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Abstract: Mutation testing is a technique used for evaluating test efficiencies, by analyzing 
whether existing tests could detect minor modifications inserted in the source code. Despite 
its proven benefits and added value to the verification and validation process, mutation 
testing is yet to become a widespread practice in safety-critical software development, 
mostly due to issues around its scalability in industrial environments. In this case study, 
conducted at Knorr-Bremse Rail Systems, we created a lightweight mutation testing tool, 
tailored to the specific test environment of the company, showing how such tools can be 
created with a notably smaller workload, than estimated in previously published case 
studies. Mutation testing was used to analyze automatically generated and manually 
complemented coverage-based tests of an entire braking system component. Mutation 
testing was able to reveal deficiencies not uncovered by standardized, coverage-based 
testing. The experience added to the body of knowledge on the application of mutation 
testing, in safety-critical embedded systems, strengthening the fault-finding capability of 
mutation testing reported by earlier related studies, but pointing out how the one-mutant-
per-line optimization was less useful in the given setting. The findings resulted in the 
definitive, strategic implementation of the created tool within the company’s component 
testing workflow and could help replicate the results in other case studies, aiding 
companies in introducing mutation testing in their work environment. 
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1 Introduction 

Verification and validation (V&V) processes play an essential role in ensuring 
safe operation when developing safety-critical systems. A substantial part of 
engineers’ effort is invested in software testing: designing, implementing, and 
executing test cases. International safety standards (e.g., IEC 61508) require that 
these tests cover 100% of the statements or branches in the source code. However, 
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multiple studies have shown that code coverage is not strongly correlated with test 
suite effectiveness [1-3]. This justifies the application of other methods 
determining test sufficiency, such as mutation testing. 

Mutation testing can be used to determine the fault detection ability of a test suite 
by making simple modifications to the original source code and running the code 
variants (mutants) against the corresponding tests. If at least one test case fails, the 
test suite detected the modification, and the mutant is killed. If all tests pass, the 
mutant stays alive, usually disclosing a shortcoming or inaccuracy in testing (as 
the tests are not able to distinguish the original and the modified versions). 

While the idea of mutation testing was proposed in the 1970s [4-6] and has been 
subject to thorough, though mostly theoretical research in the past decades, it is 
still to become a widespread practice. Both its high requirement of computation 
resources and the issues emerging around scalability in industrial environments 
make its application expensive, therefore there is little research and experience on 
its real-world usage. This further aggravates the costs and difficulty of its usage, 
even in the safety-critical industry where mutation testing would be well-founded. 
Experience reports on the effectiveness and limitations of using mutation testing 
in real world settings could support the adoption of this promising testing 
technique. 

The aim of this case study is to report on the gathered experience and process of 
implementing and using a mutation testing framework at an engineering company 
developing safety-critical systems. We rely on the software and corresponding 
unit tests of a railway braking system component responsible for the realization of 
braking functionality, provided by Knorr-Bremse Rail Systems. 

The studied software is written in C, consisting of 15, individually tested 
components, totaling 7251 lines of code. In this domain, the relevant safety 
standard is the IEC 61508 [7], which requires the definition of subsystems during 
design and the assignment of 1 of 4 Safety Integrity Levels (SIL) to these 
subsystems, SIL 4 being the most critical. The required safety integrity level of the 
studied software components is SIL 2, calling for 100% statement coverage.  
The corresponding unit tests are partially automatically generated to achieve the 
required coverage, then manually complemented to check other specified 
requirements. An in-depth analysis of potentially applicable open-source mutation 
testing tools and the requirements derived from the company’s test environment 
and processes revealed that the development of a new tool was needed. 

Mutation testing was evaluated in two scenarios. In the first one, the automatic 
unit test generation capability of the testing tool used at the company and the 
feasibility of a certain optimization method were evaluated with the help of 
benchmark code widely employed in academic research, originating from the 
Software-artifact Infrastructure Repository (SIR) [8]. Then, it was applied to the 
described rail braking software system to evaluate its applicability in this 
industrial setting. 
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The conducted study showed that a custom mutation testing tool, compatible with 
the company’s specific test environment could be implemented and applied cost-
effectively while still maintaining its positive effect on test quality. Our research 
produced the following results. 

• When failing to find a suitable mutation testing tool, one tailored to the 
company’s needs could be created within a week’s work effort. 

• Mutation testing was able to identify testing deficiencies even in tests 
automatically generated based on coverage. 

