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Abstract: Developing autonomous vehicles is a highly important topic in the field of 
intelligent transportation systems. Automated steering is a crucial function in the 
autonomous vehicle. Therefore, it is urgent to either develop a new effective control strategy 
or improve existing ones. A variety of control strategies are used for this purpose, most with 
limitations related to their computing capabilities with the highly complex systems or to lack 
of efficacy related to maintaining the balance between driving performance and driving 
smoothness. In this paper, three different machine learning-based models were developed to 
perform an autonomous driving task: a supervised learning model (Deep Neural Network, 
DNN), a reinforcement Deep Q-learning model (DQN), and a hybrid model. The DNN model 
was trained based on the behavior of the classical MPC controller. The DQN was designed 
with the same structure as the DNN and trained by directly interacting with the driving 
environment. The hybrid model is a combination of supervised and reinforcement learning 
algorithms, where the trained DNN model is used as a decision-maker (Actor) in a deep 
deterministic policy gradient reinforcement learning model. The behavior of the designed 
models was compared based on several performance indicators, including the ability to drive 
the vehicle along the desired trajectory, the response time, and the smoothness of the driving 
system. The results show that the DNN model was able to imitate the behavior of the 
traditional MP Controller efficiently and all three machine learning models successfully 
drive the vehicle along the desired path. The hybrid model achieves the best results and 
improved the smoothness of the driving system with a reasonable response time. 

Keywords: Autonomous Driving; Model Predictive Control (MPC); Supervised Learning; 
Deep Neural Networks; Reinforcement Learning; Deep Q-Network (DQN); Deep 
Deterministic Policy Gradients (DDPG) 

