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Abstract: This paper proposes a data-driven Iterative Reference Input Tuning (IRIT) 

algorithm that solves a reference trajectory tracking problem viewed as an optimization 

problem subjected to control signal saturation constraints and to control signal rate 

constraints. The IRIT algorithm incorporates an experiment-based stochastic search 

algorithm formulated in an Iterative Learning Control (ILC) framework in order to 

combine the advantages of model-free data-driven control and of ILC. The reference input 

vector’s dimensionality is reduced by a linear parameterization. Two neural networks 

(NNs) trained in an ILC framework are employed to ensure a small number of experiments 

in the gradient estimation. The IRIT algorithm is validated by two case studies concerning 

the position control of a nonlinear aerodynamic system. The results prove that the IRIT 

algorithm offers the significant control system performance improvement by few iterations 

and experiments conducted on the real-world process. The paper successfully merges the 

use of ILC in both model-free reference input tuning and NN training. 

Keywords: constraints; Iterative Reference Input Tuning algorithm; linear 

parameterization; mechatronics; neural networks 

1 Introduction 

The reference trajectory tracking problem can be considered as a reference input 

design of an initial Control System (CS) with a priori tuned feedback controllers 

for stability and disturbance rejection. Therefore, the reference trajectory tracking 

is defined as an open-loop optimal control problem. The data-driven solving of 

this Optimization Problem (OP) can be carried out in the Iterative Learning 

Control (ILC) framework, where the sequence of reference input signal samples is 

updated at each iteration. In this setting, the reference input tuning is regarded as 
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the optimization variable and the solution to the OP is based on a gradient search 

algorithm. The gradient information is obtained experimentally without using any 

knowledge on the process. 

In the context of the above features, the proposed approach ensures the data-

driven model-free iterative tuning. Hence, our approach shares some similarities 

with other related approaches to iterative and adaptive model-free control, with 

several advantages versus the model-based controller tuning [1, 2]. 

This paper applies ILC to both reference input tuning and neural network (NN) 

training. The ILC-based solving of optimal control problems is formulated in [3] 

and [4], time and frequency domain convergence analyses are conducted in [5], 

the stochastic approximation is treated in [6], and the output tracking is discussed 

in [7]. The affine constraints are handled in [8] by the transformation of ILC 

problems with quadratic objective functions (o.f.s) into convex quadratic 

programs. The system impulse response is estimated in [9] using input/output 

measurements from previous iterations and next used in a norm-optimal ILC 

structure that accounts for actuator limitations by means of linear inequality 

constraints. A learning approach that gives the parameters of motion primitives for 

achieving flips for quadrocopters is proposed in [10], but it makes use of 

approximate simple models of the process. Similar formulations with 

reinforcement learning for policy search using approximate models and signed 

derivative are given in [11]. NNs applied to ILC in a model-based approach are 

also reported in [12]. 

Our recent results given in [13] and [14] are focused on an experiment-based 

approach to the reference trajectory tracking that takes into account control signal 

saturation constraints, it employs an Interior Point Barrier (IPB) algorithm, and 

both simulated and experimental case studies are included. We have applied ILC 

in [15] to the reference input tuning subject to control signal saturation constraints 

and control signal rate constraints using max-type quadratic penalty functions, and 

the results have been validated on a simulated case study related to a nonlinear 

aerodynamic system. The ILC-based training of NNs has been proposed in [16] in 

order to reduce the number of experiments of IFT with operational constraints for 

nonlinear systems, and tested by means of an experimental case study. The IFT 

with operational constraints applied to data-driven controllers tuned for a reduced 

sensitivity has been suggested in [17]; an NN identification mechanism has 

provided the gradient information used in the search algorithm, a perturbation-

based approach has been involved in the estimation of second-order derivatives, 

and the results have been validated by a simulated case study and compared with 

SPSA and with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update algorithm. 

This paper is built upon these results, and the main contribution with respect to the 

state-of-the-art is an experiment-based Iterative Reference Input Tuning (IRIT) 

algorithm that solves the constrained reference trajectory tracking. This is 

advantageous because: the dimensionality of the reference input vector is reduced 
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by a linear parameterization that enables cost-effective controller designs and 

implementations, the NN-based identification mechanism applied to the nonlinear 

CS leads to a simple, effective and general IRIT algorithm with a reduced number 

of experiments, the involvement of ILC in IRIT and NN training makes our 

approach a special case of supervised learning according to the relationships 

discussed in [14]. This strong involvement determines our IRIT-based CSs to 

benefit of the advantages of ILC highlighted in a mechatronics application. The 

proposed solution is model-free as opposed to the model-based solutions for 

constrained ILC presented in [8], [18], [19]. 