• The created tool generated 2 871 mutants for the 15 modules of safety-
critical software and its unit tests (with 80.79% mutation score), revealing 
3 typical testing deficiencies appearing when testing for coverage. 

• Our study showed that the one-mutant-per-line optimization technique – 
while undeniably reducing computation cost – was not adequate in the 
studied industrial setting. However, our results confirmed previous reports 
regarding efficient mutation operators and difficulties emerging in 
industrial applications. 

The experience gained from the testing campaigns was used to determine the 
optimal configuration for further application and long-term integration into the 
company workflow. 

This paper is organized as follows: in Section 2 a brief introduction to mutation 
testing, its limitations, and current applications is presented, followed by an 
analysis of some open-source mutation testing tools that could be applicable in the 
given environment, and an overview of related studies. Section 3 provides a brief 
review of the challenges faced during tool development and a summary of the 
design choices and implemented features. In Section 4 the created tool and the 
application of mutation testing in the given environment are evaluated. Finally, in 
Section 5, conclusions regarding ideal running configurations, applicable 
optimization in the given environment, and long-term implementation into the 
workflow are drawn and suggestions for further applications are made. 

2 Background and Related Work 

Mutation testing is a method based on the assumption that a truly complete test 
suite should be capable of detecting even the smallest deviation from required 
functionality. By making minor, syntactically correct modifications to the original 
source code – using different mutation operators to create mutants – and re-
executing them against the original test cases, it simulates typical coding faults.  
If this process results in test failure, the mutant is killed, whereas if all tests 
passed, the mutant is alive, and the underlying reasons should be inspected.  
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A simple example of a mutant and a test case that wouldn’t kill it is shown in 
Figure 1. The ratio of killed to all mutants is called the mutation score, which 
provides a numeric representation of test suite effectiveness. New tests can be 
added until all mutants are killed, or a certain score is achieved, thus improving 
the existing test suite. 

int foo(int a, int b){ 

  if (a > b)  
    return a; 
  else 
    return b; 

} 

int foo(int a, int b){ 

  if (a >= b)  
    return a; 
  else 
    return b; 

} 

int a = 4; 

int b = 3; 

result = foo(a, b); 

assert(result==a); 

(a) original code (b) mutant code (c) test failing mutation 
testing 

Figure 1 
Simple example of mutation testing 

Mutation Operators Applicable operators are partially unrelated to the 
programming language of the mutated code. Most commonly, constants or 
variables, return values, relational or arithmetic operators are replaced, or 
conditions are removed. Object-oriented languages also enable new options, such 
as the mutation of constructors or destructors. Being the first widely used and 
studied mutation testing tool, Mothra [9], initially capable of the mutation of 
Fortran code, offered a set of 22 operators. An example of operator nomenclature 
and frequently used operators is presented in Table 1. 

Table 1 
Common mutation operators 

Name Meaning Example 
ABS Absolute Value Insertion a=b+c  a=0 
AOR Arithmetic Operator Replacement a+b a-b, a/b, a*b, a%b 
COR Conditional Operator Replacement if(a||b) if(a), if(b), if(a&&b),… 
CR(P) Constant Replacement a 1, 0, -1, -a, 1+a 
LCR Logical Connector Replacement a||b a&&b,  
ROR Relational Operator Replacement a>b a>=b, a<b, a==b, a!=b,… 
SDL Statement Deletion a++; b=a; b=a; 
UOI Unary Operator Insertion a a++, --a, !a 

2.1 Improving Efficiency 

While the concept of mutation testing was first proposed in the 1970s and since 
has proven a feasible test verification method both in theory [5] [10] and in 
practice [11] [12], its widespread application in the industry is still pending. Part 
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of the underlying reasons were formulated early on: the method’s computation-
intensiveness and the problem of equivalent mutants. In the decades following the 
first publications, theoretical solutions were provided to both issues, which were 
successfully applied in recent case studies conducted in the industry [11] [13-17]. 

