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Abstract: The application of the bipartite pseudo-semiregular graphs (BPS graphs) has 

recently had a growing importance in mathematical chemistry, mainly for QSAR 

(quantitative structure-activity relations) and QSPR (quantitative structure-property 

relations) studies. The aim of the research presented herein, is to give a systematic survey 

on the fundamental characteristics of BPS graphs and summarize some novel results 

concerning their structural-topological properties. We propose some practical methods for 

the construction of BPS graphs from various parent graphs. Moreover, a simple procedure 

is outlined by which a finite set of BPS graphs possessing the same spectral radius or the 

same second Zagreb index can be generated. Additionally, as a result of our investigations, 

it is verified that there is a strong correspondence between BPS graphs and balanced tree 

graphs of diameter 4. 
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1 Introduction 

We consider only simple connected graphs. For a graph G with n vertices and m 

edges, V(G) and E(G) denote the set of vertices and edges, respectively. In this 

work our graph theoretical notation is standard and taken from [1]. 

An edge of G connecting vertices u and v is denoted by uv. The degree d(v) of a 

vertex v is the number of edges incident to v. The finite set of vertex degrees of a 

graph G is denoted by DS(G). As usual, the cyclomatic number of a connected 
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graph with n vertices and m edges is defined as Cy(G)= m – n +1. A connected 

graph G having Cy(G)=k ≥1 cycles is said to be a k-cyclic graph. As a particular 

case, if k=0, the corresponding acyclic graph is called a tree graph. A tree with n 

vertices has exactly n-1 edges. 

We denote by Δ=Δ(G) and δ=δ(G) the maximum and the minimum degrees of 

vertices of G, and by mr,s the total number of edges in G with end-vertex degrees r 

and s, where we do not distinguish mr,s and ms,r. For two different vertices u and 

w, the distance d(u,w) between u and w is the number of edges in a shortest path 

connecting them. The diameter of a connected graph G denoted by diam(G) is the 

maximum distance between any two vertices of G. 

Using the standard terminology [1], the path, cycle and star with n vertices are 

denoted by Pn, Cn and K1,n-1, respectively. Let A=A(G) be the adjacency matrix of 

G. The set of eigenvalues of A(G) is the spectrum of graph G, and the largest 

eigenvalue of A(G) denoted by ρ(G) is called the spectral radius of G. 

An integral graph is a graph with integral eigenvalues. A graph is R-regular if all 

its vertices have the same degree R. A connected graph G is said to be bidegreed 

with degrees Δ and δ if at least one vertex of G has degree Δ and at least one 

vertex has degree δ, and if no vertex of G has a degree different from Δ or δ. 

A connected bidegreed bipartite graph is called semiregular if each vertex in the 

same part of bipartition has the same degree. A connected graph G is said to be 

harmonic (pseudo-regular) [2, 3, 4] if there exists a positive constant p(G) such 

that each vertex u of G has the same average neighbor degree number [2, 3] 

identical with p(G). The spectral radius of a harmonic graph G is equal to p(G). It 

is obvious [2] that any connected R-regular graph GR is a harmonic graph with 

p(GR)= ρ(GR)=R. A connected bipartite graph is called pseudo-semiregular [2, 5] 

if each vertex in the same part of bipartition has the same average degree. It is 

known among bipartite pseudo-semiregular graphs (BPS graphs) there exist 

connected graphs which are harmonic and pseudo-semiregular simultaneously. 

By definition, a tree graph is called a balanced tree, if it has precisely one center 

vertex u for which Δ ≥ d(u) ≥ 2 holds, and their vertices at the same distance j (at 

j
th

 level with j=1,2,.., k) from the center have the same degree [6]. The simplest 

types of balanced trees are the n-vertex stars K1,n-1 having diameter 2. 

Define the first and second Zagreb indices (M1 and M2) of a graph G as usual: 



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Vu

2
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The Zagreb indices belong to the family of global topological graph invariants 

which are widely used in the mathematical chemistry. For more detailed 

information on Zagreb indices, we refer the reader to surveys [7-16]. A connected 
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graph G for which identity m/)G(M)G( 2  holds is called a Z2 graph, 

because it is defined on the basis of the second Zagreb index [16]. 

The paper is organized as follows. In Section 2, the fundamental features of Z2 

graphs are reported. In Section 3, we summarize old and new results 

demonstrating some relevant properties of BPS graphs. Practical procedures for 

generating cyclic BPS graphs are presented in Section 4, where we also outline a 

method for the construction of an infinite set of BPS graphs with an identical 

spectral radius and/or a second Zagreb index. In Section 5, starting with the 

discussion of the spectral properties of tree graphs, we introduce the term of 

strongly balanced trees characterized by diameter 4, and we demonstrate that it is 

possible to construct infinitely many strongly balanced trees with integer spectral 

radii. 

