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Abstract: In order to characterize and classify quantitatively the local topological structure 
of traditional fullerene graphs a new method has been developed. The concept is based on 
the introduction of a finite set of novel topological invarians called pentagon arm indices. 
The definition of pentagon arm indices is similar to that of well known pentagon adjacency 
indices, and their common features is that both of them characterize the local topological 
neighborhood of pentagons included in traditional fullerenes. It will be demonstrated that 
pentagon adjacency indices and pentagon arm indices together can be successfully 
applicable for preselecting the stable candidates of lower fullerene isomers Cn with n≤70. 
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1 Introduction 

Fullerenes are defined as 3-valent (3-regular) polyhedral graphs having only 
pentagonal and hexagonal faces. 

Methods for topological characterization of fullerene isomers have made a steady 
progress over the past decade and many calculations of stabilities of traditional 
and non-traditional fullerenes have been reported [1-14]. A promising trend in 
fullerene science is the employment of graph theoretical invariants for the 
characterization of combinatorial structure and prediction of their stabilities. 
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Several topological descriptors have been proposed to evaluate and classify the 
topological structure of fullerene isomers: the pentagon adjacency index NP [1-4], 
the Wiener index WI [5], the resistance distance RT [5], the Kekulé structure count 
[6], the graph independence number [7], the number of spanning trees [8], the 
combinatorial curvature [9], the bipartivity measure of fullerene graphs [10], the 
occurrence number of different structural motifs in fullerenes [12-14]. 

In the majority of cases, for the stability prediction of lower fullerene isomers Cn 
with n≤70 the pentagon adjacency index NP (the so-called minimal-NP criterion) is 
used [1, 3, 4]. Determination of the pentagon adjacency index NP is based on the 
pentagon-neighbor signature {p0, p1, p2, p3, p4, p5}, where each entry pk 
(k=0,1,2,…5) counts those pentagons that have exactly k pentagonal edge-
neighbors. From these data the pentagon adjacency index NP can be simply 
computed: 

∑=
k

kP kp
2
1N  (1) 

where ∑ =12pk . It is obvious that NP is also equal to the number of edges 

between adjacent pentagons, in other words NP is identical to the total number of 
fused pentagon pairs in an isomer. 

According to the minimal-NP rule it is supposed that fullerenes which minimize 
NP are more likely to be stable than those that do not [3-5]. Consequently, it is 
believed that the buckminsterfullerene is the most stable C60 fullerene, because 
this is the only one for which NP has a minimum value (NP=0). 

However in some cases the discriminating power (i.e. the efficiency of prediction) 
of NP index is limited. (The minimal-NP criterion does not suffice to uniquely 
characterize the structure of fullerene graphs with identical pentagon adjacency 
indices.) Even some lower fullerene isomers Cn with n≤70 are characterized by the 
same pentagon adjacency index NP. In such cases, using NP, the accuracy of 
stability prediction is problematic. For example, among C66 fullerenes there are 
three isomers with the same lowest pentagon adjacency index (NP=2), moreover, 
among C68 fullerenes there exist 11 isomers with NP=2. 

In order to improve the efficiency of stability prediction, a novel three-variable 
topological descriptor denoted by Ψ has been constructed. This includes the NP 
index, and additionally two other independent topological graph invariants as well. 
The construction of this novel descriptor Ψ is based on the introduction of the so-
called pentagon arm signature vector, whose components can be simply computed 
from Schlegel diagrams of fullerenes. 
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2 Pentagon Arm Indices as Graph Invariants 

In a fullerene a pentagonal face FP has 5 vertices, and each vertex is incident to an 
edge not belonging to the pentagon under consideration. An edge E incident to a 
vertex of FP is called an arm of FP if i) both end-vertices of edge E are incident to 
pentagons, and ii) E shares two neighbor hexagons. This definition implies that 
any pentagonal face may have q=0, 1,2,…5 arms. Let us denote by nq the number 
of pentagons having q arms in a fullerene. It follows that each fullerene can be 
characterized by a pentagon arm signature vector {n0, n1, n2, n3, n4, n5}, where 
each entry nq (k=0,1,2,…5)  counts those pentagons that have exactly q arms. 
Starting with this concept, for an arbitrary fullerene we define a pentagon arm 
index NA as follows: 

∑=
q

qA qn
2
1N  (2) 

where 12nq =∑ . 