Reduce computation expense To reduce computational expense of mutation 
testing several cost-reduction techniques have been proposed. In the survey work 
of Jia and Harman [18] these are categorized into two types: 

• Reducing the number of generated mutants 

• Reducing the execution cost 

Mutant reduction can be achieved by mutant sampling, a method using a random 
subset of the generated mutants, an idea first proposed by Acree [19] and Budd 
[20]. Considering the large number of theoretically applicable operators, mutant 
reduction can also be achieved by reducing the number of applied operators, also 
known as selective mutation. Offut [21] proposed the application of five operators 
out of the 22 implemented in Mothra in order to drastically reduce the number of 
created mutants while maintaining effectiveness. These five operators serve as the 
base for both open-source mutation testing tools and currently existing industrial 
applications. A third method of mutant reduction, the creation of a single mutant 
per line of code, proved effective in a case study conducted at Google by Petrovic 
et al. [12], who found mutants to be heavily redundant: in 90% of the cases, either 
all or none of the mutants created within a single line of code were killed. Simple 
methods of reducing execution costs include stopping test suite execution after the 
first test failure, only executing tests covering the mutated code, or detection of 
infinite loops with the use of timeouts [14]. 

Reduce equivalent mutants The problem of equivalent mutants occurs when one 
or more, syntactically different, but semantically equivalent mutants are created 
from the same source code. These increase the number of tested mutants while not 
providing additional information about the fault detection capabilities of the test 
suite and misleadingly modifying the mutation score. While a method to 
automatically detect and eliminate all equivalent mutants is yet to be proposed, 
trivial compiler optimizations [22] [23] were found to reduce the total number of 
mutants in C programs by 28% [24] simply by removing the mutants generating 
identical executables when compiled with optimization. 

2.2 Mutation Testing Tools 

The other reasons preventing the widespread application of mutation testing are 
scalability issues arising when using existing mutation tools on industrial projects. 
We analyzed open-source mutation testing tools to find one suitable for 
application in the given industrial environment (Table 2). The goal was to find a 
tool capable of processing source code of industrial complexity and organization, 
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easily integrated with the commercial software testing tool and the complex build 
process used at the company. No such tool was found, but the search provided 
essential knowledge for the development of our own mutation testing tool. 

To integrate a mutation testing tool in the test environment provided by the 
company, two aspects must be taken into account: the format of test results the 
tool expects, and the method of code interpretation. Three open-source tools 
capable of mutation analysis of C code were thoroughly analyzed: Milu, a tool 
also used in other industrial applications [11] [17], dextool, and mull. The former 
uses the return value of test functions, while the latter two use the return value of 
an executable to assess test results. As the commercial test tool used at the 
company where this case study was conducted creates an executable with multiple 
test cases, none of the studied open-source tools could be made compatible with 
the test environment. All three programs used the abstract syntax tree (AST) to 
interpret source code, dextool, and mull using LLVM [33] to generate it. Overall, 
this was seemingly common practice in mutation tools for C, Mutate++ being one 
of the few using regular expressions instead. 

Table 2 
Available mutation testing tools 

Name Language Operators Parsing method Test format 
Milu [25] C 20 different 

operators 
Abstract Syntax 
Tree (AST) 

Test case 
return value 

dextool 
[26] 

C/C++ ABS, AOR, LCR, 
ROR, UOI, COR, 
SDL 

AST from LLVM Executable 
return value is 
test result 

mull [27] C/C++ Incomplete AOR, 
LCR, ROR, UOL, 
SDL, CR 

AST from LLVM Executable 
return value is 
test result 

Mutate++ 
[28] 

C/C++ Modified AOR, 
LCR, ROR, UOI, 
SDL, CR, some 
object-oriented 
operators 

Regular 
expressions 

 

PIT [29] Java Modified AOR, 
LCR, ROR, UOI, 
SDL, CR, some 
object-oriented 
operators 

ASM library (Java 
bytecode 
manipulation and 
analysis 
framework) 

JUnit 

The operators used by different mutation tools are partially constrained by the 
source code parsing method as certain operators are not applicable when using 
regular expressions. Dextool explicitly quotes Offut [21] in its documentation and 
uses the proposed 5 operators along with 3 others, while mull uses a reduced 
version of these and a simplified categorization, reducing generated mutants and 
providing a better overview of available mutations to a laic user. Milu provides 
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multiple levels of optimization and 21 configurable operators, including the 5 
proposed by Offut. PIT, a popular Java mutation tool, similarly to mull, doesn’t 
explicitly provide the 5 operators, nor their original categorization, but instead a 
more intuitive and constrained set, complemented with operators specific to 
object-oriented programming languages. 

2.3 Related Studies 

Not many studies have been conducted on the application of mutation testing to 
real-world, safety-critical software, but the few such papers report on the 
successful application of the method in different industries, highlighting its 
benefits and discussing the challenges faced during application. 