2 Some Properties of Z2 Graphs 

It is important to note that if G is an m-edge Z2 graph then ρ
2
(G)=M2(G)/m is a 

positive integer. The harmonic and bipartite pseudo-semiregular graphs form a 

subset of Z2 graphs [17]. Until now, the types of Z2 graphs have not exactly been 

identified and characterized. All regular graphs are Z2 graphs. 

Denote by j the n-component all-one vector. It is known that all semi-harmonic 

graphs for which A
3
j = ρ

2
Aj holds, belong to the family of Z2 graphs [16, 17, 18]. 

Consequently, the regular, semiregular, harmonic and bipartite pseudo-

semiregular graphs are the subsets of semi-harmonic graphs [16, 18]. 

In Fig. 1 various types of Z2 graphs with diameter 4 and integer spectral radius are 

depicted. 

 Graph GA is a pseudo-semiregular, non-harmonic graph with ρ(GA)=3, 

DS(GA)= {1,2,4,5} and  Cy(GA)=2 

 Graph GB is a harmonic, non-pseudo-semiregular graph with ρ(GB)=4, 

DS(GB) = {1,4,7},  Cy(GB)=7 [2] 

 Graph GC is a harmonic, pseudo-semiregular graph with ρ(GC)=3, 

DS(GC) = {1,2,3,6},  Cy(GC)=3 [4] 

 Graph GD is a harmonic, bipartite pseudo-semiregular, and balanced tree 

graph with ρ(GD) =3, DS(GD) = {1, 3,7} and  Cy(GD)=0 [19] 
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Figure 1 

Four graphs with diameter 4 and integer spectral radius 

However, there exist “sporadic” Z2 graphs, not belonging to the graph families 

mentioned above. (They are neither harmonic nor bipartite pseudo-semiregular 

graphs.) The occurrence of such sporadic Z2 graphs is a mysterious phenomenon. 

As an example, a bipartite and a non-bipartite sporadic graph belonging to set Z2 

are depicted in Fig. 2. For these graphs the corresponding spectral radii are: ρ(JA)=

5  and ρ(JB) =3. 

 

Figure 2 

A bipartite graph (JA) and a non-bipartite graph (JB) belonging to set of Z2 graphs 

3 On the Characterization of BPS Graphs 

The term of BPS graphs representing a subset of Z2 graphs was introduced by Yu 

et al. in 2004 (see Ref. [2]). Until now, only some elementary properties of Z2 

graphs and BPS graphs have been established, and for their structural 

characterization, except in very few studies [2, 5, 16, 17], only limited attempts 

have been made. 

As we have already mentioned, a pseudo-semiregular graph G is bipartite, 

consequently, the vertices of G can be partitioned as V= V1UV2. Denoted by 

p1=p1(V1) and p2=p2(V2) as the corresponding average degrees of vertices in V1 

and V2, respectively,  the spectral radius of G can be calculated as 
21pp)G(   

[2]. Because for a semiregular graph the equality p1(V1)=p2(V2) holds, this implies 
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that any semiregular graph is a bipartite pseudo-semiregular graph. It is 

conjectured that the maximal cardinality of the degree sets of BPS graphs is not 

larger than 4. (See graphs GA and GC in Fig. 1.) 

It is easy to construct planar acyclic BPS graphs with diameter 4. 

Proposition 1 For any k≥2 integer there exist k-cyclic BPS graphs with diameters 

not larger than 4. The maximum vertex degree Δ of these cyclic graphs can be 

arbitrary large. This implies that their corresponding spectral radii can be arbitrary 

large, as well. 

Proof. In Figs. 3-5 it is demonstrated that for any k≥2 integer there exist k-cyclic 

pseudo-semiregular planar graphs composed only of quadrilaterals. ▄ 

 

Figure 3 

Bidegreed cyclic pseudo-semiregular graphs Bk including k=2, 3, 4 cycles 

 

Figure 4 

Cyclic pseudo-semiregular graphs Wk including k=2, 3, 4, 5 cycles 

 

Figure 5 

Cyclic pseudo-semiregular graphs Hk including k= 3, 6 and 9 cycles 
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A common property of planar BPS graphs Bk, Wk and Hk , depicted in Figs. 3-5, is 

that they include k quadrilaterals. Graphs W2 and W3 are characterized by 

diameter 2 and 3, respectively, while the others have diameter 4. Moreover, it is 

easy to show that depending on the appropriate choice of parameter k we can 

construct graphs BPS, with integer spectral radii, for example, ρ(B7)=4, ρ(W5)=3 

and ρ(H9)=4. 

It is worth noting that there exist BPS graphs characterized by extremal relations 

between the spectral radius and graph diameter. It is easy to show that path P5 is a 

BPS graph, and among all connected graphs with vertex number 5, the path P5 has 

the minimal spectral radius. Moreover, it has been shown in [20] that among all 

connected graphs on 11 vertices and diameter 4, the bicyclic BPS graph denoted 

by Q4,4,4
 
has the minimal spectral radius ρ(Q4,4,4)=2.236068.  The bidegreed planar 

BPS graph Q4,4,4
 
is depicted in Fig. 6. 