1 Introduction 
The evolution of autonomous driving systems has seen the use of different 
technologies aiming to improve efficiency, enhance driving safety and reduce the 
risks related to traffic congestion. Driving in a structured environment and highway 
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driving projects were some of the earliest autonomous vehicle projects, carried out 
at Carnegie Mellon University and Bundeswehr University Munich [2], [3]. Since 
then, projects and research related to autonomous vehicles have been carried out by 
academic institutes and companies alike. According to the Taxonomy and 
Definitions for Terms Related to On-Road Motor Vehicle Automated Driving 
Systems "SAE-J3016", vehicle autonomy is divided into six different levels. Level 
0 (No Automation) depends on the human driver to perform all the driving tasks, it 
is manually controlled. Level 1 (Driver Assistance) is considered the lowest 
automation level, where the driver has full responsibility, but some assistant driving 
systems are included for certain circumstances. Level 2 (Partial Automation) 
combines different automated functions which can be working simultaneously, such 
as steering and acceleration tasks, but the driver is still involved in the driving tasks 
such as performing the maneuvers and has to monitor the environment all the time. 
At Level 3 (Conditional Automation) the vehicle has the capability of detecting the 
surrounding environment and making decisions in normal conditions, but the 
necessity of the driver still exists, meaning that the driver has to be ready to take 
control over the vehicle at any time. At Level 4 (High Automation) the vehicle 
performs all the driving tasks in most circumstances, and the driver still has the 
option to take control. At Level 5 (Full Automation) the vehicle is capable of 
performing all driving tasks in all circumstances, and the driver has the option to 
manually override [4], [5]. The vehicle interacts with the surrounding environment 
in order to perform several related tasks: perception, where the required information 
about the driving environment is provided to the system; planning, where the 
optimal scenarios and the control actions are obtained based on the provided 
information; and the control function, where the control strategy is put into action 
[6]. The automated steering task is a part of the control function, where the tracking 
errors are minimized in order to follow the desired trajectory. Driving the vehicle 
along the desired trajectory is considered one of the most critical tasks due to the 
fact that any failure in the applied control strategy can have severe consequences. 
A variety of control strategies have been used to perform the automated steering 
task, such as the classical feedback control algorithm, Model-Based Control, 
Dynamic Control, and Adaptive Control [7], [8], [9], [10]. In this context, Model 
Predictive Control (MPC) has become the most commonly used algorithm for the 
autonomous vehicle steering system. The MPC controller solves an online 
optimization problem with the ability to handle the system constraints (soft-hard) 
by including them in the design process, which makes it a powerful strategy to deal 
with the stability and the changing dynamics of the vehicle. On the other hand, with 
the increase of the system complexity, the computational load of the MPC controller 
is increased, since it solves the optimization problem in each time step, and it may 
not be able to meet the real-time requirements. Additionally, MPC is resource-
consuming, which makes it invisible, especially when it comes to the limited 
resources of embedded computing platforms such as system-on-chip (SoC) and 
field-programmable gate array (FPGA) adaptive platforms [11], [12]. Recently, 
Deep Neural Network (DNN) has gained attention and has been rapidly developed 
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and efficiently implemented with a variety of applications in different fields such 
as image classification [14], natural language processing, and speech recognition 
[15]. In contrast, to the classical control algorithms, which are mainly based on 
tuning predefined parameters related to a determined environment [16], the 
behavior of the deep neural network model is optimized based on the provided 
information (self-optimized algorithm). In other words, the neural networks 
algorithm bypasses the need for significant parameter tuning, which makes it more 
efficient to model highly complex systems and to deal with unforeseen situations, 
especially after being well trained and validated using sufficient datasets. Recently 
the implementation of deep neural networks within the domain of robotic 
applications has made massive progress and has provided promising results such as 
perception and motion planning [17] and object detection and semantic 
segmentation [18]. In contrast, to supervised learning, agents in Reinforcement 
Learning (RL) are trained by directly interacting with their environment rather than 
explicitly guiding the model on how to act based on the labeled data [19].  
The performance of the RL agent is evaluated based on the reward function, where 
the agent is trained to act in the environment in a way that maximizes the cumulative 
reward in order to improve the performance [20]. RL has proven to be a powerful 
method mainly in the domains of game playing and robotic manipulation [21], [22], 
and RL algorithms are considered a promising potential solution for many other 
applications, especially in cases where classical supervised learning is not 
applicable. Although there are promising results achieved by the implementations 
of reinforcement learning with different complex tasks related to automated driving, 
RL is still an emergent field in this domain, where the implementations and 
deployment of real-world applications are still very much an open challenge and 
RL has not yet been applied to practice as successfully as supervised and 
unsupervised learning. The main contributions of this work can be summarized in 
two main points. The first is leveraging the advantages of reinforcement learning 
and supervised learning by combining them in one control model in such a way that 
the RL-based network optimizes the action that is taken by the supervised neural 
network (DNN) and achieves a better generalization capability with the complex 
driving environment. The second contribution comes in enriching the research on 
RL algorithms and paving the way to bring RL closer to real-world 
implementations. In [13], a classic MPC controller was designed and deployed on 
FPGA for automated driving task, while in this paper three different machine 
learning-based models are developed for the same task and compared to the 
traditional MPC. The first model is a DNN-based model, which is designed and 
trained using a supervised dataset obtained from the behavior of the classical MPC 
controller. The second model is a reinforcement learning-based model (DQN) 
which is designed and trained without any supervision data, but directly by 
interaction with the environment. The third model is a hybrid one, which is a 
combination between the DNN and reinforcement learning methods. The trained 
DNN will be used as decision maker working beside another network (critic) within 
a DDPG reinforcement model. The combined method is expected to provide an 
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optimized solution, as the actions that are taken by the decision maker (trained 
DNN) will be evaluated and optimized by another neural network in order to 
minimize errors. Additionally, the combined model will be able to deal with and 
adapt to new cases that have not been faced during training. 

The paper is organized and structured as follows: The second section provides 
background, including the most common vehicle models and control strategies that 
are used for autonomous driving, in addition to the work related machine learning 
algorithms describing the main features and their implementations in the field of 
autonomous driving. In the third section, the MPC controller and the design of the 
suggested models are discussed. The implementations and the obtained results are 
analyzed and discussed in the fourth section. Finally, the conclusions are provided 
in the last section. 

2 Background 

In this section, an overview of the vehicle models, the control strategies of the path 
tracking task, and the related machine learning algorithms are described. 

