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Abstract: Electromechanical actuators (EMA's) are of interest for applications that require 

easy control and high dynamics. In this paper, we design a robust PID controller for 

position control of a real electromechanical actuator. An EMA is modeled as a linear 

system with parametric uncertainty by using its experimental input-output data. PID 

controllers are designed by graphical findings of the regions of stability with pre-specified 

margins and bandwidth requirements and by applying the complex Kharitonov's theorem. 

This novel method enables designers to make the convenient trade-off between stability and 

performance by choosing the proper margins and bandwidth specifications. The EMA 

control system is passed to the Bialas' test, and validated on the basis of meeting a desired 

set of specifications. The effects of parameter variations on the system’s stability and 

performance are analyzed and the simulation and test results show that the EMA with the 

new controller, in addition to robustness to parametric uncertainties, has better 

performance compared to the original EMA control system. The simulation and test results 

prove the superiority of the performance of the new EMA over the original EMA control 

system pertaining to its robustness to parametric uncertainties. 
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1 Introduction 

In recent years, electromechanical actuators (EMA's) are in high demand in 

robotics and aerospace science industries. An EMA has attractive characteristics 

such as simplicity, reliability, low cost, high dynamic characteristics, and easy 

control [1-3]. However, EMA modeling is subject to uncertainty due to several 

reasons, including operating point changes, parametric variations due to 

temperature changes, non-modeled dynamics, and asymmetric behavior. 

Consequently, the desired EMA's performance will be unachievable and, in some 

cases, its stability may be lost. Usually, based on experience, this problem will not 

be solved by using the conventional controllers; instead robust controllers are 

needed to obtain the desired performance and stabilization demands in dealing 

with dynamic uncertainties [4-6]. 

The primary motivation for designing the EMA was to access the ameliorated and 

favorable robustness to meet the application requirements. Robust controllers 

were designed to achieve robust stability, good tracking, and disturbance 

attenuation using the Lyapunov-based synthesis concept in [7, 8]. A genetic 

optimized PID controller was designed in [9], in order to improve the EMA 

system transient state behavior. A robust H∞ controller for an EMA, was designed 

and tested to achieve a faster and more accurate system in [10]. 

There is a wide range of applications for PID controllers in industry due to their 

simplicity and effectiveness. However, the tuning process, whereby, the proper 

values for the controller parameters are obtained is a critical challenge. Also, the 

traditional PID controller lacks robustness against large system parameter 

uncertainties, the reason lies in the insufficient number of parameters to deal with 

the independent specifications of time-domain response, such as, settling time and 

overshooting [11]. Much effort is involved in designing robust PI, PD, or PID 

controllers for uncertain systems, based on different robust design methods, 

known in literature as Kharitonov's Theorem, Small Gain Theorem, H∞ and Edge 

Theorem [12-14]. A graphical design method of tuning the PI and PD controllers 

achieving gain and phase margins is developed in [15]. An approach to design 

PID controllers for systems without time delay was presented in [16]. 

In this paper, a novel approach to the design of a robust PID controller for an 

EMA system with time delay, is proposed and applied to a "motor with harmonic 

drive" subsystem of the EMA system. This approach is presented, based on the 

complex Kharitonov theorem for interval model with time delay. The applied 

method enables the designer to make the convenient trade-off between stability 

and performance by choosing the appropriate margins and bandwidth 

specifications. The closed loop EMA system and "motor with harmonic drive" 

subsystem is modeled as linear systems with parametric uncertainty. The 

modeling is accomplished, by identifying the EMA system and "motor with 

harmonic drive" subsystem using experimental input-output data in different 
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operating points. Bialas' test based on edge theorem is also applied, to emphasize 

the robust controller validity. 

The robust controller design procedure is then studied under simulation 

conditions, and its effectiveness is proven by comparing the closed loop 

performance identified through test data with that achieved by using the robust 

PID controller. 

After presenting this introduction, we discuss the following: The EMA uncertain 

model and experimental set-up as described in Section 2. In Section 3, the robust 

PID computations by Kharitonov's theorem with bandwidth, phase and gain 

margins constraints are explained. In Section 4, the design validation is carried out 

and finally, conclusion are drawn. 

2 Experimental Set-up and Uncertainty Modeling 

EMA mainly consists of a DC motor driven by PWM driver, a harmonic drive 

reducer, a potentiometer position sensor, and a controller as shown in Figure 1. In 

this figure, r is the setpoint voltage, v is the PWM output, and δ is the output 

angle. 