 

Figure 6 

Extremal graph Q4,4,4 with minimal spectral radius 

4 Construction of BPS Graphs 

A general method to construct BPS graphs is based on the use of edge-subdivision 

operations performed on connected graphs. By definition, an edge-subdivision of 

a graph G results from inserting a new vertex in every edge of G. For a connected 

graph G, the corresponding subdivision graph is denoted by S(G). 

4.1  Construction of BPS Graphs from Semi-regular Graphs 

Pseudo-semiregular graphs can be easily constructed from semiregular graphs by 

using a subdivision graph operation. Let G(Δ,δ) be a semiregular graph. 

Performing a subdivision on G(Δ,δ) we get a pseudo-semiregular graph S(G(Δ,δ)) 

with spectral radius ρ(S(G(Δ,δ))) =  . 

Example 1:  Using an edge-subdivision operation on the star K1,n-1, one obtains 

the tridegreed pseudo-semiregular tree S(K1,n-1) with diameter 4 and spectral 

radius ρ(S(K1,n-1)) = n1  . 

Example 2: Consider the semi-regular polyhedral graph J(4,3) with maximum 

degree 4 and minimum degree 3. The bidegreed graph J(4,3) with diameter 4 is 

the edge graph of  the rhombic dodecahedron (See. Fig. 7). As a result of 
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subdivision, from J(4,3) we obtain a tridegreed pseudo-semiregular graph 

S(J(4,3)) with diameter 8. It is composed of octagons only and its spectral radius 

is ρ(S(J(4,3))) = 734  . 

 

Figure 7 

Construction of a tridegreed pseudo-semiregular graph using a single subdividing operation on the 

rhombic dodecahedron graph 

4.2 Construction of BPS Graphs from Connected R≥3 Regular 

Graphs 

Let GR be an R≥3 regular connected graph. Performing on G a double edge-

subdividing we get the bidegreed pseudo-semiregular graph S(S(GR)). The 

spectral radius of resulting pseudo-semiregular graph will be ρ(S(S(GR)))= 2R  . 

This implies that the spectral radius of graph S(S(GR)) will be integer if (2+R) is a 

perfect square. 

4.3  Construction of BPS Graphs with Identical Spectral Radii 

or Second Zagreb Indices 

For unicyclic pseudo-semiregular graphs the following proposition can be 

verified: 

Proposition 2 There exist unicyclic BPS graphs with arbitrary large spectral radii 

and arbitrary large diameters. 

Proof. Consider the thorn-like graph Gt,q depicted in Fig. 8. It is constructed from 

a cycle C2q of length 2q by attaching t ≥1 terminal vertices (pendant edges) to 

every second vertices of the cycle. 

The number of pendant vertices is n1 = tq, the number of vertices with degree 2 is 

n2 =q, and the number of vertices of maximal degree is nt+2 =q. This implies that 

the total number of vertices will be n=q(2+t). It is easy to see that for the edge 

parameters we have: m1,t+2=qt, m2,t+2=2q, consequently, m(Gt,q)=n(Gt,q) =q(2+t). 
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Figure 8 

A tridegreed, unicyclic pseudo-semiregular graph, Gt,q 

Because the graph Gt,q is pseudo-semiregular, the corresponding first and the 

second Zagreb indices are:  8t5tq)G(M 2

q,t1   and   4t2tq)G(M q,t2  ,  the 

maximum vertex degree Δ(Gt,q) = t+2. 

Moreover, Gt,q  is a Z2 graph, this implies that its spectral radius is 

24t
)G(m

)G(M
)G(

q,t

q,t2

q,t 

   ▄  

From the above results the following conclusions can be drawn: 

(i) For any fixed parameter q ≥ 2, if t tends to infinity, then the maximum 

vertex degree Δ(Gt,q) = t+2 and the spectral radius ρ(Gt,q) tend to infinity. 

(ii) For a fixed parameter t ≥ 1, if q tends to infinity, then the diameter 

diam(Gt,q) tends to infinity. 

(iii) The spectral radius ρ(Gt,q) depends only on the parameter t. If the sum 

t+4 is a perfect square then the spectral radius will be a positive integer. 

Based on the previous considerations, it is easy to construct non-isomorphic 

pseudo-semiregular graphs with identical spectral radius or second Zagreb index. 

