8], 
the ideal gases obey the Maxwell-Boltzmann distribution. They are 
distinguishable and within the classical regime. 

Conclusions 

In all, the Gibbs paradox does not exist at all. Entropy is additive but not extensive. 
Neither entropy nor the increment of entropy is extensive. Some people confuse 
entropy with the increment of entropy, others confuse additive quality with 
extensive quality. Based on a wrong notion that entropy is extensive, the Gibbs 

correction factor 
1

!N
 is added to the partition function of canonical ensemble. 

This is not only cumbersome but also erroneous. Entropy is not a quantity that can 
be measured, but the increment of entropy can be measured. So what the 
experiment can check is not entropy but the increment of entropy. 
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