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Abstract: A graph is regular if all its vertices have the same degree. Otherwise a
graph is irregular. To measure how irregular a graph is, several graph topological
indices were proposed including: the Collatz-Sinogowitz index [8], the variance of
the vertex degrees [7], the irregularity of a graph [4], and recently proposed the
total irregularity of a graph [1]. Here, we compare the above mentioned irregularity
measures for bidegreed graphs.
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1 Introduction

All graphs considered here are simple and undirected. Let G be a graph of
order n = |V (G)| and sizem = |E(G)|. For v ∈ V (G), the degree of v, denoted
by dG(v), is the number of edges incident to v. The adjacency matrix A(G)
of a graph G is a matrix with rows and columns labeled by graph vertices,
with a 1 or a 0 in position (vi, vj) according to whether vertices vi and vj
are adjacent or not. The characteristic polynomial φ(G, t) of G is defined as
characteristic polynomial of A(G): φ(G,λ) = det(λIn − A(G)), where In is
n×n identity matrix. The set of eigenvalues of the adjacent matrix A(G) of a
graph G is called a graph spectrum. The largest eigenvalue of A(G), denoted
by ρ(G), is called the spectral radius of G. An eigenvalue of a graph G is
called main eigenvalue if it has an eigenvector the sum of whose entries is
not equal to zero.

In the sequel, we present the irregularity measures consider in this paper.
Collatz-Sinogowitz [8] introduced the irregularity measure of a graph G as

CS(G) = ρ(G)− 2m

n
. (1)
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An alternative to CS(G) is the variance of the vertex degrees

Var(G) =
1

n

n∑
i=1

d2G(vi)−
1

n2

(
n∑
i=1

dG(vi)

)2

. (2)

Bell [7] was first who has compared CS(G) and Var(G) and showed that they
are not always compatible. Albertson [4] defines the imbalance of an edge
e = uv ∈ E as |dG(u)− dG(v)| and the irregularity of G as

irr(G) =
∑
uv∈E

|dG(u)− dG(v)| . (3)

Recently, in [1] a new measure of irregularity of a simple, undirected graph,
so-called the total irregularity, was defined as

irrt(G) =
1

2

∑
u,v∈V (G)

|dG(u)− dG(v)| . (4)

More about the above presented irregularity measures, comparison studies of
them, and other attempts to measure the irregularity of a graph, one can find
in [3,6,10–12]. It is interesting that the above four irregularity measures are
not always compatible for some pairs of graphs. In this paper we study the
relations between the above mentioned irregularity measures for bidegreed
graphs.

A universal vertex is the vertex adjacent to all other vertices. A set of vertices
is said to be independent when the vertices are pairwise non-adjacent. The
vertices from an independent set are independent vertices.

The degree set, denoted by D(G), of a simple graph G is the set consisting of
the distinct degrees of vertices in G.

The distance between two vertices in a graph is the number of edges in a
shortest path connecting them. The eccentricity of a vertex v in a connected
graph G is the maximum graph distance between v and any other vertex
of G. The radius of a graph G, denoted by rad(G), is the minimum graph
eccentricity of any graph vertex of G. The diameter of a graph G, denoted
by diam(G), is the maximal graph eccentricity of any graph vertex of G.

Let mr,s denotes the number of edges in G with end-vertex degrees r and
s, and let nr denotes the numbers of vertices n G with degree r. Numbers
mr,s and nr are referred as the edge-parameters and the vertex-parameters of
G, respectively . The mean degree of a graph G is defined as d(G) = 2m/n.
Graphs G1 and G2 are said to be edge-equivalent if for their corresponding
edge-parameters sets {mr,s(G1) > 0} = {mr,s(G2) > 0} holds. Analogously,
they are called vertex-equivalent if for their vertex-parameters sets {nr(G1) >
0} = {nr(G2) > 0} is fulfilled. It is easy to see that if two graphs are edge-
equivalent, then they are vertex-equivalent, as well.