4.4  Construction of an Infinite Set of Gt,q Graphs with an 

Identical Spectral Radius 

A simple method which can be used for generating an infinite family of Gt,q 

graphs with identical spectral radius is demonstrated in the following example: Let 

t=5. In this case, for any graph G5,q the spectral radius will be the same integer, 

ρ(G5,q)=3 for arbitrary q ≥ 2. Then for given parameter pairs (t=5, q ≥ 2) the 

corresponding edge numbers and second Zagreb indices of graphs G5,q can be 

simply determined. The computed results are given in Table 1. 
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Table 1 

Computed topological parameters for graphs Gt,q having an identical spectral radius 

Graph t q ρ m=q(2+t) M2=mρ2 M1=q(t2 +5t + 

8) 

Z=M2/m– 

M1/n=t/(2+t) 

G5,2 5 2 3 14 126 116 5/7 

G5,3 5 3 3 21 189 174 5/7 

G5,4 5 4 3 28 252 232 5/7 

G5,5 5 5 3 35 315 290 5/7 

G5,6 5 6 3 42 378 348 5/7 

G5,7 5 7 3 49 441 406 5/7 

G5,8 5 8 3 56 504 464 5/7 

G5,9 5 9 3 63 567 522 5/7 

G5,10 5 10 3 70 630 580 5/7 

Because graphs Gt,q are Z2 graphs, their spectral radius is equal to 

3)G(m/)G(M)G( q,5q,52q,5   for any q ≥ 2. Additionally, in the last column of 

Table 1, the quantity denoted by Z is given. Topological parameter Z=Z(G) 

characterizes the structure of a graph G [17]. It is interesting to note that for all 

graphs included in Table 1 the values of Z are identical. 

4.5  Construction of Gt,q Graphs with an Identical Second 

Zagreb Index 

The concept outlined previously, is applicable for generating Gt,q graphs with an 

identical second Zagreb index. Let t=q ≥2 be an arbitrary positive integer. As a 

first step, for graph Gt,t, we calculate its second Zagreb index given as

  4t2tt)G(M t,t2  . As a second step, by using a computer search, we 

identify all graphs Gt,q which satisfy the equality represented by 

 2tq)G(/)G(Mm q,t

2

t,t2  , where t and q are positive integers. It can be 

expected that there exists a finite set of graphs Gt,q with different (t,q) parameters 

for which the above equality holds. The method based on a simple computer 

search is demonstrated in the following example. Let t=q=10. In this case, 

1680)G(M 10,102   and there are exactly 8 non-isomorphic Gt,q graphs satisfying the 

requirements of computer search. All of them have the same second Zagreb index 

1680. The computed results are summarized in Table 2. 

As can be seen, among Gt,q graphs there exist graph pairs having equal first and 

second Zagreb indices as well. Namely, for such graphs the equalities M1(G1,112) = 

M1(G8,14) = 1568 and M1(G2,70) = M1(G4,35) = 1540 are fulfilled. 
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Table 2 

Computed topological parameters for graphs Gt,q having identical second Zagreb index 

Graph t q m=q(2+t) ρ2=4+t M2=mρ2 M1=q(t2 + 5t 

+8) 

Z=M2/m – 

M1/n 

G1,112 1 112 336 5 1680 1568 1/3 

G2,70 2 70 280 6 1680 1540 1/2 

G3,48 3 48 240 7 1680 1536 3/5 

G4,35 4 35 210 8 1680 1540 2/3 

G6,21 6 21 168 10 1680 1554 3/4 

G8,14 8 14 140 12 1680 1568 4/5 

G10,10 10 10 120 14 1680 1580 5/6 

G26,2 26 2 56 30 1680 1628 13/14 

5 On the Spectral Properties of Tree Graphs 

In 1974, Harary and Schwenk initiated the problem of finding connected graphs 

having integral spectrum [21]. During the past few decades, for certain families of 

integral graphs, many novel results have been obtained [4, 6, 21-29]. For the 

construction of integral trees, some efficient methods have been developed [6, 22, 

25-29]. Among others, it was proved [6] that integral balanced trees with diameter 

5, 7 and 9 do not exist, just like integral balanced trees with diameter 4k+1 (k is an 

arbitrary integer). Recently, it has been verified that there exist integral trees of 

arbitrary large diameters. Csikvári has constructed integral trees with arbitrary 

large even diameters [28], and Ghorbani et al. have settled the odd-diameter case 

[29]. It is worth noting that there exist integral trees with diameter 5 which belong 

to the family of Z2 graphs. The 25-vertex graph T25 depicted in Fig.9 is the 

smallest integral tree of diameter 5 with the spectrum {3, 2
3
, 1

3
, 0

11
, -1

3
 , -2

3
 , -3} 

[26]. Tree T25 is a sporadic Z2 graph because it does not belong to the sets of either 

harmonic or pseudo-semiregular graphs. 

 

Figure 9 

A “sporadic” integral tree belonging to the family of Z2 graphs [26] 
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Currently, the search for non-integral tree graphs characterized by integer spectral 

radius has gained raising interest [30, 31]. Patuzzi et al. [31] investigated non-

integral trees, namely star-like trees and double brooms. For each class, they 

determined conditions for the spectral radius to be integer. Moreover, it was 

concluded that among trees of diameter 4, there are infinitely many non-integral 

trees with integer spectral radius [30]. 