 

 

 

 

 

 

Figure 1 

EMA block diagram 

The experimental set-up consists of a permanent magnet DC motor with integrated 

harmonic drive gearing with 300:1 reduction ratio. The motor is driven by a PWM 

driver. The actual shaft position is recorded by a potentiometer fixed on the output 

shaft. A data acquisition card, which is connected to a PC, records the readings 

from the potentiometer. 

The model of the DC motor and position control is well known in the literature 

[17, 18]. The model of the subsystem under consideration (motor with harmonic 

drive reducer) is: 
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where Km (N.m/A) is the motor's torque constant, L (H) and R (Ohm) are the 

inductance and resistance of motor control coil respectively, b (N.m/rad/sec) is the 

viscous damping coefficient, N is the harmonic drive gear ratio, and Jm (Kg.m
2
) is 

the rotor's moment of inertia. 

Hence, considering that the change of armature current in time is negligible, we 

can use engineering judgment to neglect L. In addition, the viscous damping can 

be neglected. So, the EMA model can be represented as follows: 

    

    
 

 

   
  

  
     

 
(2) 

Where K is a constant corresponds to the open loop gain, controller, and motor 

constants. Kf is the potentiometer coefficient in v/deg, and 

    
   
  

 
 

In this phase, we planned to verify best fitting. To achieve this goal, a method of 

classic identification was used to establish the EMA’s model from the test data, by 

minimizing the mean square error (MSE). While applying this method, five 

working points for the EMA system were used for model identification. The final 

output was the extraction of the uncertain model. For example, the test results of 

the studied EMA system in one working point are shown in Figure 2, whose 

model is: 

       
    

    
 

 

(
 

   
  ) (

  

            
 

   
  )

 

Similarly, the models corresponding to the other working points were identified, 

and the nominal model of the EMA system is: 
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Figure 3 shows the actual response curve and the identified model response. 

It can be seen from Figure 4 that the frequency response of the model and the 

actual response of the EMA, are basically, identical. Therefore, the transfer 

function model described in (3), is recognized to approximately describe the 

original EMA system. 

Next, the model of the "motor with harmonic drive" subsystem was identified for 

five working points. For instance, the test results in one working point of the 

studied EMA system are shown in Figure 4 and its model has the following form: 
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Figure 2 

Input and output data captured from EMA 

 

 
Figure 3 

Frequency responses of the EMA's model and its test results 
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Figure 4 

Outputs of "Motor and harmonic drive" subsystem and its model 

The parametric uncertain model, with time delay, was built to be used in the 

robust controller design. 
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The uncertain parameters of the model and their intervals are: 
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3 Robust Controller Design by Kharitonov Theorem 

In this section, the Kharitonov's theorem will be briefly presented, and it will be 

applied to design a robust controller for the EMA system under consideration. The 

studied system with gain-phase margin tester is illustrated in Figure 5. 
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Figure 5 

The studied control system with gain-phase margin tester 

3.1 Kharitonov's Theorem and Kharitonov's Rectangles 

Kharitonov’s theorem deals with the stability of a system with closed-loop 

characteristic polynomial. Consider I
*
 (s) to be the set of closed-loop characteristic 

polynomials of degree n for the interval systems of the form: 
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for i=0,1,…,n. The degree is assumed to be invariant over the polynomials family. 

The necessary and sufficient condition for the stability of the entire family is 

formulated, in the following theorems. In such a case, the set of Kharitonov 

systems is as follows: 
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Theorem 1: Kharitonov’s Theorem 

Every polynomial in the family I
*
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Theorem 2 

The closed loop system containing the interval plant G(s) is robustly stable if and 

only if each of the Kharitonov systems in       is stable. [19] 

Definition: Kharitonov Rectangle 

Evaluating the four Kharitonov polynomials K
1
 (s), K

2
 (s), K

3
 (s), and K

4
 (s) at s = 

jω0 , the four vertices of Kharitonov's rectangle will be obtained. Therefore, given 

an interval polynomial family P (s,q) and a fixed frequency ω = ω0, the value P 

(jω0,q) is a rectangle whose vertices are given by Ki (jω0) for i = 1,2,3,4. [19] 

Theorem 3: Origin Exclusion for Interval Families 

An interval polynomial family        has invariant degree and at least one stable 

member         is robustly stable, if and only if, the origin of the complex plan is 

excluded from the Kharitonov's rectangle at all nonnegative frequencies, i.e. 

           for all frequencies. Practically, it is enough to check the zero 

exclusion for all     , i.e. for frequencies that are less than the crossover 

frequency. [19] 

3.2 Controller Design 

In this subsection, we design a robust PID controller, which robustly stabilizes the 

uncertain system, and guarantees the desired performance of closed loop system. 