The paper is organized as follows. The next section presents the formulation of the 

problem that concerns the reference trajectory tracking problem solved in the data-

driven optimal ILC framework. Section 3 deals with the model-free estimation of 

o.f.’s gradient. Section 4 proposes the model-free constrained optimal control 

problem and gives the formulation of the IRIT algorithm. Section 5 motivates the 

use of the NN-based approach in gradient estimation. Section 6 validates the IRIT 

algorithm by two simulated case studies that deal with the angular position control 

of a nonlinear aerodynamic system. The results and their discussion convincingly 

validate the new IRIT algorithm. The conclusions are highlighted in Section 7. 

2 Data-driven Approach to Reference Trajectory 

Tracking 

2.1 Problem Formulation 

The CS is characterized by the discrete time Linear Time-Invariant (LTI) Single 

Input-Single Output (SISO) model 

)(),()(),(),,( 11 kvqSkrqTkry   ρρρ , (1) 

where k is the discrete time argument, )(ky  is the process output sequence, )(kr  is 

the reference input sequence, )(kv  is the zero-mean stationary and bounded 

stochastic disturbance input sequence acting on the process output and accounting 

for various types of load or measurement disturbances, ),( 1qS ρ  is the sensitivity 

function, ),( 1qT ρ  is the complementary sensitivity function 

),,(1),()],,()(1/[1),( 11111   qSqTqCqPqS ρρρρ  (2) 

)( 1qP  is the process transfer function (t.f.), ),( 1qC ρ  is the controller t.f., which 

is parameterized by the parameter vector ρ  that contains the tuning parameters of 

the controller, and 1q  is the one step delay operator. The parameter vector ρ  will 

be omitted as follows in certain equations for the sake of simplicity. 
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An ILC framework to describe the reference trajectory tracking problem is 

introduced using the lifted form (or super vector) representation. For a relative 

degree n of the closed-loop CS t.f. ),( 1qT ρ , the lifted form representation for an 

N samples experiment length and the matrices in the deterministic case are 
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where R is the reference input vector that contains the reference input sequence 

over the time interval 10  nNk , Y is the controlled output vector, 
it  is the 

thi  impulse response coefficient of ),( 1qT ρ , T is a lower-triangular Toeplitz 

matrix, 
0Y  is the free response of the CS due to nonzero initial conditions and 

trial-repetitive disturbances, and T indicates matrix transposition. Zero initial 

conditions are assumed without loss of generality, and the tracking error vector E 

dd
YRTYYE   , (4) 

where d
Y  is the desired reference trajectory vector generated from the desired 

process output )(kyd . Equation (4) shows that knowledge on T would provide the 

optimal solution which makes the tracking error zero, i.e., d
YTR

1 . However, T 

can be ill-conditioned, and this matrix is always subject to measurement errors; 

therefore, 1
T  cannot be used. A solution to the iterative estimation of T in an ILC 

framework is given in [9]. 

The control objective is expressed as the following OP that involves the expected 

normalized norm of the tracking error: 
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the deterministic formulation of the o.f. )(RJ  is quadratic with respect to R, 

where TTQ
T  is a positive semi-definite matrix, TMq  T , and MM

T  . A 

gradient descent approach to iteratively solve (5) is 
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where the subscript j is the iteration or trial index, }{

j

J
est

RRR 

  is the estimate of 

the gradient of the o.f. with respect to the reference input vector samples, 1~ 

RH  is 

a Gauss-Newton approximation of the Hessian of the o.f., typically given by a 

BFGS update algorithm, and 
j  is the step size of the update law (6). When no 

model information is used for the choice of 
j  in order to guarantee the 

convergence of the search algorithm [3-9], a small enough value of the step size 

will usually ensure the convergence. This renders our approach a truly model-free 

one. 

The stochastic convergence of ILC algorithms treated in [5, 6] is related to two 

imposed stochastic convergence conditions: the estimated o.f.’s gradient is 

unbiased, and the step size sequence 
0}{  jj
 converges to zero but not too fast. 