In the last decade, several authors have studied the spectral radius of connected 

graphs as a function of given graph invariants (fixed diameter diam(G) and largest 

vertex degree Δ). 

Van Dam [32] determined the graphs with maximal spectral radius among all 

graphs on n vertices with diam(G) ≥ 2. It is important to note that Hansen and 

Stevanović obtained the same result using a completely different approach [33]. 

This complements the results published in [20] on connected graphs with minimal 

spectral radius for a given number of vertices and diameter. Yuan et al. [34] 

determined the graphs having the minimal spectral radius among all the graphs on 

n vertices with diam(G) = n – 4. The relevant results in this topic are summarized 

in [18]. Some of them will be used in our subsequent investigations. 

Lovász and Pelikán [35] verified that among n-vertex trees the path Pn has the 

minimal spectral radius and the star K1,n-1 has the maximal spectral radius. In [36] 

Simić and Tošić identified the n-vertex trees Tn,Δ, whose spectral radius has the 

maximal value among all  trees with a fixed maximal degree Δ. As an example, in 

Fig. 10 four trees are depicted. These 7-vertex trees are extremal graphs in a 

certain sense. 

 

Figure 10 

Extremal 7-vertex trees having maximal or minimal spectral radius 

Except path P7, all of them are BPS graphs. Path P7 is has the minimal spectral 

radius, and star K1,6 has the maximal spectral radius. Later on, it will be shown 

that T7,X and T7,Y represent the extremal trees which have identical minimal 

spectral radius among 7-vertex trees of diameter 4 (ρ(T7,X)=ρ(T7,Y)=2). Moreover, 

their second Zagreb indices are also equal: M2(T7,X)= M2(T7,Y)=24. 

Stevanović proved [37] that for the spectral radius of a tree T the general 

inequality 12)T(  holds where Δ is the maximal degree of T. In the most 
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recent years the upper bound represented by the this inequality has been 

extensively studied and improved for some particular cases [18, 30, 38-42]. 

Chang and Huang [39] elaborated new ordering systems for n-vertex trees 

according to their spectral radius and diameter, and identified the tree types with 

maximal spectral radius. In [38] and [40] sharp upper bounds are given for the 

spectral radius of trees with diameter not larger than 4. 

Rojo and Robinho [41] studied the spectrum of Bethe trees. By definition, a Bethe 

tree denoted by BΔ,k is a rooted tree of k levels in which the root vertex has a 

degree equal to Δ - 1, the vertices in level j (2 ≤ j ≤ k-1) have degree equal to Δ 

and the vertices in level k have degrees equal to 1. They derived an explicit 

formula by which the nonzero eigenvalues of Bethe trees can be calculated [41]. 

The spectral radius ρ(BΔ,k) of a Bethe tree of k levels is 













 

1k
cos12)B( k,

 

By introducing the term of the completely full-degree tree, Song et al. [38] 

obtained a new upper bound on the spectral radius of trees which are neither a 

path nor a star. By definition, an n-vertex balanced tree TΔ,k with maximum degree 

Δ is called a completely full-degree tree if the degrees of all the vertices of TΔ,k are 

equal to Δ, except the vertices in the last level k, where each degree is equal to 1. 

They verified [38] that if T is a n-vertex tree with maximum degree Δ, for which 

2Δ < n ≤ Δ
2
 + 1 is fulfilled, then 12)T(  with equality if and only if T is a 

completely full-degree tree of diameter 4. As an example, a Bethe tree and a 

completely full-degree tree are shown in Fig. 11. 

 

Figure 11 

Bethe tree B4,3 (a) and the completely full-degree tree T5,3 with diameter four  (b) 

5.1  On the Construction of Balanced Tree Graphs 

It is known that the diameter of a balanced tree having only one central vertex is 

even. Consequently, there are no balanced trees of diameter 3. The smallest 

balanced trees are the star K1,2 with diameter 2, and the path P5 with diameter 4. 

Both of them are BPS graphs. 
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Consider the Smith graphs G(n) with n≥7 vertices [43]. (See Fig. 12.) A 

fundamental property of trees G(n) is that they have an identical integer spectral 

radius equal to 2. If n≥8, the corresponding Smith graphs G(n) represent an 

infinite class of sporadic Z2 trees with arbitrary large diameter. If n≥7 is an odd 

integer, then graphs G(n) are balanced trees. Moreover, it is easy to see that if n=7, 

then tree G(7) is a balanced BPS graph which is isomorphic to tree T7,Y depicted 

in Fig. 10. 