- 118 -



Acta Polytechnica Hungarica Vol. 10, No.7, 2013

For two graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2) and
disjoint edge sets E(G1) and E(G2) the disjoint union of G1 and G2 is the
graph G = G1 ∪ G2 with the vertex set V (G1) ∪ V (G2) and the edge set
E(G1) ∪ E(G2). The join G + H of simple undirected graphs G and H is
the graph with the vertex set V (G + H) = V (G) ∪ V (H) and the edge set
E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. Let Cn denote a
cycle on n vertices. Further, let Kn denote the complete graph on n vertices,
and tK1 denote the graph with t isolated vertices and no edges.

A graph G is a complete k-partite graph if there is a partiton V1 ∪ · · · ∪ Vk =
V (G) of the vertex set, such that uv ∈ E(G) if and only if u and v are in
different parts of the partition. A connected bipartite graphG is semiregular if
every edge of G joins a vertex of degree δ to a vertex of degree ∆. A connected
graphs G is called a balanced irregular graph if the equality irr(G) = irrt(G)
holds.

The rest of the paper is structured as follows. In Section 2 we present some
types of bidegreed graphs and some known results related to the above men-
tioned irregularity measures. In Section 3 we investigate new relations be-
tween irregularity indices of bidegreed graphs. Bidegreed graphs with same
irregularity indices are investigated in Section 4. We conclude with final re-
marks and open problems in Section 5.

2 Some types of bidegreed graphs and known results

A graph G is called bidegreed if its degree set D(G) = {∆, δ} with ∆ > δ ≥ 1.
In the sequel, we present some special types of connected bidegreed graphs
that will be of interest later.

i) A bidegreed graph is called a balanced bidegreed graph if the equality
n∆nδ = m∆,δ holds for it. It should be noted that the complete bipartite
graphs, for which m = m∆,δ = n∆nδ = ∆δ holds, form a subset of balanced
bidegreed graphs.

ii) A balanced bidegreed graph with n vertices is called a complete split graph
if it contains q = n∆ ≥ 1 universal vertices and n−q independent vertices [5].
Thus, a complete split graph, denoted by Gcs(n, q), can be obtained as join
of n− q graphs K1 and the complete graph Kq, i.e., Gcs(n, q) = (n− q)K1 +
Kq. An existing complete split graph Gcs(n, q) is uniquely defined by their
parameters n and q. This implies that two complete split graphs with identical
n, q parameters are isomorphic. For a complete split graph the equalities
m = m∆,δ +m∆,∆ and 2m = (2n− 1)δ − δ2 hold [5].

iii) A balanced bidegreed graph is called a complete split-like graph, denoted
by Gcsl(n, q, δ), if it has q ≥ 1 universal vertices. This implies that for a
complete split-like graph the equality qnδ = m∆,δ holds. The complete split
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graphs represent a subset of complete split-like graphs. It is easy to see that if
G is a complete split-like graph then the equalities rad(G) = 1 and diam(G) =
2 are fulfilled. In Fig. 1 non-isomorphic complete split-like graphs with 5 and
6 vertices are depicted. Note that they are not complete split graphs.

(a) (b)

Fig. 1. Complete split-like graphs (a) Gcsl(5, 1, 2) and (b) Gcsl(6, 2, 3)

Also note that since for a complete split-like graph G qnδ = m∆,δ, it follows
that if G is not a complete bipartite graph, then G is non-bipartite and
contains a triangle.

iv) In a particular case, if q = 1, then a complete split-like graph is called
a generalized windmill graph and is denoted by Gcsl(n, 1, δ). We would like
to recall that the classical windmill graph, denoted by Wd(k, p), can be con-
structed by joining p copies of the complete graph Kk with a common vertex.
For a generalized windmill graph the equality m = m∆,δ +mδ,δ is fulfilled. It
follows that the star graphs Sn with n ≥ 3 vertices, the wheel graphs Wn with
n ≥ 5 vertices, and the classical windmill graphs Wd(k, p) with (k − 1)p+ 1
vertices and pk(k − 1)/2 edges defined for k ≥ 2 and p ≥ 2 positive integers,
form the subsets of generalized windmill graphs. In Fig. 2 two non-isomorphic
generalized windmill graphs are depicted.

Next, we state some known results that will be used afterwords.