2.1 Path Tracking and Related Works 

Path tracking can be categorized into three main groups: geometric, kinematic, and 
dynamic. Due to its simplicity, geometric path tracking is one of the most 
commonly used models. In a geometric vehicle model, only the dimensions and the 
position of the vehicle are taken into consideration with no regard to internal or 
external forces, velocity, or acceleration. Geometric controllers are the most 
common controllers in the field of path tracking due to their stability and simplicity, 
where the state variables are simple with the absence of the derivatives. Follow the 
Carrot, Pure Pursuit, and Stanley are the best-known geometric control strategies 
[23]. Unlike the geometric vehicle model, the kinematic model describes the motion 
of the vehicle taking into consideration the velocity and the acceleration with no 
regard to its internal forces [24], [25]. Several interesting studies have emerged in 
regard to kinematic controlling. Sun et al. [26] presented a study to address the 
problem of path tracking for the autonomous vehicle and analyze the relationship 
between the road model and path tracking method. De Luca et al. [27] provided a 
comparison study of different feedback solutions for different tasks such as path 
tracking and stabilization for a car-like robot (kinematic model). Kinematic and 
Geometric models are effective for systems where there is no need to take the 
internal and external forces into consideration. However, these forces should be 
taken into consideration under specific conditions such as a sharp trajectory 
curvature. Ignoring the vehicle dynamics under such conditions will negatively 
affect the performance and the safety aspects. In a dynamic model, the motion of 
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the vehicle is described with respect to its position, velocity and ccelerateon, 
taking into considerations the applied internal and external forces such as the gravity 
force [28], [29]. Taking the effects of the vehicle dynamics into consideration 
naturally makes the dynamic controllers more efficient and stable than geometric 
and kinematic controllers [30]. However, dynamic feedback (such as the torque) is 
required for these control strategies, which in turns requires special types of sensors 
and more data processing. Consequently, dynamic controllers are more expensive 
in terms of the cost and computational loads [31]. An adaptive controller is also 
used for autonomous vehicle tasks, developed to deal with systems which have 
uncertain, unknown, or changeable parameters. Martins et al. [32] used an adaptive 
controller for a vehicle path tracking task and their proposed model used the linear 
and angular velocity as a reference signal. Artificial intelligence is widely used with 
adaptive controllers in order to improve the control decisions in terms of speed and 
accuracy. In paper [33], a lateral motion control method was provided where the 
objective of the suggested method is to maintain the yaw stability and minimize the 
tracking error. The control schema consists of two main modules, a steering 
controller to ensure the yaw stability and an artificial neural network approximator 
to estimate cornering stiffness uncertainty. In the field of AI in learning and control, 
many related works are highlighted dealing with linear and nonlinear controllers.  
In [34], [35], the authors of both papers use the linear controller as the classical PID 
and Fuzzy controller for a linear system [36], [37], while others have focused on 
using nonlinear controllers and learning algorithms as presented in [38], [39], [40]. 
Reference [41] reports a new Reinforcement Learning (RL)-based control approach 
that uses Policy Iteration (PI) and a metaheuristic Grey Wolf Optimizer (GWO) 
algorithm to train the Neural Networks (NNs). The GWO algorithm shows good 
results in NN training and solving complex optimization problems. 

2.2 Reinforcement Learning Algorithms and Related Works 

Sequential decision making problems can be formulated by Markov Decision 
Processes (MDPs), which is considered a bedrock of the problems that 
reinforcement learning solves. MDPs consist of a decision maker (agent), set of 
states (S), set of actions (T), transaction function (A), and reward function (R,) 
which can be represented as a tuple <S, A, T, R>. At each time step (t), and based 
on the received state (𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆), the agent takes an action (𝐴𝐴𝑡𝑡 ∈ 𝐴𝐴) which represents 
a pair (𝐴𝐴𝑡𝑡 ,𝑆𝑆𝑡𝑡) in the next time step. Based on the taken action the environment is 
transitioned to a new 𝑆𝑆𝑡𝑡+1 ∈ 𝑆𝑆, and the agent receives a reward 𝑅𝑅𝑡𝑡+1 ∈ 𝑅𝑅, [42], [43] 
(see Figure 1). The cumulative reward is simply represented as a sum of the 
expected return at each time step. The probability of selecting an action by the agent 
from all possible actions at all possible states is determined by the policy (𝜋𝜋) that 
the agent follows. In addition to the probability of the selection action, the value 
function evaluates how good it is for the agent to select an action at a given state 
under a policy (𝜋𝜋), and this is called the action-value function (𝑞𝑞𝜋𝜋), or how good 
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it is for the agent to be at a given state following a policy (𝜋𝜋), and this is called the 
state-value function (𝑣𝑣𝜋𝜋). Equations 1 and 2 are the mathematical representations 
of the action-value and the state-value functions, respectively. The action-value 
function 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) is the expected reward (∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞

𝑘𝑘=1 ) starting from state (s) at 
time (t), performing the action (a) and following the policy (𝜋𝜋), where the state-
value function 𝑣𝑣𝜋𝜋(s) is the expected reward starting from state (s) at time (t) and 
following the policy (𝜋𝜋). It is worth mentioning that 𝑞𝑞𝜋𝜋 is also referred to as the Q-
function and its output is called the Q-value (the quality of taking an action). In 
terms of optimality, the main goal of the RL algorithm is to select the optimal policy 
that will yield the highest expected reward for each state. The optimal policy is 
associated with an optimal state-value function (𝑣𝑣∗) and an optimal action-value 
function (𝑞𝑞∗) or optimal Q-function, which are represented in equations 3 and 4, 
respectively. The fundamental property that the optimal Q-function (𝑞𝑞∗) must 
satisfy is the Bellman equation (see equation 5), where (𝑅𝑅𝑡𝑡+1) is the expected 
reward that the agent obtains by taking the action (a) at state (s), whereas 
𝛾𝛾max 𝑞𝑞∗(𝑠𝑠′, 𝑎𝑎′) is the maximum expected discounted reward that can be received 
from any next state-action pair [44], [45]. Reinforcement learning is a category of 
machine learning that studies the behavior of an agent and focuses on how this agent 
might interact with its environment. The main goal of the agent is to maximize the 
cumulative given rewards it receives over time in order to optimize its behavior in 
such an environment [46]. Based on the fact that the agent is able to learn the value 
function estimates or/and the policies directly, RL methods can be categorized into 
three main methods: value-based methods, policy-based methods, and actor-critical 
methods [47]. All of the methods share the same strategy of determining the actions 
and evaluating the agent behavior, but the essential difference is where the 
optimality resides. 

𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) =  𝐸𝐸𝜋𝜋  (∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=1 |𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 =  𝑎𝑎)  (1) 

𝑣𝑣𝜋𝜋(𝑠𝑠) =  𝐸𝐸𝜋𝜋  (∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=1 |𝑆𝑆𝑡𝑡 = 𝑠𝑠) (2) 

𝑣𝑣∗(𝑠𝑠) =  max
𝜋𝜋

𝑣𝑣𝜋𝜋(𝑠𝑠) (3) 

𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) =  max
𝜋𝜋

𝑞𝑞𝜋𝜋(𝑠𝑠) (4) 

𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) =  𝐸𝐸𝜋𝜋 �𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 max
𝑎𝑎′

𝑞𝑞∗(𝑠𝑠′, 𝑎𝑎′)� (5) 

 

Figure 1 
Markov Decision Processes 



Acta Polytechnica Hungarica Vol. 20, No. 9, 2023 

‒ 171 ‒ 

2.2.1 Value-based Algorithm 

Value-based methods aim to get the optimal cumulative reward and determine the 
optimal policy that follows the recommendations. One of the most commonly used 
reinforcement learning value-based algorithms is the Q-learning method [48].  
The objective of Q-learning is to find the optimal policy by learning how to find the 
optimal Q-value for the (𝑠𝑠, 𝑎𝑎) pair, where the Q-values are stored in a Q-table.  
The Q-learning algorithm uses what is called the value iteration approach to 
converge the Q-function to the optimal Q-function by iteratively updating the Q-
value for each (𝑠𝑠, 𝑎𝑎) pair using the Bellman equation. With the increase in 
environment complexity, the state space size increases, and the performance of the 
Q-learning method will drop off because of the value iteration strategy that is used 
to update the Q-values (Q-table). The problem with large MDPs is that there are too 
many states and/or actions to be stored in the memory, and it is too slow to calculate 
the value for every individual state [49]. To overcome this problem, a function 
approximation is used to estimate the values instead of using the value iteration. 
The deep neural network is used as a function approximation and combined with 
the Q-learning method. This method is called Deep Q-learning, where the Deep Q-
Network (DQN) approximates the Optimal-Q value [50]. The DQN model accepts 
the state as an input and outputs the estimated Q-value for every possible action that 
can be taken at that given state. After calculating the loss, the weights within the 
neural network are updated by stochastic gradient descent (SGD), just like in any 
other neural network. 