 

Figure 12 

Smith graphs G(n) with n≥7 vertices [43] 

Using a subdivision operation on G(n) graphs we can generate novel balanced 

trees. If n≥7, then the corresponding subdivision graph S(G(n)) will be a balanced 

tree. The subdivision transformation can be repeated several times. Consequently, 

performing the subdivision transformation on S(G(n)), we obtain the balanced tree 

S(S(G(n))). From this observation the following general conclusion can be drawn: 

The subdivision graph S(Tb) of a balanced tree Tb is a balanced tree. 

The general topological structure of trees with diameter 4 is demonstrated in Fig. 

13. As can be seen, their possible structure is determined by a large set of 

parameters denoted by (b, r, a1, a2,…,ar). 

 

Figure 13 

Tree T(b, r, a1, a2,…,ar) of diameter 4 [30] 

There are some interesting types of n-vertex trees which form particular subsets of 

balanced trees with diameter 4. Such graphs are the Bethe trees BΔ,3 and 

completely full-degree trees TΔ,3. Patuzzi et al. [30] have proven that for the 

spectral radius of the tree T(b, r, a1, a2,…,ar) with diameter 4, the following sharp 

upper bound can be formulated: 

12)a,...,a,a,r,b(T( r21 
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In the above formula equality holds if and only if b=0, ai=a for 1≤  i ≤  r and 

Δ=a+1=r. 

It is easy to show that there is a strong correspondence between bipartite pseudo-

semiregular graphs and balanced tree graphs. In what follows we restrict our 

attention primarily to the relations between the BPS graphs and balanced tree 

graphs having diameter four. 

5.2  A New Class of Balanced BPS Trees with Diameter 4 

We define a particular class Ω4 of balanced trees with diameter 4 as follows: Let 

dA ≥2 and dB ≥ 2 be positive integers. By definition, a balanced tree T(dA,dB) of 3 

levels belongs to graph family Ω4 if the centrum vertex has degree dA, the vertices 

at distance 1 from the centrum have degree dB, and all vertices at distance 2 have 

degree 1. From the definition it follows that parameter pairs (dA,dB) determine 

unambiguously the adjacency matrix of tree T(dA,dB). It is easy to see that the 

edge number of T(dA,dB) is equal to m=m(T(dA,dB))=dAdB. For simplicity, graphs 

T(dA,dB) included in Ω4 are called strongly balanced trees. 

Example 3 In a particular case, if dA=dB=2 holds, then the corresponding strongly 

balanced tree T(2,2) with m=4 edges is isomorphic to the 5-vertex path P5 of 

diameter 4. 

Lemma 1 [15]: The strongly balanced tree T(dA,dB) is a BPS graph. 

Proof. The vertex set of the bipartite tree T(dA,dB) can be partitioned as V=V1UV2 

where p1=p1(V1) and p2=p2(V2) are the corresponding average degrees of vertices 

in V1 and V2, respectively. It is easy to see that p1=dB and p2=(dA+dB - 1)/dB. This 

implies that T(dA,dB) is a bipartite pseudo-regular graph. Consequently, its 

corresponding spectral radius is 1ddpp)d,d(T( BA21BA  . Because 

T(dA,dB) is a Z2 graph, one obtains that 

))d,T(d(m/))d,T(d(M))d, T(d( BABA2BA   

Proposition 3 Let dA ≥2 and dB ≥ 2 be positive integers for which 
BA dd   holds. 

Then there exist exactly two non-isomorphic balanced BPS trees T(dA,dB) and 

T(dB,dA), for which the following relations are fulfilled: 

i. m(T(dA,dB))= m(T(dB,dA))=dAdB 

ii. M2(T(dA,dB))= M2(T(dB,dA))= dAdB(dA + dB -1) 

iii. ρ(T(dA,dB))= ρ(T(dB,dA)) = 1dd BA  . 

Proof.  Identity (i) is trivial. Considering the validity of Eq.(ii), it should be taken 

into consideration that )1d(dm BAd,1 B
  and 

Ad,d dm
BA
 . This implies that 

))d,d(T(M)1dd(mddd)1d(d))d,d(T(M AB2BA

2

ABBBABA2   
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and  1dd
m

)1dd(m

m

))d,d(T(M

m

))d,d(T(M
BA

BAAB2BA2 


  

Because tree T(dA,dB) is a BPS graph, the validity of Eq.(iii) follows directly from 

the Lemma 1. ▄ 

If 
BA dd   holds then the corresponding pair of strongly balanced trees T(dA,dB) 

and T(dB,dA) are called strongly balanced twin-like trees. 

Remark 1 It can be easily shown that the first Zagreb index of strongly balanced 

trees can be computed by the following formula: 

)1d(m)1d(d)1d(dddd))d,d(T(M BAABA

2

BA

2

ABA1   

Remark 2 The existence of an m-edge strongly balanced tree depends on the 

value of m. For example, there is no 7-edge tree belonging to the family of 

strongly balanced trees. 