From this concept it follows that parameter NA is identical to the total number of 
edges whose end-vertices are incident to pentagons, and share two neighbor 
hexagons, exactly. It can be verified that for topological invariant NPA defined as  

APPA NNN +=  (3) 

the inequality 0 ≤ NPA ≤ 30 holds [15]. Concerning the upper bound, it follows 
that for fullerene C20 (represented by the dodecahedron) NPA=30+0=30, and for 
the buckminsterfullerene NPA=0+30=30 holds. It is conjectured that for any other 
fullerenes the inequality 0 ≤ NPA ≤ 25 is valid. (For fullerene isomers C30 : 1(D5h) 
and C50 : 271 (D5h) we have NPA=NP + NA= 25).  

In order to construct the topological descriptor Ψ and classify the fullerene 
isomers into disjoint subsets, we used the first and second moments (M1 and M2) 
of pentagon arm signatures {n0, n1, n2, n3, n4, n5}: 

∑
=

=
5

0q
q

k
k nq

12
1M  (4) 

where k=1 and k=2, respectively. From the previous consideration it follows that 
M1=NA/6. By means of moments M1 and M2, the variance of q can be calculated 
as VAR=M2– M1*M1. It is easy to see that VAR =0 if and only if there exists a 
positive integer 0 ≤q ≤ 5 among the components of pentagon arm signature vector 
for which nq =12 holds. Starting with this concept, a fullerene is called balanced 
(more exactly q-balanced) if there exists a non-negative integer q for which nq =12 
valid. This means that a fullerene is balanced if and only if, VAR=0 holds. In Fig. 
1 some examples are given for balanced fullerenes. 
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Figure 1 

Schlegel diagrams of balanced fullerenes: a) 0-balanced C28 (Td) isomer, b) 5-balanced C60 (Ih) isomer 
(buckminsterfullerene) and c) 4-balanced C72 (D6d) isomer 

The 5-balanced and 4-balanced isomers illustrated in Fig. 1 belong to the family of 
IPR (isolated-pentagon rule) fullerenes. It is known that the number of IPR 
fullerenes (fullerenes with NP=0) is infinite. Fullerenes with NPA= NP + NA=0 are 
called strongly isolated fullerenes. This definition implies that strongly isolated 
fullerenes represent a subset of IPR fullerenes. The number of strongly isolated 
fullerenes is also infinite. In Fig. 2 the Schlegel diagram of a strongly isolated 
fullerene is shown. 

 
Figure 2 

Schlegel diagram of the strongly isolated fullerene isomer C80 (Ih) 

It can be verified that C80 (Ih) with vertex number 80 is the smallest strongly 
isolated fullerene. (See Fig. 2) 
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3 A Novel Graph-Theoretic Invariant for the 
Characterization of Fullerene Structures 

In order to characterize the local combinatorial structure of fullerenes more 
efficiently, we defined the topological descriptor Ψ as follows 
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For balanced fullerenes, (where VAR=0), coefficient C(M1,M2) can be rewritten it 
the following simplified form: 

A
A

1
121 N76
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M71
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+
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=  (7) 

As can be seen, Ψ is defined as a function of 3 algebraically independent graph 
invariants: the pentagon neighbor index NP and the moments M1 and M2. It 
follows that for strongly isolated fullerenes NP =NA=C(M1,M2)=0, consequently in 
this case Ψ=30. The constants included in Eqs. (6 and 7) were estimated using 
numerical methods, as a result of analyzing the possible combinatorial structures 
and the energetic parameters of C40 isomers. This choice is explained by the fact 
that several topological descriptors have been already calculated for C40 fullerene 
isomers. 

As it is known isomer C40:38 is predicted to be the C40 fullerene of lowest energy 
by many methods [3-5], this is followed by C40:39 and C40:31 isomers. It has 
been also shown that C40:38 fullerene has the lowest resistance-distance in the set 
(RT=920,27). Two C40 isomers (C40:38 and C40:39) have the smallest pentagon 
adjacency indices (NP=10). Among the 40 isomers of C40, fullerene C40:1 is the 
least stable isomer having the highest pentagon adjacency index (NP =20) and the 
highest resistance distance (RT =955.15). In Table 1 we summarized the computed 
values of pentagon arm signatures {n0, n1, n2, n3, n4, n5}, the pentagon adjacency 
indices NP and the topological descriptors Ψ, for the forty C40 isomers. (Each of 
isomers is labeled according Fowler and Manolopoulos [1]). Simultaneously, 
using Density Functional Tight-Binding (DFTB) method [16] we calculated the 
total energy values QC characterizing the relative stability of isomers. 
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Table 1 
Topological parameters and relative energies of the forty C40 isomers 