2.2.2 Policy-based Algorithm 

Like the value-based method, the policy-based method selects one possible action 
and evaluates the agent’s behavior thereafter in order to achieve optimization.  
The essential difference between the two methods is a matter of how to achieve 
optimality. While the value-based method selects the optimal policy based on the 
optimal cumulative reward, the policy-based method directly optimizes the policy 
itself. The policy is parameterizes πθ(𝑠𝑠, 𝑎𝑎) and the optimization problem turns out 
to be finding 𝜃𝜃, which maximizes the policy’s objective function 𝐽𝐽(𝜃𝜃) [48]. In other 
words, policy-based methods learn how these parameters should change the 
probabilities by which different actions can be taken in different states in order to 
maximize the expected reward. The main advantage of policy-based methods is 
their effectiveness for continuous action or the high dimensional space, where the 
parameters of the ‘parameterized policy’ are adjusted instead of solving a 
complicated maximization in every step. The policy gradients (PG) algorithm is 
widely used to solve the problems of the continuous action space. The policy is 
represented by a parametric probability distribution (see equation 6). In the PG 
algorithm, the action (a) at state (s) is selected stochastically based on a vector of 
parameters (𝜃𝜃), and by adjusting these parameters, the policy is driven in the 
direction of increasing the cumulative reward [49]. Policy gradient is the derivatives 
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(vector of derivatives) of the policy’s objective function 𝐽𝐽(𝜃𝜃) with respect to the 
parameters (𝜃𝜃) as shown in equation 7 [51]. The problem can be formalized as 
shown in equation 8, considering (𝜏𝜏) is the agent’s trajectory, 𝑅𝑅(𝜏𝜏) is the 
corresponding reward, (𝜋𝜋𝜃𝜃) is the parameterized policy and 𝑃𝑃(𝜏𝜏 ∣ 𝜃𝜃) is the 
probability of the trajectory (𝜏𝜏) under the policy (𝜋𝜋𝜃𝜃). The policy gradients 
algorithm searches for the local maximum by ascending the gradient of the policy 
with respect to the parameters (𝜃𝜃). It seeks to increase the probabilities of the 
trajectories that give the best return, as shown in equation 9. By reformulating the 
probability of the trajectory 𝑃𝑃(𝜏𝜏 ∣ 𝜃𝜃) and decomposing the trajectory into (states – 
actions), the policy gradients equation can be reformulated as shown in equation 10. 
Instead of integrating over the spaces of both state and action as in the case of 
stochastic policy gradients, deterministic policy gradients (DPG) integrates only 
over the state space, which in turns leads to a reduced number of samples, especially 
in the case of applications with large action states [48]. DPG is used in the 
deterministic environment (no uncertainty) where it accepts a state as input and 
outputs a single action πθ(𝑠𝑠) = 𝑎𝑎. On the other hand, the stochastic policy is always 
needed to explore the complete state-action space. Based on that and for sufficient 
exploration for the DPG algorithm, the actions are chosen according to stochastic 
policy behavior, while learning a deterministic target policy. The policy that the 
agent uses to determine its actions at a given state is called behavior policy, while 
the policy that the agent uses to update the Q-value is called target policy. Learning 
the policy can be achieved in two different algorithms, on-policy or off-policy [52]. 
In the case of on-policy learning, the behavior policy is the same as the target policy, 
while they are different in the case of the off-policy learning algorithm. 

𝜋𝜋𝜃𝜃 = 𝑃𝑃[𝑎𝑎 ∣ 𝑠𝑠,𝜃𝜃] (6) 

∇𝜃𝜃𝐽𝐽(𝜃𝜃) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐽𝐽(𝜃𝜃)
𝜕𝜕𝜃𝜃1
⋮

𝜕𝜕𝐽𝐽(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

 

 

(7) 

𝜃𝜃∗ = arg max
𝜃𝜃

𝐽𝐽(𝜃𝜃) = max
𝜃𝜃

� 𝑃𝑃(𝜏𝜏|𝜃𝜃)𝑅𝑅(𝜏𝜏)
𝜏𝜏

 (8) 

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜏𝜏  (∇𝜃𝜃 log𝑃𝑃(𝜏𝜏|𝜃𝜃)𝑅𝑅(𝜏𝜏)) (9) 