Lemma 1 ( [16]). Let G be a connected bidegreed graph with spectral radius
ρ(G). Then

ρ(G) =

√√√√ 1

n

∑
u∈V (G)

d2(u) =
√
∆δ,

if and only if G is a semiregular connected bipartite graph.

Lemma 2 ( [15]). Let G be a connected graph with mean degree d(G)] =
2m/n, and just two main eigenvalues, ρ and µ < ρ, where ρ is the spectral
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Fig. 2. Two generalized windmill graphs

radius of G. Then

Var(G) =
1

n

∑
u∈V (G)

d2(u)−
(

2m

n

)2

=

(
ρ− 2m

n

)(
2m

n
− µ

)
.

Lemma 3 ( [15]). Let G be a connected graph with spectral radius ρ. Then
G is a semiregular bipartite graph if and only if the main eigenvalues of G
are ρ and −ρ.

Lemma 4 ( [13]). Let G be a connected graph with spectral radius ρ. Then

ρ(G) ≤
δ − 1 +

√
(δ + 1)2 + 4(2m− δn)

2
.

Equality holds if and only if G is regular or a bidegreed graph in which each
vertex is of degree either δ or n− 1.

3 Relations between irregularity indices - new results

In this section, we present some new results about the relations between
irregularity indices of bidegreed graphs. We start with the following simple
proposition.

Proposition 1. Let G(∆, δ) be a connected bidegreed graph having n∆ and
nδ vertices with degree ∆ and δ, respectively. Then the following relations
hold:

m = m(G(∆, δ)) = m∆,∆ +m∆,δ +mδ,δ ≥ m∆,δ, (5)

irr(G(∆, δ)) = m∆,δ(∆− δ), (6)

irrt(G(∆, δ)) = n∆nδ(∆− δ) = n∆(n− n∆)(∆− δ), (7)

irrt(G(∆, δ)) =
n∆nδ
m∆,δ

irr(G(∆, δ)). (8)
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Proof. It is obvious that for a connected bidegreed graph G(∆, δ) the equality
m = m∆,δ holds if and only if G(∆, δ) is semiregular. The equalities (6), (7)
and (8) follow from the definitions of irregularity indices.

Because the function f(n∆) = n − n∆ has a maximum value for n∆ = n/2,
we have the following corollary.

Corollary 1. For a connected bidegreed graph G(∆, δ) it holds that

irrt(G(∆, δ)) = n∆(n− n∆)(∆− δ) ≤ n2

4
(∆− δ). (9)

Inequality (9) is sharp. There exist bidegreed graphs with n vertices for which
irrt(G(∆, δ)) = n2(∆−δ)/4. Such bidegreed graphs with 8 vertex and deegre
set {3, 4} are shown in Fig. 3(a). These graphs are non edge-equivalent, but
only vertex equivalent, and the equality n3 = n4 = n/2 = 4 holds for them.
Another example of bidegreed graphs that satisfy equality in (9) is given
in Fig. 3(b). Those graphs are with 8 vertices and have deegre set {2, 3}.
They are edge-equivalent, and satisfy the equality n2 = n3 = n/2 = 4. It is
interesting to note that the graphs in Fig. 3(b) are not only edge-equivalent
(m2,3 = 8,m3,3 = 2), but they have identical spectral radius (1 +

√
17)/2, as

well. Consequently, all considered irregularity indices (CS, Var, irr and irrt )
are identical for them.

(a) (b)

Fig. 3. Examples of non-isomorphic bidegreed graphs with 8 vertices with identical
maximum total irregularity indices

Proposition 2. Let G(∆, δ) be a connected bidegreed graph, then

irrt(G(∆, δ)) =
∆− δ
∆δ

(
m2 − (m∆,∆ −mδ,δ)

2
)
≤ ∆− δ

∆δ
m2.

The equality holds if m∆,∆ = mδ,δ.
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Proof. For any bidegreed graph G(∆, δ), it holds that

∆n∆ = m∆,δ + 2m∆,∆, and

δn∆ = m∆,δ + 2mδ,δ.

This together with (7) implies that

irrt(G(∆, δ)) =
∆− δ
∆δ

(m∆,δ + 2m∆,∆)(m∆,δ + 2mδ,δ).