Baker and Habli [17] conducted the first empirical study on the application of 
mutation testing in safety-critical software development, sampling 220 lines of 
Ada and 435 lines of C code from airborne software components of two different 
safety assurance levels. Lacking a suitable tool, mutation of the Ada code samples 
was performed manually, resulting in 651 mutants, while the open-source tool 
Milu was used for the code samples written in C, resulting in 3147 generated 
mutants. In their experiments, they identified a set of operators effective on test 
suites already meeting MC/DC (modified condition/decision coverage) and 
statement coverage requirements. Mutation testing unveiled shortcomings in the 
existing test cases, and produced evidence suggesting that coverage criteria are 
insufficient, test engineers being too focused on satisfying coverage goals rather 
than creating well-designed test sets. Thus, their research showed that mutation 
testing adds value to the test verification process and, unlike manual review, offers 
a consistent measure of test quality. 

Ramler et al. [11] apply mutation testing to a real-world software system written 
in C, with 60000 lines of code, tested to achieve 100% MC/DC coverage, 
generating more than 75000 mutants. The study shows further empirical evidence 
of the effectiveness of mutation testing, partially replicating Baker and Habli’s 
research, but on a much larger scale. 

Delgado-Perez et al. [15] studied mutation testing in the nuclear industry, using 
MILU to mutate 484 lines of sampled C code, creating 2509 mutants. Applying 
the latest research on operator effectiveness, they selected 11 operators and used 
trivial compiler optimization, isolating 48 equivalent mutants. Their research 
further proved the feasibility of mutation testing in safety-critical software 
development and received positive feedback from the industry. 

Cornejo et al. [14] defined and evaluated a mutation analysis pipeline for space 
software, MASS. Aiming to reduce cost and provide scalable solutions, they 
applied trivial compiler optimization, original code coverage information for test 
case sampling, and mutated code coverage information for further mutant 
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reduction. The pipeline was evaluated with 6 different software artifacts, totaling 
at 105383 LOC (lines of code) and 202502 mutants. Their methods resulted in 
over 70% reduction of mutation analysis time, making it applicable to large 
systems. 

Örgård et al. [16] conducted an exploratory industrial case study evaluating the 
capabilities of existing C++ mutation tools in a non-safety-critical field. While 
they found two tools potentially suitable for a continuous integration workflow, 
issues emerging around compiler versions hindered applicability of the tools at the 
studied industry partner. Interviews conducted with engineers also revealed 
potential strategies for applying mutation testing in an industrial setting. 

This study reports on the creation of a custom mutation testing tool and the 
experience gained from its application on a moderate, but realistic sized target: the 
entire software of a rail braking system component consisting of 7251 LOC, 
generating 2871 mutants. Our aim was to create and apply a mutation testing tool 
in an existing workflow with a very light workload, showing how scalability 
issues can be easily overcome while still maintaining the benefits of mutation 
testing and adding value to the quality assurance process. To our knowledge, this 
is the only public case study conducted in the railway domain. 

3 Designing a Mutation Testing Tool 

This section discusses the requirements presented by the specific industrial 
environment, the challenges faced while meeting them, and the resulting mutation 
testing tool. The section ends with lessons that can be reused in other settings. 

3.1 Presenting the Industrial Context 

In this case study unit testing of safety-critical embedded software is performed in 
order to meet requirements specified in the IEC 61508 standard [7] for Functional 
Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems. 
The required safety integrity level for the studied code is SIL2, calling for 100% 
statement coverage, and further tests are implemented to cover component-level 
functional requirements derived during system analysis and design. 

All tests are implemented in C, using an Eclipse-based commercial 
unit/integration testing tool for C/C++, which, for confidentiality reasons cannot 
be disclosed. This tool is capable of generating tests based on different coverage 
requirements, measuring coverage metrics, and accessing and manipulating static 
and local variables. The created tests and the instrumented software under test 
(SUT) are then compiled into a test application using a customized version of 
GNU GCC, which creates a log of the test results and coverage data when run. 
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During software testing, the graphical user interface of the application is used, but 
a command line interface also exists. The tool is known to be incapable of 
detecting when the test application is stuck in an infinite loop, an issue to be 
tackled when testing mutants. 

When consulting with test engineers, further requirements for the mutation testing 
tool were established: for regression purposes, the option to (1) mutate only a 
certain section of the code should be available and (2) mutation operators should 
be separately configurable. The tool should (3) be compatible with the test 
environment, capable of handling multiple test sets within a component, or test 
sets corresponding to multiple source files. As the operating system under which 
the unit test tool is licensed in the company is Microsoft Windows, (4) no 
solutions requiring Linux can be applied. 