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜏𝜏  (∇𝜃𝜃 logπθ𝑃𝑃(𝑠𝑠|𝑡𝑡)) (10) 

2.2.3 Actor-Critic Algorithm 

Actor–critic algorithms combine the benefits of both value-based and policy-based 
algorithms. The essential idea is that a value function approximator (critic) is used 
to explicitly estimate the action-value function instead of using the return. These 
algorithms deal with two different sets of parameters using two different 
approximators, the critic and the actor. The critic updates the action-value function 
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parameters, while the actor updates the policy parameters based on the direction 
that is suggested by the critic [53]. Actor-critic algorithms use an approximate 
policy gradient as described in equation 11, where the 𝑄𝑄𝑊𝑊(𝑠𝑠, 𝑎𝑎) is the estimated 
cation-value function. Deep Deterministic Policy Gradient (DDPG) is a model-free, 
off-policy, actor-critic reinforcement learning algorithm that searches for the 
optimal policy that maximizes the cumulative long-term return for the continuous 
action environment. DDPG uses deep neural network-based approximators [44].  
In the DDPG algorithm, the actor is used to approximate the optimal policy 
deterministically, which is unlike the stochastic policy, where the policy learns the 
probability distribution rather than actions. After the action is taken by the actor, 
the critic evaluates that action in order to determine whether the new state is better 
or worse than the expectation. That can be achieved by maintaining the Q-values of 
the taken actions towards the target Q-values. RL has been applied to a variety of 
autonomous driving tasks, [54], [55], [56], [57]. 

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜋𝜋𝜃𝜃  (∇𝜃𝜃 logπθ(𝑠𝑠|𝑎𝑎)𝑄𝑄𝑤𝑤(𝑠𝑠, 𝑎𝑎)) (11) 

2.3 Supervised Learning Compared to Reinforcement 
Learning 

Unlike RL methods where the agent learns by interacting with the environment 
without any supervision data, in supervised learning, the agent learns using labeled 
data sets. This means that the expert is explicitly guiding the model on how to act 
based on the labeled data. In deep neural networks, for example, and during training, 
the network approximates the future outputs for the observations and then compares 
them with the labeled ones in order to reduce the error. Supervised learning is 
mainly dedicated to dealing with two main categories of tasks, classification and 
regression, whereas RL deals with Markov’s decision processes, policy learning, 
and value learning. The simplicity and the speed of the convergence during the 
training are the advantages of supervised learning compared to reinforcement, 
where convergence to the optimal policy can be slow so it requires intensive time.  
On the other hand, the efficiency of the supervised model is greatly affected by the 
comprehensiveness of the training data-set. In the case of nonlinear and complex 
systems such as driving system tasks, sufficient training data must be ensured in 
order to provide an efficient and generalizable model in all complex driving 
environments. The use of deep learning in a variety of fields has increased recently 
due to new powerful processing technologies that reduce the training time and 
improve performance. The deep neural network algorithm is a self-optimization 
algorithm and it has the ability to adopt a new scenario, which enables the 
developers to generalize the desired models. These features make deep learning 
suitable for control applications within dynamic and complex environments.  
The computational complexity and the advantages of the learning-based methods 
compared to classical MPC are presented in the additional material, Section 2.3. 
(See: [1]) 
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3 Design of the Controllers 

This section includes the designing process of the MPC, the DNN, the DQN and 
the combined models. The DNN model is developed to imitate the behavior of the 
MPC. The deep network of the DQN model will be designed with the same structure 
as that of the DNN model. In the combined model, the trained DNN model is 
combined with a Reinforcement DDPG algorithm as a decision maker. DQN and 
Hybrid models were trained until the determined criteria are achieved (desired 
reward, number of episodes, ... etc.) 

3.1 Design of the MPC Controller 

Since the MPC is a model-based controller, the first step in the design process is to 
design the vehicle model. Figure 2 shows the global position of the vehicle, while 
equations 12, 13 and 14 are the mathematical representation of the vehicle dynamic. 
Figure 3 shows the MPC model, while the input-output signals, the parameters, and 
the constraints of the MPC are presented in Table 1. During the designing process, 
the parameters of the MPC are initiated based on standard recommendations and 
were tuned during the testing until a stable behaviour is achieved. A detailed 
explanation about MPC optimization problem, Performance specifications, control 
law, and parameter calculations can be found in [1], section (3.1). 