Proposition 4 Let m be a positive integer. A strongly balanced tree T with m(T) ≥ 

4 edge number exists if m is not a prime number. 

Proof. i) Let m≥4 be an even integer. Then there exist non-isomorphic strongly 

balanced trees T(2, m/2) and/or T(m/2,2) with an identical spectral radius and a 

second Zagreb index.  ii) Let m ≥ 9 be an odd integer which is not a prime 

number. In this case there exists at least one odd divisor q of m. Consequently, 

T(q, m/q) will be a strongly balanced tree. ▄ 

Corollary 1 Let m≥6 be an even integer. Then there exist at least two non-

isomorphic strongly balanced m-edge trees T(dA,dB) and T(dB,dA) having an equal 

spectral radius and a second Zagreb index. 

Example 4 The smallest strongly balanced tree graph pair of such type are the 7-

vertex T(3,2) and T(2,3) trees. It is important to note that 7-vertex graphs T7,X and 

T7,Y depicted in Fig. 10 are isomorphic to trees T(3,2) and T(2,3) with ρ(T(3,2))= 

ρ(T(2,3))=2. 

The spectra of these strongly balanced trees are: Spec(T(3,2)) = {2, 1, 1, 0, -1, -1- 

2} and Spec(T(2,3)) = {2, 1.4142, 0, 0, 0, -1.4142, -2}. As can be observed, T(3,2) 

is a harmonic integral graph, but tree T(2,3) is a non-integral graph. 

It is easy to construct a finite set of strongly balanced tree graphs having the same 

spectral radius. The method used for constructing such trees is demonstrated in the 

following example. 

Example 5 Let dA+dB=50. It is easy to see that the strongly balanced trees denoted 

by T(2,48), T(3,47),...,T(25,25),…,T(47,3) and T(48,2) have the same integer 

spectral radius 7150  . As an example, trees T(10,40) and T(40,10) are 

depicted in Fig. 14. 
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Figure 14 

Twin-like trees TS(10,40) and TS(40,10) with 400 edges 

Some computed results concerning Example 5 are summarized in Table 3. 

Table 3 

Computed topological parameters for strongly balanced trees 

Graph dA dB ρ m=dAdB M2=mρ2 M1=dA(dA-

1)+m(dB+1) 

Z=M2/m– 

M1/n 

T(2,48) 2 48 7 96 4704 4706 0.4845 

T(3,47) 3 47 7 141 6909 6774 1.2958 

T(10,40) 10 40 7 400 19600 16490 7.8778 

T(20,30) 20 30 7 600 29400 18980 18.3607 

T(24,26) 24 26 7 624 30576 17400 21.1600 

T(25,25) 25 25 7 625 30625 16850 22.0831 

T(26,24) 26 24 7 624 30576 16250 23.0000 

T(30,20) 30 20 7 600 29400 13470 26.5874 

T(40,10) 40 10 7 400 19600 5960 34.1372 

T(47,3) 47 3 7 141 6909 2726 29.8028 

T(48,2) 48 2 7 96 4704 2544 22.7732 

Based on the considerations outlined previously the following conclusions can be 

drawn: 

i. The Bethe trees of 3 levels denoted by BΔ,3 and the completely full-

degree trees of 3 levels denoted by TΔ,3 are strongly balanced trees. 

ii. Let C ≥ 4 be a positive integer. For strongly balanced trees T(2, C-2) the 

following equality holds: M2(T(2, C-2)) – M1(T(2, C-2)) = - 2. 

iii. Let C1 ≥ 4 be an even positive integer. Among the strongly balanced trees 

the second Zagreb index has a maximum value if dA=dB=C1/2 holds. This 

maximum value belongs to the strongly balanced tree T(C1/2, C1/2). 
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iv. Let C2 ≥ 5 be an odd positive integer. Among the strongly balanced trees, 

there exist two non-isomorphic trees having an identical maximum 

second Zagreb index. These trees are: T((C2-1)/2, (C2+1)/2)) and 

T((C2+1)/2, (C2-1)/2)). 

v. If dA+dB - 1 is a perfect square, then for trees T(dA,dB)) and T(dB,dA)) the 

corresponding spectral radius ρ(T(dA,dB))=ρ(T(dB,dA)) will be a positive 

integer. 

Example 6 If dA=dB =5, then dA+dB -1=9 is a perfect square, consequently, the 

strongly balanced tree T(5,5) has an integer spectral radius 

3)155))5,5(T(  . The completely full-degree tree T5,3 depicted in 

Fig.11. is isomorphic to the strongly balanced tree T(5,5) which is an integral 

graph [22] with the spectrum Spec(T(5,5))= {3, 2
4
 ,  0

16
, -2

4
 , -3}. It is worth 

noting that among strongly balanced trees there are several integral graphs. For 

example, the smallest one is the 7-vertex tree T7,X=T(3,2) shown in Fig. 10. 