The required response of the EMA system to be designed, is a deadbeat response 

as shown in Table 1. 

Table 1 

System performance requirements 

Parameter Value 

Rise time tr < 40 msec 

Settling time ts < 60 msec 

Steady-state position error 0 

Overshoot < 1% 
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Bandwidth 10 Hz ≤ BW ≤ 40 Hz 

Gain margin Gm ≥ 7 dB 

Phase margin Pm ≥ 40° 

Since the studied system has a time delay and gain-phase margin tester, the 

complex Kharitonov system will be used. The closed-loop characteristic 

polynomial of EMA system in Figure 5 is: 

     [      
     ]          

                              

        

(8) 

where Kp, Ki, and Kd are the coefficients of the PID controller. It is clear from (8) 

that the polynomial has invariant degree. The coefficients of PID controller 
Kp, and Ki can be expressed as functions of uncertainties, frequency, and Kd as 

follows: 

                                           [   ] (9) 

By varying the frequency, it is possible to draw the stability boundary in Kp-Ki 

plan for certain Kd. 

The effect of the time delay Td on the stabilizing region will be verified. The 

margins and Kd are assigned to be as follows: A=1, φ = 0° and Kd = 0.08. The 

edge polynomial K
6
(s), which has the smallest stabilizing area, is illustrated in 

Figure 6. 

The effect of the coefficient Kd is also considered. The larger Kd results in larger 

stability region as it is shown in Figure 7 for the first Kharitonov polynomial. 
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Figure 6 

The effect of time delay on the stabilizing area 

 

Figure 7 

K1 for different values of Kd 
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Subsequently, the phase margin constraint is the issue of consideration, Pm ≥ 40°. 

In this case, all eight Kharitonov's polynomials are plotted in Figure 8, and the 

stabilized area is that restricted under K
6 
and K

8
 polynomials. 

 

Figure 8 

The stabilized lapped area for Pm ≥ 40° 

The next step, in addition to the phase margin constraint, the gain margin 

constraint will be added Gm ≥ 7 dB. The first four Kharitonov's polynomials are 

separately plotted in Figure 9. The lapped region under the two margins curves is 

the stabilizing region where the margins constraints are achieved. 
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Figure 9 

The stabilized lapped areas for the 4 first polynomials with Pm ≥ 40° and Gm ≥ 7dB 

Following, the bandwidth condition with upper and lower limits will lead to the 

restricted area shown in Figure 10 for bandwidth between 10 and 40 Hz. 

Thus, all controller's coefficients situated in the common lapped region, shown in 

Figure 11, robustly stabilize the closed loop EMA system over all the uncertainties 

under consideration, and ensure the performance margins and bandwidth 

conditions. 
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Figure 10 

The stabilized area for 10<BW<40 Hz 

 

Figure 11 

The stabilized lapped area for Pm ≥ 40°, Gm ≥ 7dB, and 10<BW<40 Hz 

The PID controller coefficients should be selected from the stabilized area shown 

in Figure 11, so that the desired performance requirements of the EMA system are 

attained. 

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

Kp

K
i

BW=10 Hz

BW=40 Hz

Bandwidth condition: 

10 < BW < 40 Hz

1 2 3 4 5 6 7 8 9 10 11

20

40

60

80

100

120

140

160

180

Kp

K
i

 

 

(Kp, Ki, Kd) = 

(10.9, 5.45, 0.08)

The eight Kharitonov's

polynomials: K1,..., K8

Kd = 0.08

Td = 3.5 msec

Robust stabilizing

area with:

Gm > 7 dB; 

Pm > 40 deg; 

10 < BW < 40 Hz



R. Salloum et al. Robust PID Controller Design for a Real Electromechanical Actuator 

 – 138 – 

The selected PID controller is: (Kp, Ki, Kd ) = (10.9, 5.45, 0.08). To affirm the 

method validation, the gain and phase margins for the polynomials family with the 

designed controller for all the edges uncertainties were extracted and tabulated in 

Table 2. It is noted that the constraint of required margins Pm ≥ 40° and Gm ≥ 7dB 

is verified. 