Since m∆,δ = m−m∆,∆ −mδ,δ, it follows that

irrt(G(∆, δ)) =
∆− δ
∆δ

(
m2 − (m∆,∆ −mδ,δ)

2
)
≤ ∆− δ

∆δ
m2. (10)

The equality in (10 ) is obtained when m∆,∆ = mδ,δ. This condition holds for
the bidegreed graphs with 10 vertices and 12 edges in Fig. 4. Consequently
all of them have the same maximum total irregularity index irrt = n2n3 =
6 · 4 = 24.

Ja Jb Jc Jd

Fig. 4. Bidegreed graphs having identical vertex degree set (n3 = 4, n2 = 6) and
identical maximum total irregularity index irrt = 24

Among bidegreed graphs having identical vertex degree set (n∆, nδ), the
semiregular graphs (for which the equality m∆,∆ = mδ,δ=0 holds) possess
the maximal irregularity irr(G), as it is a case with graphs Jc and Jd in
Fig. 4.

4 Bidegreed graphs with same irregularity indices

In the following we will show that there exists a broad class of bidegreed
graphs having “similar irregularity”, or in other words, there exist non-
isomorphic graph pairs for which two (or more than two) irregularity indices
are equal. Moreover, we will show that there are some particular classes of
bidegreed graphs whose irregularity indices are considered algebraically de-
pendent quantities.
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4.1 Balanced bidegreed graphs

From the definition of balanced bidegreed graphs, it follows that

irr(G(∆, δ)) = irrt(G(∆, δ)) = n∆nδ(∆− δ) = m∆,δ(∆− δ).

This implies that the balanced bidegreed graphs form a subset of balanced
irregular graphs.

Proposition 3. Let G(∆, δ) be a balanced bidegreed graph for which m∆,∆ =
0 or mδ,δ = 0 hold. Then

irr(G(∆, δ)) = irrt(G(∆, δ)) = (2m−∆δ)(∆− δ).

Proof. For any bidegreed graph G(∆, δ)

∆n∆ = m∆,δ + 2m∆,∆,

δnδ = m∆,δ + 2mδ,δ.

Consequently, we get

n∆nδ = m∆,δ =
(m∆,δ + 2m∆,∆)(m∆,δ + 2mδ,δ)

∆δ
, and

m2
∆,δ + (2(m∆,∆ +mδ,δ)−∆δ)m∆,δ + 4m∆,∆mδ,δ = 0.

Taking into consideration that m∆,∆ +mδ,δ = m−m∆,δ, we have

m2
∆,δ + (∆δ − 2m)m∆,δ − 4m∆,∆mδ,δ = 0.

Because m∆,δ is a positive number it is easy to see that the proper solution
of the equation above is

n∆nδ = m∆,δ =
1

2

(
2m−∆δ +

√
(2m−∆δ)2 + 16m∆,∆mδ,δ

)
.

If as a particular case the equality m∆,∆mδ,δ = 0 holds for graph G(∆, δ),
one obtains

n∆nδ = m∆,δ = 2m−∆δ,

from which the main result follows.

Example 1. We present two infinite sequences of balanced bidegreed graphs
with the property m∆,∆mδ,δ = 0. The first infinite sequence is comprised
of graphs B(k), where k is a positive integer. The case k = 2 is depicted
in Fig. 5(a). A graph B(k) has a vertex degree distribution n3 = 2k and
n2k = 2, and edge number m = 5k, where k ≥ 2 positive integer. It is easy
to see that for graphs B(k), the equality m2k,2k = 0 holds.
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(b)(a) (c)

Fig. 5. Balanced planar bidegreed graphs. (a) Planar graph B(2) and (b), (c) Poly-
hedral graph P (6) of 6-gonal bipyramid

The second infinite sequence is comprised of k-gonal bipyramids. A k-gonal
bipyramid, with integer k ≥ 3, is formed by joining a k-gonal pyramid and
its mirror image base-to-base. It is a polyhedon having 2k triangular faces.
The case k = 6 is depicted in Fig. 5(b) and redrawn in Fig. 5(c) for a better
illustration. The graph P (k) of a k-gonal bipiramid belongs to the family
of balanced bidegreed graphs with degree 4 and k. For these graphs the
equalities n4nk = m4k = 2k,m = 3k and mk,k = 0 hold.