3.2 Challenges of Mutation Testing Tools for Embedded C 
Code 

The presented requirements first lead to an analysis of available mutation testing 
tools, briefly presented in Section 2.2. When no tool was found that could be 
easily instrumented to become compatible with our test environment, it became 
clear: the development of a custom mutation testing tool was needed – this faced 
us with multiple challenges to overcome during development. 

Integration with the unit testing tool can be easily achieved through its command 
line interface and the files it generates. The tool also constrains us to its specific 
version of GCC, therefore the use of other compilers, such as LLVM/Clang may 
cause compatibility issues. Using specific or proprietary compilers is quite 
common in embedded systems development, therefore developers of mutation 
testing tools should take into account this constraint. 

In order to apply mutation operators and create mutants, the source code has to be 
interpreted using one of two formerly presented methods: 

a) Using some kind of parser to generate the abstract syntax tree (AST) 

b) Using regular expressions. 

As the former method allows the application of a much wider range of operators, 
an attempt was made to generate the AST. Pycparser [30], a small, open-source 
tool, can only handle code free of preprocessor directives. A C parser created with 
ANTLR [31], using an open-source document describing C grammar [32] ended up 
running without error messages, but failed to correctly interpret types defined in 
separate files. Therefore, neither could be used on preprocessed source code, 
which would have resulted in a compromise between a much larger number of 
mutants, but a better mutation capability. 
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When running the GCC preprocessor certain defines, includes and other lines used 
for mapping includes appear in the code, along with the non-standardized 
compiler-specific implementation of standard libraries, which also enlarges the 
source file. Due to the remaining preprocessor directives nor pycparser and due to 
the non-standardized implementations neither the ANTLR-generated parser could 
be used to interpret source code. 

Retrieving the AST directly from GCC should also be possible, but we failed to 
find a run configuration outputting enough information in a format we could 
process. 

As the parsing of source code of industrial complexity ran into several obstacles, 
we resorted to the application of regular expressions, which didn’t require 
preprocessing the source code but constrained us to a certain set of operators. 
Recognition of the * and & operators in C without code interpretation is 
impossible, as they have a dual meaning. However, as subsequent results show 
this resulted in a tolerable compromise between functionality and applicability of 
the tool. 

3.3 Capabilities of the Created Tool 

Finally, the mutation testing tool was created to meet all the requirements 
presented by the company’s test environment and engineers. 

Table 3 
Implemented mutation operators 

Operator set Original code Mutated code Name 
Conditional 
boundary 

a<b a<=b ROR 
a>b a>=b 
a<=b a<b 
a>=b a>b 

Increment 
invert 

a++, ++a a--, --a UOI 
a--, --a a++, ++a 

Mathematical a+b a-b AOR 
a-b a+b 
a*b a/b 
a/b a*b 
a&b a|b LCR 
a|b a&b 
a&&b a||b 
a||b a&&b 
a>>b a<<b AOR 
a<<b a>>b 
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Conditionals 
negation 

a<b a>=b ROR 
a>b a<=b 
a<=b a>b 
a>=b a<b 
a==b a!=b 
a!=b a==b 

Boolean 
invert 

TRUE FALSE UOI 
FALSE TRUE 

Remove/nega
te condition 

if ( … ) if (TRUE) COR 
if (FALSE) 
if (!(…)) UOI 

Return 
NULL 

return ( … ); return NULL; CR 

Operators The categorization and selection of mutation operators to be 
implemented was an important step in the design process. After taking into 
consideration scientific evidence regarding efficient operators for C, previous 
industrial case studies and analyzing open-source tools, we decided to implement 
operators similarly to PIT and Mutate++: taking into account the 5 efficient 
operators isolated by Offut [21], but reducing and modifying the exact sets to 
create a more intuitive categorization and further reduce the number of mutants, 
resulting in the categories and operators in Table 3. 

Optimization The case study conducted by Petrovic et al. [12] showed that 
creating a single mutant per LOC is an efficient method of reducing mutants. This 
optimization method was also implemented in the mutation testing tool in order to 
assess its feasibility in this particular environment. 