Constant values of the step size can be set in practical experiments, where the 

theoretical convergence is not targeted and few iterations are aimed. The 

deterministic formulation of the OP (5) will be employed in the next sections. 

2.2 Reducing the Dimensionality of the Reference Input 

Vector 

Using the reference input vector tuning as in [13, 14], the dimension of the search 

space is usually high, of about hundreds of samples of the reference input signal to 

be optimized. A linear transformation is considered in order to reduce the 

reference input vector dimension. A common linear parameterization can be a 

polynomial fit of a certain order, a Fourier fit or a Gaussian fit, all of them linear 

in the parameters. For an 
rh  degree polynomial for which 

10  ,)(
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the reference input vector is expressed according to the linear transformation 
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The OP given in (5) is also quadratic in θ  by the virtue of the linear 

transformation. 

This reduction of the OP dimension may be useful for several reasons. The 

convergence to a local minimum of the o.f. can be accelerated; in addition, the ill-

conditioning of the BFGS update algorithm can be avoided. The idea of reducing 

the dimension of the learning space in an ILC formulation is also treated in several 
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approaches in [20-23]. These approaches range from decomposing the reference 

signal using different types of basis functions, to down sampling the reference 

signals. However, this problem handling is considered in a model-based context 

and not in a model-free one as in our case. 

3 Model-free Estimation of the Gradient 

Using (8) in (5), the o.f. will be quadratic with respect to θ . Hence 

) 2  (
1

)(  ΓθqΓθQΓθθ
TT

N
J . (9) 

A gradient search is performed to find the minimum of this function. The analytic 

solution is not desired because it depends on the matrices Q and q that depend on 

the unknown T. The gradient search using a Gauss-Newton approximation of the 

Hessian of the new o.f. )(θJ  is 
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A model-free approach to the gradient estimation is given in [15] and 

reformulated here. From (9), using the matrix derivation rules and the fact that 

ΓQΓ  T  is symmetric by the virtue of TTQ
T  being symmetric, the gradient of 

)(θJ  with respect to the parameter vector θ  will be 
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But EMΓθT  , and the gradient of )(θJ  in the deterministic case at each 

iteration j is finally expressed as 
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In (12), 
j
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ET

2  is actually the gradient of )(RJ  from (5) with respect to R. 

Therefore, using (8) 
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Equation (13) can be interpreted as the chain derivation rule of the function 

))(( θRJ  with respect to θ , and it will be used later in the paper. Equation (12) 

suggests that the gradient information can be obtained either by an experimentally 

measured T or by using a special gradient experiment at each iteration.             
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The second approach is preferred in our case and it is next presented. Different 

solutions to the feed-forward optimal control design problem using finite-

differences approximations of the gradient by experiments with perturbed 

parameters are presented in [24, 25]. 

The successive updates (10) for the parameterized reference input trajectory are 

performed in the vicinity of the current iteration reference input trajectory. The 

linearity assumption and operation can therefore be justified in this case. As we 

see from (12), the gradient vector is obtained experimentally driving the closed-

loop CS in non-nominal operating regimes because the current iteration error 
jE  

is used as a reference input in the gradient estimation scheme according to [15]. 

For a linear system this does not affect the quality of the gradient information 

although it may affect the nominal operation of the CS. In order to allow for near-

nominal experimenting regimes to be used with linear systems and to further 

extend the applicability of the IRIT algorithm to nonlinear systems a perturbation-

based approach is proposed to obtain the gradient information near the nominal 

trajectory. This idea stems from [26], and it is a modified version of the algorithm 

used in [15]. The model-free gradient estimation algorithm consists of the 

following steps: 

Step A. Record the tracking error at the current iteration in the vector 
jE . 

Step B. Define the reversed vector )( jrev E  

.10),()()(

,])0(...)1([)])1(...)0(([)(





nNkknyknyke

enNenNeerevrev

d

j

T

jj

T

jjjE
 (14) 

Step C. Apply )( jj rev EθΓ   as a reference input to the CS and obtain the 

output vector ))( ( jjG rev EθΓTY   where the subscript G stands for 

“gradient”. The scalar coefficient   is chosen such that the perturbed term 

)( jrev E  represents only a small deviation around the nominal reference input 

trajectory 
jj ΓθR  . 