Topological parameters Energy,QC Isomer n0 n1 n2 n3 n4 n5 NP Ψ (eV) 
C40:38 0 8 0 4 0 0 10 0.8140 -342,031 
C40:39 0 10 0 0 0 2 10 0.8106 -341,631 
C40:31 1 3 5 3 0 0 11 0.7631 -341,438 
C40:29 2 2 4 4 0 0 11 0.7628 -341,345 
C40:26 2 6 2 2 0 0 11 0.7108 -341,094 
C40:24 3 4 3 2 0 0 11 0.7102 -341,022 
C40:37 4 6 0 2 0 0 11 0.6744 -340,636 
C40:40 0 0 12 0 0 0 12 0.6924 -340,580 
C40:14 3 2 5 2 0 0 12 0.6715 -340,476 
C40:36 4 6 2 0 0 0 11 0.6597 -340,431 
C40:30 3 3 3 3 0 0 12 0.6711 -340,304 
C40:25 4 4 2 2 0 0 12 0.6382 -340,277 
C40:22 5 3 3 1 0 0 12 0.6219 -340,230 
C40:35 4 6 2 0 0 0 11 0.6597 -340,196 
C40:21 6 2 0 4 0 0 12 0.6358 -340,151 
C40:27 4 6 0 2 0 0 12 0.6219 -340,126 
C40:15 2 8 2 0 0 0 12 0.6250 -339,943 
C40:17 2 6 4 0 0 0 13 0.5943 -339,884 
C40:34 5 6 1 0 0 0 12 0.5923 -339,827 
C40:28 4 5 2 0 0 1 12 0.6358 -339,777 
C40:16 2 6 4 0 0 0 13 0.5943 -339,645 
C40:20 6 6 0 0 0 0 12 0.5772 -339,627 
C40:9 4 2 4 2 0 0 13 0.6075 -339,614 
C40:10 6 2 4 0 0 0 13 0.5622 -339,558 
C40:12 4 6 2 0 0 0 13 0.5641 -339,370 
C40:13 7 2 3 0 0 0 13 0.5467 -339,347 
C40:19 4 2 6 0 0 0 13 0.5933 -339,292 
C40:23 8 2 2 0 0 0 13 0.5313 -338,690 
C40:6 7 4 1 0 0 0 14 0.4970 -338,624 
C40:18 6 6 0 0 0 0 14 0.4987 -338,341 
C40:5 6 1 4 0 0 1 14 0.5497 -338,332 
C40:32 8 4 0 0 0 0 14 0.4843 -338,270 
C40:8 6 4 2 0 0 0 15 0.4785 -338,113 
C40:33 4 8 0 0 0 0 14 0.5132 -337,922 
C40:4 7 4 1 0 0 0 15 0.4654 -337,348 
C40:7 6 6 0 0 0 0 15 0.4670 -337,330 
C40:11 10 2 0 0 0 0 15 0.4404 -336,642 
C40:2 8 4 0 0 0 0 16 0.4262 -336,489 
C40:3 12 0 0 0 0 0 18 0.3659 -335,193 
C40:1 12 0 0 0 0 0 20 0.3297 -333,806 

These energies are also given in Table 1. As shown in Table 1, using the 
topological descriptor Ψ we get the following trends of relative stability: C40:38 > 
C40:39 > C40:31> C40:29. This corresponds to the theoretical results based on ab 
initio calculations [3-5]. This finding confirms that topological descriptor Ψ 
correlates highly with the computed total energy value QC. Moreover, from Table 
1 it can be seen that in the set of C40 fullerenes, there are three balanced isomers: 
C40:40 is 2-balanced, while C40:1 and C40:3 are 0-balanced isomers. 
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4 Comparative Tests Performed on a Set of C66 
Isomers 

In order to test the discriminating power of topological descriptor Ψ, we used the 
sets of C66 isomers. The number of topologically different C66 isomers is 4478. All 
of them were generated and sorted in terms of the calculated total energy values. 
Among C66 fullerenes there are 3 isomers with lowest pentagon adjacency index 2, 
and 26 isomers with NP =3. 