4.2 Complete split graphs and complete split-like graphs

Proposition 4 ( [2]). There exist a complete split graph pairs with n vertices
Gcs(n, q) and Gcs(n, q+1) with certain n and q positive integers, for which the
equality irrt(Gcs(n, q)) = irrt(Gcs(n, q + 1)) = irr(Gcs(n, q)) = irr(Gcs(n, q +
1)) holds.

Example 2. The smallest complete split graph pair with this property is
the star graph on 5 vertices Gcs(5, 1), and the graph Gcs(5, 2) are depicted
in Fig. 6.
For graphsGcs(5, 1) andGcs(5, 2) the following equality holds: irrt(Gcs(5, 1)) =
irrt(Gcs(5, 2)) = irr(Gcs(5, 1)) = irr(Gcs(5, 2)) = 12.

Proposition 5. Let Gcsl(n, q, δ) be a complete split-like graph. Then

irr(Gcsl(n, q, δ)) = irrt(Gcsl(n, q, δ)) = q(n− q)(n− 1− δ).

Proof. Since the complete split-like graphs form a subset of balanced bide-
greed graphs, it is easy to see that

irr(Gcsl(n, q, δ)) = m∆,δ|∆− δ| = n∆nδ|∆− δ| = q(n− q)(n− 1− δ)
= irrt(Gcsl(n, q, δ)).
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(a) (b)

Fig. 6. Complete split graphs (a) Gcs(5, 1) and (b) Gcs(5, 2) with different degree
sets

Proposition 6. There exist complete split-like graph pairs Gcsl(na, qa, δa)
and Gcsl(nb, qb, δb) with different na, nb, qa, qb, δa and δb parameters, for which
the equality

irrt(Gcsl(na, qa, δa)) = irrt(Gcsl(nb, qb, δb)) = irr(Gcs(na, qa, δa))

= irr(Gcs(nb, qb, δb))

holds.

Proof. A complete split-like graph pair with this property is the graph pair
Gcsl(5, 1, 2) and Gcsl(6, 2, 4) depicted in Fig. 7. For these graphs, equality
irrt(Gcsl(5, 1, 2)) = irrt(Gcsl(6, 2, 4)) = irr(Gcs(5, 1, 2)) = irr(Gcs(6, 2, 4)) = 8
holds.

(a) (b)

Fig. 7. Complete split-like graphs (a) Gcsl(5, 1, 2) and (b) Gcsl(6, 2, 4) with equal
irr and irrt measures

There are several ways to construct complete split-like graphs. For example, a
complete split-like graph with n vertices Gcsl(n, q, δ) can be generated using
the following graph operations:

Gcsl(n, q, δ) = Kq +
(
∪Jj=1H(j, R)

)
.
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In the formula above, Kq is the complete graph on q ≥ 1 vertices, H(j, R)
are R ≥ 1 regular connected graphs for j = 1, 2, . . . , J .

As an example, in Fig. 8 two non-isomorphic edge-equivalent complete split-
like graphs are shown. These complete split-like graphs are defined as
G1
csl(14, 2, 4) = K2 + C12 and G2

csl(14, 2, 4) = K2 + (C3 ∪ C4 ∪ C5), re-
spectively. It is easy to see that irrt(G

1
csl(14, 2, 4)) = irrt(G

2
csl(14, 2, 4)) =

(a)
(b)

y1 y2

x1

x2
x3 x4 x5

x6

x7

x8

x9
x10

x11

x12

y1 y2

x1

x2
x3

x4
x5

x6 x7 x8 x9
x10
x11
x12

Fig. 8. Edge-equivalent complete split-like graphs, (a) G1
csl(14, 2, 4) and

(b) G2
csl(14, 2, 4)

irr(G1
csl(14, 2, 4)) = irr(G2

csl(14, 2, 4)) = 216.

From the previous considerations the following result follows.

Proposition 7. Let G1 and G2 be edge-equivalent complete split-like graphs.
Then the equalities irrt(G1) = irrt(G2) = irr(G1) = irr(G2), Var(G1) =
Var(G2) and CS(G1) = CS(G2) are fulfilled for them.