Step D. Since 
jj θΓTY     is known from the nominal experiment, obtain 

j

TT
ETΓ  

as 

)(
1

jG

T

j

TT rev YYΓETΓ 


 , (15) 

and use (15) in (12) to get the gradient 

j

J

θθθ 

 . 

The choice of the parameter   can be done automatically such that the nominal 

reference input is not perturbed too much in amplitude. 
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4 Dealing with Control Signal Saturation and 

Control Signal Rate Constraints 

The operational constraints regarding the saturation of actuators, the saturation of 

the control signal rate or the bounds on the state variables of the process are very 

important in many real-world CS applications. Different numerical algorithms can 

be employed in model-based approaches to solve the OP (5) for such systems. 

However, a model-free approach is presented as follows. 

The lifted form representations allow the expression of a particular form of the OP 

that can be of interest. Assuming the deterministic case, let )()( mNmN

ur

S  be 

the lifted map that corresponds to the t.f. )()()( 111   qSqCqSur
, where   is the 

set of real numbers. Using the notation m for the relative degree of )( 1qSur
, 

nm  , the lifted form representations are [15] 
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where 1)(  mN
R  is a vector of greater length than in (3), for which 1)(  nN

R . 

Therefore, a truncation of 
urS  corresponding to the leading principal minor of size 

nN   is considered such that )()( nNnN

ur

S  because we need the same R of 

size nN   to be tuned, and this in turn will allow only nN   (out of mN  ) 

constraints imposed to U, and the affine constraints 
maxmin )( URUU   and 

maxmin )( URUU   are imposed to R. 

The OP, which ensures the reference trajectory tracking with control signal 

constraints and with control signal rate constraints is expressed as 
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A solver for this type of problems in the deterministic case is the IPB algorithm 

[8, 14]. As we have shown in [14] for inequality constraints concerning only the 

control signal saturation, the constrained OP is transformed into an unconstrained 

OP by the use of the penalty functions. The logarithmic barrier penalty function 

grows unbounded as the constraints are close to being violated and in the 

stochastic framework this is always the case. A solution to overcome this problem 

is given in [27, 28], but with quadratic penalty functions. We propose the 

following augmented o.f. that accounts for inequality constraints concerning the 

control signal saturation and the control signal rate: 
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where the positive and strictly increasing sequence of penalty parameters 
0}{ jjp , 

jp , guarantees that the minimum of the sequence of augmented o.f.s 

0)}(
~

{ jp j
J θ  will converge to the solution to the constrained OP (17), h, ch ...1 , is 

the constraint index, 0)( θhq  is thh  constraint, 
hu~  is thh  element of U

~
, and T

hs
~  is 

thh  row of S
~

. The OP (17) is solved using a stochastic approximation algorithm 

that makes use of the experimentally obtained gradient of )(
~

θ
jpJ . For practical 

applications, where stochastic convergence is not targeted and a few number of 

iterations is desired, the penalty parameters can be chosen as const pp j
. 

The quadratic penalty functions )(θ  and )(θ  in (18) corresponding to the 

control saturation and control rate constraints use the max function, which in this 

case is non-differentiable only at zero. Given that )(θ  and )(θ  are Lipschitz 

and non-differentiable at a set of points of zero Lebesgue measure, the algorithm 

visits the zero-measure set with probability zero when a normal distribution for 

the noise is assumed [27]. Therefore 
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Using the gradient of )(R  with respect to R given in [15], the linear 

transformation (8) and the chain derivation rule with respect to vectors lead to the 

expression of the gradient of )(θ  with respect to θ : 

).(
)(

θζSΓ
θ

ΓθR T

ur

T


  (20) 

The gradient of )( ΓθR   in (18) with respect to the nN   elements of R (from 

0 to 1nN ) is given in [15], and the linear transformation (8), next the chain 

derivation rule with respect to vectors lead to the expression of the gradient of 

)(θ  with respect to θ : 

)()(
)(

21 θζMMΓ
θ

θ




 T . (21) 

Using (19), (20) and (21), the expression of the gradient of the o.f. (18) at the 

current iteration j is 
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where 1)1(  h
θ , )( jθζ  is considered in [15] as )(θζ  is seen as a function of θ  

via the transformation (8), )( jθζ  is considered in [16] as )(θζ  is seen as a 

function of θ  via the transformation (8), and )( jθζ  is a one step ahead vector of 

dimension nN  : 

.]0),(...)2,([)( T

j nN  θζθζθζ  (23) 

As shown in [16], the matrix term in the expression of 
R

R



 )(  and the structure 

of the matrices justifies the use of a single gradient experiment, with 

))(()( jrevrev θψζζζ   injected as the reference input to the CS, taking 

advantage of the dimensionality of the map T

urS . The same approach will be used 

as in the gradient estimation algorithm given in Section 3 in order to constrain the 

evolution of the dynamic system in the vicinity of the nominal trajectory. 