Table 2 

Margins for polynomials family with controller (10.9, 5.45, 0.08) 

K q1 q2 Gm (dB) Pm (deg) 

949.7 197.6 90.5 16.4 85.5 

35 16.4 85.2 

90.4 90.5 14.6 59.2 

35 14.6 59.1 

512.3 197.6 90.5 21.7 87.8 

35 21.7 87.3 

90.4 90.5 20 69.4 

35 20 69 

3.3 Stability and Performance Robustness Analysis 

Figure 12 is the vivid illustration of the nominal closed-loop system analysis with 

maximum time delay, which indicates its high robustness with 17.6 dB gain 

margin and 79.7 deg of phase margin with bandwidth 12.9 Hz. 

The worst-case analysis (peak-over-frequency type) shows a degradation of the 

gain and phase margins to a mere 10 dB and 54.9 deg, which takes place at 

frequency 24.5 Hz. However, the margins are still acceptable compared to the 

system's requirements. In addition, the frequency at which the worst-case takes 

place (24.5 Hz) is somewhat larger than the system's bandwidth. 
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Figure 12 

Bode diagram of nominal system with controller (10.9, 5.45, 0.08) 

The sensitivity function is a measure of closed-loop performance for the EMA 

feedback control system. In the time domain, the sensitivity function indicates 

how well a step disturbance can be rejected. The uncertain sensitivity function S 

was calculated and the Bode magnitude plots for the nominal and worst-case 

values of the sensitivity function were compared, as shown in Figure 13. 

 

Figure 13 

Bode magnitude plot of the nominal and worst-case sensitivity 
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sensitivity function step response, is plotted to observe the variability in 
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Figure 14 

Step response of the nominal and worst-case sensitivity 

Since it is enough to test the origin exclusion for      (the crossover frequency 

which is less than 100 rad/sec in the studied system), the rectangles were plotted 

for frequencies ω < 200 rad/sec in Figure 15. 

 
Figure 15 

Kharitonov rectangles for the EMA system 

As shown in Figure 15, the origin is excluded from the Kharitonov's rectangles, 
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4 Robust Controller Validation 

The EMA system, with the new robust controller, will be validated by Bials's test 

and by comparing its performance with the original EMA performance. 

4.1 Validation by Bialas' Test 

Suppose that the polynomials p1 and p2 are strictly Hurwitz with their leading 

coefficient nonnegative and the remaining coefficients positive. Let P1 and P2 be 

their Hurwitz matrices, and define the matrix: 

       
   (10) 

Then each of polynomials 

                 [   ] (11) 

is strictly Hurwitz iff the real eigenvalues of W all are strictly negative. 

Remark: the Hurwitz matrix Q, for the polynomial q(s), is defined as follows  

        
     

       
         

[
 
 
 
 
 
      

      

      

     

    

   

  

   
   
    
    
      
   ]

 
 
 
 
 

 

The designed controller by Kharitonov's theorem should be submitted to the 

Bialas' test at its 12 exposed edges. 

For the first exposed edge: the two polynomials after numerical substitution are 

                                   

                                  
 

Which are both Hurwitz . The Hurwiz matrices of these two polynomials are: 

    [
             

       
             

],        [
             

       
             

] 

The eigenvalues of           
   are -1, -0.9903, and -1. They are all real and 

negative. Hence, by Bials' test, the EMA system is stable on the first edge. 

Similarly, the other 11 were checked and the eigenvalues of Wi for i =2… 12 are 

all real negative. Another example, the eigenvalues of              
   are -

0.5394, -0.5410, and -0.8718. So, by the edge theorem, the system is robustly 

stable for the uncertainties under consideration. 
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4.2 Performance Validation 

Finally, the step responses of the EMA system with the designed robust controller 

and the identified original one were plotted (as illustrated in Figure 16). 

 
Figure 16 

Step responses for EMA systems 
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Table 3 
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ts 

(msec) 

tp 

(msec) 

Overshoot 

(%) 
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Robust EMA 30 48 -- 0 
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To attain the last results, the EMA system with the designed robust controller 

secures the robust stability over the uncertainties intervals and attains the required 

margins (Pm ≥ 40°, Gm ≥ 7dB) with an acceptable bandwidth. In time domain, it 

has no overshoots and no steady-state errors. Therefore, all the required 

specifications shown in Table 1 are accomplished. 

Conclusions 

A novel approach was proposed, to graphically design a robust PID controller, for 

a parametric uncertain system with time delay constrained with gain and phase 

margins conditions. It was then applied to an EMA system, the designed controller 

ensured robust stability, while shaping the performance in a desired fashion. 

Finally, in order to validate its practicality, the robust EMA system was compared 

with the identified EMA system. In addition, to its robustness, the robust EMA 

system proved better dynamic characteristics than the original. 
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