Proof. Because G1 and G2 are edge-equivalent graphs, this implies that the
equalities irrt(G1) = irrt(G2), irr(G1) = irr(G2) and Var(G1) = Var(G2)
hold. Moreover, because G1 and G2 are complete split-like graphs, in which
each vertex is of degree δ or n−1, it follows from Lemma 4 that their spectral
radii are identical.

For an illustration of Proposition 7, see the complete split-like graph pair
depicted in Fig. 8.

4.3 Semiregular graphs

It is important to note that except the complete bidegreed bipartite graphs,
the semiregular graphs do not belong to the family of balanced bidegreed
graphs.
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Proposition 8. Let S1(∆1, δ1) and S2(∆2, δ2) be semiregular graphs for which
∆ = ∆1 = ∆2, δ = δ1 = δ2, and m∆,δ = m(S1) = m(S2) hold. Then,

CS(S1) = CS(S2) =
√
∆δ − 2∆δ

∆+ δ
,

and

Var(Si) =

(√
∆δ +

2∆δ

∆+ δ

)
CS(Si),

for i = 1, 2, where CS(G) is the Collatz-Sinogowitz irregularity index of a
graph G.

Proof. It is easy to see that for a semiregular graph S with n vertices

n = n∆ + nδ =
m∆,δ

∆
+
m∆,δ

δ
=
∆+ δ

∆δ
m∆,δ.

This implies that for the mean degrees d we have

d(S1) = d(S2) =
2m∆,δ

n
=

2∆δ

∆+ δ
.

From Lemma 1 one obtains

ρ = ρ(S1) = ρ(S2) =
√
∆δ.

consequently, we have

CS(S1) = CS(S2) = ρ− 2m∆,δ

n
=
√
∆δ − 2∆δ

∆+ δ
.

Moreover, from Lemmas 2 and 3, it follows that for a semiregular graphs S

Var(S) =

(
ρ− 2m

n

)(
2m

n
+ ρ

)
= ρ2 −

(
2m

n

)2

= ∆δ −
(

2∆δ

∆+ δ

)2

=

(√
∆δ +

2∆δ

∆+ δ

)
CS(S).

This implies that

Var(Si) =

(√
∆δ +

2∆δ

∆+ δ

)
CS(Si).

for i = 1, 2.

Proposition 9. Let S1(∆1, δ1) and S2(∆2, δ2) be semiregular graphs for which
∆ = ∆1 = ∆2, δ = δ1 = δ2, and m∆,δ = m(S1) = m(S2) hold. Then, the
equalities irrt(S1) = irrt(S2), irr(S1) = irr(S2) are fulfilled for them.
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Proof. It is obvious that

irr(S1) = irr(S2) = m∆,δ(∆− δ).

Moreover, because for a semiregular graph

n∆nδ =
m2
∆,δ

∆δ
,

we get

irrt(S1) = irrt(S2) = n∆nδ(∆− δ) =
∆− δ
∆δ

m2
∆,δ.

As a consequence of Proposition 8 and 9, we have the following result.

Corollary 2. Let S1(∆1, δ1) and S2(∆2, δ2) be semiregular graphs for which
∆ = ∆1 = ∆2, δ = δ1 = δ2, and m∆,δ = m(S1) = m(S2) hold. Then
the equalities irrt(S1) = irrt(S2), irr(S1) = irr(S2),Var(S1) = Var(S2) and
CS(S1) = CS(S2) are fulfilled for them.

Graphs Jc and Jd depicted in Fig. 4 satisfy Corollary 2. From Proposition 9,
we have the following corollary.

Corollary 3. Let S(∆, δ) be a semiregular graph. Then,

irrt(S(∆, δ)) =
irr2(S(∆, δ))

∆δ(∆− δ)
.