Proposition 5 There exist infinitely many strongly balanced trees which are 

extremal graphs having a minimal spectral radius. 

Proof. Belardo et al. [40, 18] considered the family of n-vertex trees with diameter 

4. Among these trees, they identified those trees whose spectral radius is minimal. 

It has been proved [40] that for any n ≥ 5, the minimum spectral radius among 

trees T(n,4) is attained only in two cases a) by a single tree j

4,nMT  if 1jjn 2  , 

and b) by tree pairs j

4,nMT  and 1j

4,nMT   if 1jjn 2   for arbitrary  j≥2 integer. 

It is easy to see that for even m = n-1= j
2
+ j  (j = 2, 3, 4,..) the corresponding 

extremal m-edge trees j

4,nMT  and 1j

4,nMT   are strongly balanced tree graphs having 

an identical spectral radius. For extremal tree pairs j

4,nMT  and 1j

4,nMT   the possible 

vertex numbers are n= 7, 13, 21, 31,… This implies that among 7-vertex trees of 

diameter 4 the strongly balanced trees T7,X=T(3,2) and T7,Y=T(2,3) depicted in 

Fig. 10 are extremal trees with identical minimal spectral radius 

2)123)T()T( Y,7X,7  .▄ 

Proposition 6 There exist infinitely many strongly balanced trees E(p) which are 

harmonic and pseudo-semiregular simultaneously and they have integer spectral 

radii. 

Proof. Starting with the concept outlined in [19], consider the infinite sequence of 

balanced tree graphs E(p)=T(dA(p),dB(p)) constructed as follows: If p≥2, then trees 

E(p) can be obtained from dA(p)=p
2
 – p +1 disjoint stars K1,p-1 by adding a vertex 

adjacent to the central vertex of each stars. It follows that the degree of central 

vertex is dA(p )=p
2
 – p +1 and dB(p)=p. Moreover, the corresponding edge number 

is m(E(p))=( p
2
 – p +1)p. 
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Trees E(p) are harmonic, pseudo-semiregular and strongly balanced 

simultaneously, their spectral radii is 

pp1)p(d)p(d))p(E( 2

BA   

If p=2, tree E(2) is isomorphic to the 7-vertex graph T7,X depicted in Fig. 10.  If 

p=3, as a particular case, tree E(3) is isomorphic to the 22-vertex tree graph GD 

shown in Fig. 1. ▄ 

Proposition 7 There exist infinitely many strongly balanced trees F(p) which are 

non-harmonic, pseudo-semiregular graphs having integer spectral radii. 

Proof.  The construction of balanced trees F(p) is based on the same concept 

presented previously in Proposition 6. Consider now the infinite sequence of 

strongly balanced trees defined as F(p)=T(dB(p),dA(p)). Because E(p) and F(p) are 

strongly balanced twin-like trees, this implies that they have similar properties: 

their spectral radii ρ(E(p))=ρ(F(p))=p are positive integers. The only significant 

difference between them is that trees F(p) are not harmonic. If p=2, tree F(2) is 

isomorphic to the 7-vertex graph T7,Y depicted in Fig. 10. ▄ 

It is an interesting observation that there exists a broad class of connected graphs 

with maximum degree Δ=Δ(G) for which the equality p)G(   holds where p 

is a non-negative integer. These graphs can be classified into 3 disjoint subsets by 

considering the following relationships: p < Δ,  p = Δ and p > Δ. 

For parameter p a simple upper bound can be obtained. Because for the spectral 

radius of a graph G the inequality ρ
2
(G)

 
≤ Δ

2
 holds, this implies that Δ+p = ρ

2
(G) 

≤ Δ
2
 is fulfilled if  p ≤ Δ(Δ-1).  The above inequality is sharp. Equality holds if GR 

is an R-regular graph. Because ρ(GR)=R=Δ, it follows that p)G( R   is 

fulfilled if p=R(R-1). 

It is easy to check that equality p)G(   holds for any Z2 graph, because 

p=M2/m – Δ is a non-negative integer [16]. For example, equality with p=0 is 

valid for all n-vertex stars K1,n-1. 

Proposition 8 Let p ≥ 1 be an arbitrary positive integer. Then for any parameter p 

there exists a strongly balanced tree K(p) for which p))p(K(   is fulfilled. 

Proof. The construction of such trees is based on the following considerations. 

Starting with graphs E(p), define the trees K(p) as follows: K(p)=E(p+1) for any 

positive integer p. Since E(p) is harmonic and strongly balanced, one obtains on 

the one hand 

1p)1p(1)1p()1)1p()1p((

1)1p(d)1p(d))1p(E())p(K(

22

BA




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On the other hand,  because Δ(K(p))=Δ(E(p+1))=dA(p+1)=(p+1)
2
 - (p+1) +1 

holds, we get 

1pp)1)1p()1p((p))1p(E(p))p(K( 2  . ▄ 
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