 
Figure 2 

Global position of the vehicle 
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Figure 3 

MPC controller design 
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where 𝑣𝑣𝑥𝑥 is longitudinal velocity; 𝑣𝑣𝑦𝑦 is lateral velocity; 𝑑𝑑 is lateral deviation; 𝑐𝑐𝑓𝑓 is 
the corner stiffness of front tires; 𝑙𝑙𝑟𝑟  is the distance between the rear tire and the 
center of the gravity; 𝐼𝐼𝑧𝑧 is yaw moment; 𝑚𝑚 is the vehicle’s mass, 𝜔𝜔 is yaw rate; 𝛿𝛿 is 
steering angle; 𝜃𝜃 is yaw angle; 𝑐𝑐𝑟𝑟 is the corner stiffness of rear tires; 𝑙𝑙𝑓𝑓 is the distance 
between the front tire and the center of gravity; and 𝜌𝜌 is the curvature. 
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Table 1 
Design parameters and system constraints of the MPC controller 

Internal model  
( vehicle) 

Input signals 
Steering angle (𝛿𝛿) 
Disturbance (𝜌𝜌 𝑣𝑣𝑥𝑥) 

Output signals 

Lateral deviation (𝑑𝑑) 
Yaw angle (𝜔𝜔) 

Lateral velocity (𝑣𝑣𝑦𝑦) 
Yaw rate (𝜔𝜔) 

Parameters of 
MPC model 

Sample time (𝑇𝑇𝑠𝑠) 0.1 seconds 
Prediction horizon (𝑃𝑃) 2 seconds 
Control horizon (𝑀𝑀) 2 seconds 

Constraints 
Steering angle [-1.04, 1.04] rad 
Changing rate [-0.26, 0.26] rad 

3.2 Design of the DNN model Using Imitation Learning 

To achieve imitation learning, the DNN model was designed and structured based 
on the MPC model, where six observations are determined as inputs (𝜃𝜃, 𝑣𝑣𝑦𝑦 ,𝑑𝑑,𝜔𝜔,𝜌𝜌,
�̂�𝛿) and one control action (𝛿𝛿) was determined as an output, where (�̂�𝛿) is the previous 
control action. The detailed structure is shown in Figure 4. In regard to the training 
options, Adaptive Moment Estimation (ADMA) is used as an optimizer, the 
maximum number of Epoch is set to be 40, the mini-batch for each iteration is set 
to be 420, and the initial learning rate is set to be 0.01. Data preparation and training 
process of the MPC controller is presented in [1], Section 3.2.1 

 
 

Figure 4 
The DNN model structure 
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3.3 Design of the Reinforcement Deep Q-Learning Model 

The desired DQN model is designed taking into consideration the same dynamics 
of the vehicle, the constraints, and the environment conditions that were used 
previously. The designing processes went through several steps, preparing the 
environment, creating and training the agent and finally testing and evaluating the 
performance. The environment is created using the six observations and the control 
action space was determined as a discrete space in the range of [-1.04, 1.04] rad, 
meaning that the agent can apply 121 possible actions at each state. Based on that, 
the deep Q-network is designed to accept the state from the environment as an input 
(vector with 6 observations) and outputs the estimated Q-values of each possible 
discrete action that can be taken at that state (vector of n=121 Q values).  
The detailed structure of the DQN model is shown in Figure 5. The target DQN, 
which is used to calculate the target Q-values is a clone of the DQN with the same 
structure and parameterization. The training details of the DQN model are presented 
in [1] Section 3.3.1. 

 
Figure 5 

The reinforcement DQN structure 

3.4 Design of the Combined (Supervised–RL) Model 

The same vehicle’s dynamics, constraints, environment conditions and state space 
are used to design and test the combined model. The continuous actions space is 
determined to be in the range of [-1.04, 1.04] rad. In order to create the agent, beside 
having the trained DNN model as an actor, the critic is created based on the actions-
observations specifications, where the neural network is structured to accept two 
inputs (state-action) and one output (the corresponding expected long-term reward 
𝑄𝑄 (𝑠𝑠, 𝑎𝑎 ∣ 𝜃𝜃𝑄𝑄), and 3 hidden layers. Figure 6 shows the detailed structure of the 
combined model. The training process is presented in Section 3.4.1 of [1] 
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Figure 6 