Table 2 
Topological parameters and relative energies of the forty lowest energy C66 isomers 

Topological parameters Energy,QC Isomer 
 n0 n1 n2 n3 n4 n5 NP Ψ (eV) 

C66:4169 2 1 0 3 4 2 2 3.4756 -583.0067 
C66:4348 0 4 0 4 2 2 2 3.4214 -582.8916 
C66:4466 2 0 2 2 6 0 2 3.4214 -582.7047 
C66:4007 2 2 2 3 2 1 3 2.4369 -582.3229 
C66:3764 2 1 5 3 1 0 3 2.3537 -582.3027 
C66:4456 2 2 2 6 0 0 3 2.3537 -582.1878 
C66:4462 1 2 5 4 0 0 3 2.3557 -582.1816 
C66:4060 2 3 2 3 2 0 3 2.3479 -582.1267 
C66:4141 1 3 2 3 3 0 3 2.4423 -582.1118 
C66:4312 0 3 2 6 0 1 3 2.4871 -582.0754 
C66:4439 1 3 5 3 0 0 3 2.3126 -582.0316 
C66:3765 2 1 5 1 3 0 3 2.3954 -582.0278 
C66:3538 2 1 4 4 0 1 3 2.3954 -582.022 
C66:4447 2 1 3 5 1 0 3 2.3982 -581.9169 
C66:4458 2 2 3 2 3 0 3 2.3937 -5819087 
C66:4331 0 4 4 2 2 0 3 2.3995 -581.8906 
C66:4454 1 4 7 0 0 0 3 2.2279 -581.8632 
C66:3824 3 1 1 2 4 1 3 2.4783 -581.8594 
C66:4434 2 2 3 2 3 0 3 2.3937 -581.8251 
C66:4369 2 3 2 3 2 0 3 2.3479 -581.8133 
C66:4388 2 1 2 3 4 0 3 2.4862 -581.8098 
C66:4410 1 6 3 2 0 0 3 2.2254 -581.8034 
C66:4444 1 2 6 2 1 0 3 2.3558 -581.7878 
C66:4398 3 4 2 2 1 0 3 2.2054 -581.7731 
C66:4409 2 3 3 3 1 0 3 2.3056 -581.7640 
C66:4455 2 1 5 3 1 0 3 2.3537 -581.6897 
C66:3473 0 4 0 5 2 1 3 2.5324 -581.5661 
C66:4449 2 0 5 2 3 0 3 2.4423 -581.5501 
C66:4433 3 5 1 3 0 0 4 1.7236 -581.4675 
C66:3961 1 6 3 2 0 0 4 1.7707 -581.4670 
C66:4441 2 0 4 4 2 0 3 2.4430 -581.4669 
C66:4316 2 0 4 6 0 0 4 1.9179 -581.4382 
C66:4297 2 3 4 3 0 0 4 1.8054 -581.3990 
C66:4346 0 7 1 3 1 0 4 1.8429 -581.3902 
C66:4244 3 3 5 1 0 0 4 1.7303 -581.3872 
C66:4313 0 4 6 2 0 0 4 1.8427 -581.3737 
C66:4430 4 2 4 2 0 0 4 1.7236 -581.3698 
C66:4381 1 7 3 1 0 0 4 1.7358 -581.3404 
C66:4008 2 3 2 5 0 0 4 1.8415 -581.3177 
C66:4349 0 6 6 0 0 0 4 1.7698 -581.2652 
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Table 2 shows the pentagon arm index signature, the pentagon adjacency index 
NP, the topological descriptor Ψ, and the calculated total energy values QC for the 
40 lowest-energy isomers. According to our results, and considering the computed 
values of Ψ, the most stable isomer is C66:4169, while the next two isomers with 
minimal energies are C66:4348 and C66:4466. 

In these two latter cases the topological descriptor Ψ is identical (Ψ=3.4214). The 
calculated energies of top 5 isomers are in agreement with the results published in 
Refs. [17, 18]. 

In ranking the isomers, due to the larger amount of information included in Ψ it 
was reasonable to expect that Ψ performs better than NP. According to 
experiments the discriminating ability of Ψ is more efficient than that of NP. 

Summary and Conclusions 

In order to characterize and classify quantitatively the local topological structure 
of lower fullerenes Cn with n ≤70 a simple method has been suggested. The 
concept is based on the computation of a finite set of topological invarians called 
pentagon arm indices. 

For stability prediction purposes, a novel three-variable topological descriptor (Ψ) 
has been defined. This includes not only the NP index, but additionally two other 
independent topological graph invariants (M1 and M2) derived from the 
components of the pentagon arm signature vector. 

To test and evaluate the discriminating power of Ψ the sets of C40 and C66 
fullerene isomers have been chosen. It was demonstrated that the proposed 
topological descriptor Ψ is able not only to characterize the combinatorial 
structure of different fullerene isomers, but also to rank them in the order of 
decreasing stability. 
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