Overall, the following functionality was implemented in a set of Python scripts: 

• Compatibility with the unit test tool: mutation, recompilation, running 
and evaluating tests 

• Configurable operators 
• Configurable scope 
• Configurable optimization (for experimental purposes) 
• Watchdog protecting against infinite loops 
• Logging in csv format 

3.4 Lessons Learned 

Our experience suggests that, similar to the results, published by Örgård et al. [16], 
compiler flavor and versions represent one of the greatest obstacles, when 
applying mutation testing in an industrial setting. The fact that the implementation 
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of this tool, including the research conducted on other mutation testing tools, took 
38 hours, shows that this obstacle is by far not as great as previous experience 
might suggest. Even if no open-source tool can be used in the given industrial test 
environment, a lightweight mutation testing tool using regular expressions can 
have comparably wide functionality to other tools with minimal compromises. 
Certain operators could not be implemented (e.g., AOR multiplication, LCR 
bitwise AND), but our results suggest that the other operators provided sufficient 
feedback about the quality of the existing tests in the given setting. 

After the conduction of this case study, the created tool was integrated in the 
component testing workflow. Following the creation of tests for a given 
component, testers ran the mutation testing tool and were required to either create 
further tests to kill live mutants or justify their existence. Thus, both test quality 
and review time and effort improved. Testers reported learning and correcting 
their typical mistakes and deficiencies in testing over time and spending less and 
less time adding test cases to kill mutants. 

4 Evaluation 

In this section, we present the evaluation method and results of the application of 
mutation testing in the studied safety-critical environment, using the created tool. 

4.1 Method 

We formulated 3 research questions, and conducted testing campaigns using 
different input software, test cases and configurations of the mutation testing tool. 
The logs created by the tool were then used to evaluate the results. 

4.1.1 Objectives and Research Questions 

Our evaluation had two main objectives: 1) applying our mutation testing tool to 
automatically generated coverage-based tests, assessing the testing deficiencies 
typical to this approach, and 2) finding an efficient configuration of the created 
tool based on the experience gathered from application of the tool on an existing 
software artifact from the studied environment. We defined the following research 
questions to base our study on: 

RQ1: How does coverage-based automatic test generation perform against 
mutation testing? 

RQ2: Does the optimization proposed by Petrovic et al. improve efficiency in 
this environment? 
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RQ3: How do manually complemented unit tests perform against mutation 
testing? 

4.1.2 Subjects and Evaluation Process 

Two different sources were utilized during the evaluation process: 1) two artifacts, 
space and tcas (Table 4), from the Software-artifact Infrastructure Repository 
(SIR) [8] were used for the evaluation of automatically generated tests and the 
effects of optimization, while 2) application of the tool was evaluated on source 
code provided by Knorr-Bremse Rail Systems. 

Table 4 
Metrics of the two artifacts from SIR 

Name LOC # of available test cases 
tcas 137 1608 
space 5905 13585 

To assess automated test generation, we attempted to generate tests meeting SIL4 
coverage requirements: 100% statement and MC/DC coverage. The software 
testing tool found tcas too complex and failed to generate any tests for it, but 
successfully created tests for space, though only part of the code could be 
processed at once due to its size and the hardware constraints met while 
processing it. 

For the evaluation of optimization, the tool was first modified to run tests and 
process test results from SIR. First, the mutation testing tool was run with all 
operators and without optimization, then the optimization option was switched on, 
and the results were compared. For tcas, all available test cases were used, 
whereas for space only one provided test set was chosen to maintain scalability. 

Table 5 
Metrics of the tested industrial components 

Name # of files  LOC # of test sets # of test cases 
comp1 2 408/99 8 1/10/42/2/1/1/5/1 
comp2 1 100 2 13/1 
comp3 1 324 1 42 
comp4 4 57/541/271/476 4 10/70/36/54 
comp5 5 77/91/17/23/42 4 9/14/3/0/7 
comp6 7 22/10/10/21/5/15/88 9 3/1/1/1/2/1/3/1/9 
comp7 4 362/12/10/262 5 5/44/2/1/17 
comp8 1 402 2 44/1 
comp9 6 110/402/15/480/187/151/74 6 15/29/3/21/16/3 
comp10 1 40 1 5 
comp11 1 136 1 18 
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comp12 1 558 8 10/1/5/11/1/1/6/10 
comp13 1 254 2 38/1 
comp14 2 738/334 1 78 
comp15 1 27 1 4 

Finally, the tool was applied to industrial software using all available operators 
and omitting optimization. The studied code consists of 15 components, referred 
to as comp1-15 here for confidentiality reasons. These components consist of 1-7 
files of various length, a minimum of one test set corresponding to each file. The 
decomposition of the software is detailed in Table 5. 