4.4 Bidegreed graphs with identical CS,Var, irr and irrt indices

In Fig. 3(b), Proposition 7 and Corollary 2 examples of pairs of bidegreed
graphs were presented, with the property that both graphs from a given
pair have identical CS,Var, irr and irrt. Next, we present another such pair
of graphs. A 6-vertex graph pair with degree set {2, 3} and with identical
CS,Var, irr and irrt indices is depicted in Fig. 9. These graphs are edge-
equivalent (m2,3 = 4,m3,3 = 4), and they have identical spectral radius
1 +
√

3.
In the sequel, we show that there exists an infinitely large family of pairs of
bidegreed graphs with identical CS,Var, irr and irrt indices . For that purpose,
first we need the following definition:
Let d2(v) denote the sum of the degrees of all vertices adjacent to a vertex v
in a graph G. Then, G is called 2-walk linear (more precisely, 2-walk (a, b)-
linear)) if there exists a unique rational numbers pair (a, b) such that

d2(v) = a · d(v) + b

holds for every vertex v of G.
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Tamás Réti et al. On Irregularities of Bidegreed Graphs

Fig. 9. Tricyclic, bidegreed, edge equivalent graph pair with identical spectral ra-
dius 1 +

√
3 [9]

Lemma 5 ( [14]). A graph G has exactly two main eigenvalues if and only
if G is 2-walk linear. Moreover, if G is a 2-walk (a, b)-linear connected graph,
then parameters a and b must be integers, and the spectral radius of G is

ρ =
1

2

(
a+

√
a2 + 4b

)
.

Using the above lemma we will demonstrate by examples that there are
infinitely many bidegreed graph pairs having identical irregularity indices
CS,Var, irr and irrt.

Example 3. Consider the two infinite sequences of bidegreed graphs denoted
by Ga(k) and Gb(k) (an illustration when k = 5 is given in Fig. 10). Both
Ga(k) and Gb(k) are of order 3k, where k ≥ 3. Graphs Ga(k) and Gb(k) are

Ga(k) Gb(k)

k = 5 k = 5

Fig. 10. Bidegreed graph pair Ga(5) and Gb(5)

edge-equivalent, because the identities m2,2 = k,m2,4 = 2k,m4,4 = k,m = 4k
are fulfilled. Moreover, Ga(k) and Gb(k) are 2-walk (3, 0) linear graphs. By
Lemma 5, it follows that they have identical spectral radius which is equal
to 3. It is easy to show that for graphs Ga(k) and Gb(k) the following equal-
ities hold: CS(Ga(k)) = CS(Gb(k)) = 1/3, Var(Ga(k)) = Var(Gb(k)) = 8/9,
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irr(Ga(k)) = irr(Gb(k)) = 4k, and irrt(Ga(k)) = irrt(Gb(k)) = 8k2. It is in-
teresting to note that irr(Ga(k))/n = irr(Gb(k))/n = 4/3, and irrt(Ga(k))/n2

= irrt(Gb(k))/n2 = 4/9, for any k ≥ 3.

Example 4. Another infinite sequence of bidegreed graph pairs denoted by
Ha(k) and Hb(k) is shown in Fig. 11. Each of them has n = 4k vertices, where
k ≥ 2. Graphs Ha(k) and Hb(k) are edge-equivalent, because the identities

Ha(k)

k1

2 k-1

1 k

2

Hb(k)

k-1

Fig. 11. Bidegreed graph pair Ha(k) and Hb(k)

m2,3 = 4k = n, m3,3 = k, and m = 5k hold. It is easy to see that Ha(k)
and Hb(k) are 2-walk (1, 4) linear graphs. From this it follows that they have
identical spectral radius which is equal to

(
1 +
√

17
)
/2. For graphs Ha(k) and

Hb(k) the following equalities hold: CS(Ha(k)) = CS(Hb(k)) = (
√

17− 4)/2,
Var(Ha(k)) = Var(Hb(k)) = 1/4, irr(Ha(k))/n = irr(Hb(k))/n = 1, and
irrt(Ha(k))/n2 = irrt(Hb(k))/n2 = 1/4).