The structure of the actor-critic networks - combined model 

4 Results and Discussion 

The implementations of the designed models were performed using the same 
vehicle model and subjected to the same constraints, environmental conditions, and 
initial state. The performance is analyzed and evaluated taking into consideration 
the performance of the MPC controller as a reference behavior. The efficiency is 
discussed based on different indicators: the ability of the controllers to drive the 
vehicle along the desired trajectory in the first place, the time needed to reach a 
stable state, and the smoothness of the driving system. The obtained results in 
Figure 7 clearly show that the trained DNN and the MPC controller behave similarly 
with very small output deviation, where the maximum difference is approximately 
0.0094 rad (0.53 degrees). The behavior is evaluated based on the response of the 
vehicle to the controllers' outputs. Figure 8 shows vehicle response to the control 
actions of the MPC and the DNN models in terms of lateral deviation and Figure 9 
shows that both controllers (MPC-DNN) were able to follow the desired trajectory 
by driving the lateral deviation and yaw angle to be very close to zero. Additionally, 
and taking into consideration the control system characteristics, the results clearly 
show that both controllers were able to reach the stable state at almost the same time 
with the same amount of overshooting. These results prove that the trained DNN 
model was able to imitate the behavior of the traditional MPC controller 
successfully. Based on that, the performances of the reinforcement DQN model and 
combined model are compared to the DNN model in order to evaluate the best result 
achieved by the machine-learning-based models. Figure 10 shows that the three 
models responded differently to the same initial state. Despite these differences, 
Figures 11 and 12 show that the reinforcement DQN and the combined models were 
able to track the desired trajectory with different control system characteristics 
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(steady state time and overshooting). The detailed results showed that the combined 
model responded in a way that improved the smoothness of the driving system by 
reducing the overshooting (with hardly any overshooting in the case of lateral 
deviation) and drove the lateral deviation to be very close to zero (0.003 m) in a 
reasonable time, compared to the DNN model which achieved 0.0009 m as a final 
value of the lateral deviation at almost the same time but with higher overshooting 
and thus higher lateral deviations. The DQN model was not as efficient as the other 
models; its behavior led to higher overshooting and drove the lateral deviation to a 
final value of 0.01 m. As a result, and taking all the performance indicators into 
considerations, one can state that the combined model provided the best result and 
achieved the expected optimization by demonstrating accurate control actions 
(steering angles) that steer the vehicle along the desired trajectory efficiently in a 
reasonable time and improve the robustness of the driving system, while the DQN 
model, which is completely based on an RL algorithm, was not as efficient as the 
other two models (the supervised DNN or the combined model). The promising 
results that are provided by the reinforcement learning methods (DQN and Hybrid 
model) emphasize the importance of devoting more efforts to transferring them into 
practice as an efficient alternative to classical control methods. 

 
Figure 7 

Comparison of the estimated steering angles of the MPC and the DNN models 

 
Figure 8 

Vehicle response to the control actions of the MPC and the DNN models - lateral deviation 
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Figure 9 

Vehicle response to the control actions of the MPC and the DNN models - yaw angle 

 
Figure 10 

Comparison of the estimated steering angles of the DNN, DQN, and combined models 

 
Figure 11 

Vehicle response to the control actions of the DNN, DQN - lateral deviation 
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Figure 12 

Vehicle response to the control actions of the DNN, DQN - yaw angle 

Conclusions 

In this work three different machine learning-based models were designed to 
perform an automated path-tracking task: a DNN model to imitate the behavior of 
the traditional MPC controller, a reinforcement learning DQN model, and a hybrid 
model. The hybrid model was designed to optimize the performance by combining 
the trained DNN model with the reinforcement learning model, where the DNN 
network was used as a decision-maker along with the critic network that evaluates 
the actions taken. The results showed that all three models were able to drive the 
vehicle along the desired path. The combined model was able to provide the desired 
optimization by driving the vehicle to the reference speed more smoothly and within 
a reasonable time. This work shows the efficiency of combining supervised and 
reinforcement learning to leverage the advantages of both algorithms, where the 
supervised learning speeds up the learning process and the reinforcement learning 
improves self-adaptation to new states that the model was not faced within the 
training process, which increases efficiency in the complex driving environment. 
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