4.2 Results 

The results of our evaluation of automatically generated tests, effects of 
optimization, and experience gathered from application in the industrial setting are 
presented in the sections below. 

4.2.1 RQ1: Evaluation of Automatically Generated Tests 

The performance of coverage-based automatically generated tests against mutation 
testing was assessed using a part of the source code of space (Table 6). 

Mathematical operators and the mutation of different conditions resulted in a 
lower mutation score. Analysis of live mutants showed that there are two 
underlying testing deficiencies: 

• Insufficient testing of cycles and iteration times 

• The complete lack of testing passive effects of functions, such as 
mathematical operations made on global or static variables. 

Table 6 
Mutation results on automatically generated tests 

Operator set # of 
mutants Killed Alive Score 

Increment invert 0 0 0  
Mathematical 23 9 14 39.13% 
Conditional’s 
boundary 2 2 0 100.00% 

Conditional’s negation 26 20 6 76.92% 
Boolean invert 0 0 0  
Return NULL 61 38 23 62.30% 
Remove condition 109 78 31 71.56% 
ALL 221 147 74 66.52% 



Acta Polytechnica Hungarica Vol. 21, No. 8, 2024 

 – 101 – 

Return NULL without 
equivalent mutants 38 38 0 100.00% 

Corrected ALL 198 147 36 74.22% 

It is also worth mentioning that, during this testing campaign approximately a 
third of the mutants caused a run failure when tested. All these mutants were 
created using the Remove condition operator, which often breaks the coverage 
instrumentation of the unit testing software, causing errors. Additionally, one of 
the tools analyzed in chapter 2.2, dextool, discarded this specific operator from its 
set, pointing out how it “created junk”. A short example of this redundancy is 
shown in Figure 2, where all 4 mutants stayed alive when testing with suite 0 of 
SIR, all 4 of them pointing to the same untested functionality. The operator does 
generate 3 mutants for the same line of code (b). However, the same line is 
already mutated by other operator(s) too (c), thus making up the majority of 
created mutants redundant, which leads to increased runtime and a potential bias 
in mutation score. Therefore, omitting the operator should be considered. 

if (error == 17) { 
    

if ((0)) { 

if ((1)) { 

if (!(error == 17)) { 

if (error != 17) { 

(a) line 1428 of space.c (b) Remove condition 
mutants 

(c) Conditional’s negation 
mutant 

Figure 2 
Short example of the redundancy of the Remove condition operator 

4.2.2 RQ2: Effects of Optimization in the Studied Environment 

The optimization method by Petrovic et al. proposing to create only one mutant 
per LOC proved efficient in the case study conducted at Google. When running on 
tcas 32% of original mutants were created, and in 92% of cases a mutant was 
killed on the same line as in the original code. In the case of space 39% of original 
mutants were created showing a 99.55% match with original results with respect 
to lines of code. In both cases the mutation score increased moderately. 

The results show that while the optimization method achieved 

• A successful, drastic reduction of computation cost 
• Several types of mutants usually revealing different types of testing 

deficiencies were lost, resulting in a slightly higher mutation score. 

While the method is definitely efficient in cost reduction, at least a prioritization 
of the kind of mutation to be performed would be necessary to make it applicable 
in our industrial context without losing too much information. Figure 3 shows an 
example, where choosing to omit the live mutant (c) and just keeping the killed 
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mutant (b) would cause such information loss. Another characteristic of this 
context is that the components on which mutation testing can be performed are 
hardly ever larger than a few hundred LOC, making such drastic cost reduction 
measures a low priority. 

if (cntr++ > 2) if (cntr++ < 2) if (cntr-- > 2) 

(a) original code (b) Killed mutant (c) Live mutant 

Figure 3 
Short example of the information loss caused by the one-mutant-per-line optimization 

4.2.3 RQ3: Evaluation in Industrial Context 

Finally, the tool was applied on the entire software of a braking system 
component, resulting in 3281 mutants, of which 2871 ran successfully, the results 
further detailed in Table 7. 