Example 5. Semi-regular bidegreed graph pairs denoted by Ja(k) and Jb(k)
are shown in Fig. 12. Both of them are comprised of n = 5k vertices, where
k ≥ 2. Graphs Ja(k) and Jb(k) are edge-equivalent, since the identity m2,3 =
6k is fulfilled. Moreover, these graphs are 2-walk (0, 6) linear. Consequently,
they have identical spectral radius which is equal to

√
6. For graphs Ja(k)

and Jb(k) the following equalities hold: CS(Ja(k)) = CS(Jb(k)) =
√

6−12/5,
Var(Ja(k)) = Var(Jb(k)) = 6/25, irr(Ja(k))/n = irr(Jb(k))/n = 6/5, and
irrt(Ja(k))/n2 = irrt(Jb(k))/n2 = 6/25.

4.5 Smallest bidegreed graphs with identical irregularity indices

In this section we present pairs of smallest graphs that have identical two or
more irregularity measures. The results were obtained by computer search.
For two graphs of same order G1 = (V1, E1) and G2 = (V2, E2), we said that
G1 is smaller than G2 if |E1| < |E2|. Consequently, for two pairs of graphs
of same order D1 = (G1, G2) and D2 = (G3, G4), we said that D1 is smaller
than D2 if |E1|+ |E2| < |E3|+ |E4|.

- 131 -
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Ja(k)

k1

2 k-1

1 k

2

Jb(k)

k-1

Fig. 12. Bidegreed graph pair Ja(k) and Jb(k)

First, in Fig. 13(a) the smallest pair of graphs, that have identical all four
irregularity indices CS,Var, irr and irrt, is presented. The graphs G1 and G2

are of order 6 and size 7. Their CS,Var, irr and irrt indices are 0.080880,
0.266667, 4, and 8, respectively. They also have same spectral radius which
is 2.414214. We note that the pair (G1, G2) is at same time the smallest pair
of graphs with equal CS index.

G3

P5

G3 S5

G1 G2

(a) (b)

(c) (d)

G4G3

P5

G5

Fig. 13. Smallest bidegreed graphs with identical irregularity indices
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In Fig. 13(b) the smallest pair of graphs, that have identical Var, irr and irrt
indices is presented. This pair is also the smallest pair with the property
that both graphs have equal Var and irr indices. The graphs G3 and G4 are
of order 5 and sizes 6 and 9, respectively. Their Var, irr and irrt indices are
0.300000, 6, and 6, respectively.

The pair (P5, G3), depicted in Fig. 13(c), is the smallest pair with the property
that both graphs have equal Var and irrt indices. At same time, it is the
smallest pair with both graphs having equal Var index. Also, it is the smallest
pair with both graphs having equal irrt index. Their Var and irrt indices are
0.300000 and 6, respectively.

The pair (S5, G3), depicted in Fig. 13(d), is the smallest pair with the prop-
erty that both graphs have equal irr and irrt indices. It holds that irr(S5) =
irr(G3) = 12 and irrt(S5) = irr(G3) = 12. At same time, together with the
pair (P5, G5), it is the smallest pair with both graphs having equal irr index.

5 Final remarks and open problems

In this paper we focused our investigation to the study of the relations be-
tween the irregularity indices of bidegreed connected graphs. Comparing the
irregularity indices of various graphs, in the majority of cases it was supposed
that the number of vertices or the corresponding degree sets are identical (see
Figures 3, 4, 6, 8, 9, 10, 11, 12, 13(a)). It would be interesting to consider
graphs of same order which have different degree sets, but their corresponding
irregularity indices are identical (as few examples in Fig. 13(b),(c),(d)).

Another interesting problem is to estimate the maximum possible difference
of vertex and edge numbers of graphs having identical irregularity indices
(assuming that such positive finite integer exists.) Both cases, when graphs
are of same or different order, are of interest. In Fig. 14, bidegreed graphs
B(6, 5) and B(3, 2) represent an example concerning this problem. We would

B(6, 5) B(3, 2)

Fig. 14. Bidegreed graphs with identical irrt = 24 and irr = 12 indices

like to note that, the bidegreed polyhedral graph B(6, 5) is the dual of the
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graph of the smallest C24 fullerene which is composed of 12 pentagonal and 2
hexagonal faces, and graph B(3, 2) is a semiregular graph. It is worth noting
that graph B(6, 5) has 14 vertices and 36 edges, while graph B(3, 2) has 10
vertices and 12 edges. It is surprising that there is a large difference between
the corresponding edge-numbers of the two graphs, (36− 12 = 24).
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