Table 7 
Mutation results on industrial project 

Operator set Mutation 
score 

# of 
mutants % of mutants 

Increment invert 57.53% 91 3.17% 
Mathematical 66.16% 351 12.23% 
Conditional’s boundary 40.33% 132 4.60% 
Conditional’s negation 89.81% 517 18.01% 
Boolean invert 91.48% 281 9.79% 
Return NULL 65.13% 299 10.41% 
Remove condition 88.78% 1200 41.80% 
ALL 80.79% 2871  

Following the testing campaign, we manually reviewed all live mutants, 
determining typical testing deficiencies unveiled by mutation testing. 

Increment invert mutants mostly stayed alive as increment operators of for cycles. 
These cycles often move pointers or fill up tables and other functionally crucial 
variables, which the tests concentrating on code coverage fail to check completely. 

Mutants generated by the Mathematical operator set tend to stay alive when 
complex conditions don’t satisfy conditional coverage requirements, or when a 
mathematical operation is part of a parameter of function call. 

Conditional’s boundary mutants always show up when boundary value testing is 
improperly performed, a particularly frequent error when testing for-cycles. 

Conditional’s negation mutants also highlight shortcomings in testing cycles, but 
also reveal incomplete condition coverage of if-structures without an else- 
statement. 
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Boolean invert is more efficient at detecting redundant code, typically staying 
alive when the mutated value is overwritten without being used. 

The Return NULL operator mostly generates equivalent mutants, only producing 
live mutants when the return value is a function call, as the return value of a tested 
function is always checked during unit testing. 

As previously discussed in section 4.2.1, the Remove condition operator set further 
proved to be inefficient and generate mutants often resulting in run failure, while 
not providing additional knowledge regarding test suite deficiencies. 

The results of this analysis show that the tool and the applied operators provide 
important information about the analyzed tests, revealing typical testing 
inaccuracies: 

• The lack of checking passive effects of tested functions 
• Coverage-oriented, incomplete functional testing of cycles 
• Partial conditional coverage of if-else structures 

A short example of a live mutant caused by two of these mistakes is shown below 
in Figure 4. The mutant modifies the number of cycle iterations and might have 
stayed alive because the contents of the array were not checked, or because testing 
the effects of such cycles is generally omitted due to coverage-driven testing. 
These errors show similarity to those caused by purely coverage-based testing, 
showing how focusing on coverage requirements causes engineers to create less 
well-designed test cases. 

for (i = 0; i < maxL; i++){ 

    outArray[i] = inArray[i]; 

} 

for (i = 0; i <= maxL; i++){ 

    outArray[i] = inArray[i]; 

} 

(a) original code (b) mutant code 

Figure 4 
Short example of live mutant caused by the lack of checking passive effects of functions 

and the coverage-oriented incomplete testing of cycles 

Our results also suggest that the Return NULL and Remove condition operators 
create mutants that increase the computation requirements without adding value to 
mutation testing results and therefore should be omitted. 

Conclusions 

We have conducted a case study further broadening available knowledge on the 
application of mutation testing in safety-critical embedded systems. By creating a 
lightweight mutation testing tool tailored to the studied industrial environment, we 
showed that mutation testing can be applied with much less work effort than 
previously estimated, while still adding substantial value to the V&V process. 
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The research and implementation of the tool took up about a week’s work effort 
and required knowledge on Python and regular expressions. However, the 
integration effort depends heavily on the existing compiler and build 
infrastructure. The integration of the method required an additional step in the 
onboarding and training process and minimal time allocated to supporting testers. 
Full integration in the component testing workflow was achieved in approximately 
6 months. 

When applying our tool to automatically generated, coverage-based tests and the 
manually complemented unit tests, we were able to identify the typical testing 
deficiencies appearing when only testing for code coverage. Our results confirmed 
previous studies claiming that mutation testing is a feasible complementary testing 
method to standard coverage-based testing. 

We applied the mutant reduction technique proposed by Petrovic et al. [12] and 
found that while quite efficient, its application was not justifiable in the studied 
environment, as the scale our study was conducted on was much smaller, while 
finding all possible testing deficiencies was of higher priority. 

Following this case study, the created mutation testing tool was officially 
integrated in the component testing workflow, omitting the two operators and the 
optimization method that proved inefficient. Like the strategies proposed by 
practitioners in the study directed by Örgård et al. [16], mutation analysis is run 
after the creation of a test suite, during downtime, and rerun on live mutants after 
additional test cases have been created to kill them. Overall feedback has been 
positive, and the additional workload minimal. 

Anther software testing team has shown an interest in the method, and 
implementation in their workflow may follow. Our results could help to broaden 
the application of mutation testing in safety-critical systems by showing how 
typical challenges can be alleviated. 
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