The feasibility is not preserved during the tuning since the constraints are 

weighted in the o.f. only when they are violated. The feasibility is not a problem 

because our approach allows the initialization of a solution that is not initially 

feasible. But this causes the nonlinear behaviour when the constraints are active 

and therefore it is not recommended. However, in the long-term run, as the 

sequence 
0}{ jjp  increases, the gradient due to the constraints that are violated is 

decisive, and the reference trajectory tracking objective is neglected with the 

expense of fulfilling OP’s constraints. The constraints are active and they vary 

only subjected to the random effects of the noise affecting the closed-loop system. 
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For non-minimum-phase systems, the iterative reference input update (6) or (10) 

may lead to unbounded growth of the reference input’s amplitude because this 

update will try to compensate for the non-minimum-phase character of the system 

response. In terms of the analytical solution to the reference trajectory tracking 

problem d
YTR

1 , this corresponds to filtering d
Y  through the inverse of an 

unstable map T. We propose three solutions to this problem, briefly outlined as 

follows. The first solution requires that the desired trajectory should have a non-

minimum-phase character. The second solution uses a regularization factor in the 

definition of the original o.f. given in (5), for example as the weighted norm of the 

reference input 2

2|||| R , where 0  is a scalar weight. This will balance the o.f. 

and the growth of the amplitude of the reference input will be limited. The third 

solution is based on the fact that the introduction of constraints on the control 

signal and on the control signal rate will indirectly limit the amplitude of the 

reference input as an unbounded reference input will generate an unbounded 

control input signal. Therefore, out approach indirectly solves the reference 

trajectory tracking problem for non-minimum-phase systems by taking into 

account the control signal constraints. 

Our IRIT algorithm consists of the following steps: 

Step S1. Start with the initial guess of R. Calculate the regressor , perform data 

normalization on the regressor, and fit the initial  using a least squares algorithm. 

Choose the upper and lower bounds for the control signal, the upper and lower 

bounds for the control signal rate and generate the desired reference trajectory 

vector d
Y . Choose the tolerances 

Ntol  for stopping the stochastic search 

algorithm. Choose the sequence 
0}{ jjp  and 

0 . Set the iteration index for  and 

0}{ jjp  to 0j . 

Step S2. Conduct the normal experiment with the current 
jθ . Evaluate the o.f. 

)(
~

jJ θ  with θθ j
 in (17), record the current tracking error 

jE , and compute the 

vector variables ζζζ  ,,  as shown in [15]. 

Step S3. Conduct the first gradient experiment according to the approach given in 

Section 3 to find the first term in the gradient of the augmented o.f. given in (22), 

namely 
j

T

N
ETΓ

T 
2 . 

Step S4. Conduct the second gradient experiment in the same way as descried in 

Section 3. The reversed vector )( jθψ  is used as the reference input applied to the 

real-world CS to find the second term in the gradient of the augmented o.f. given 

in (22), namely )( j

T

ur θψS , after which the expression )}({ j

T

ur

T

jp θψSΓ  is obtained 

in a straightforward manner because  is known. 
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Step S5. Estimate the gradient using (22), and calculate the next reference input 

sequence using 

}.

~

{1

j

J
estjjj

θθ
θ

θθ







  (24) 

Step S6. If the gradient search has converged in terms of the gradient of the 

augmented o.f. less then a constant, 
Ntol

J
est

j








}

~

{

θθ
θ

, stop the algorithm. 

Otherwise, calculate 
11    jj θΓR , set 1 jj , and next jump to step S2. 

5 Neural Network-based Gradient Estimation 

Mechanism 

Each iteration in the algorithm given in the previous section requires a normal 

experiment with the current parameterized reference input. After the normal 

experiment, the gradient experiments require running perturbed trajectories in the 

vicinity of the nominal trajectories. These perturbed trajectories are obtained for 

perturbed reference inputs with small amplitude signals according to the previous 

sections and to [13-17]. In order to avoid conducting gradient experiments on the 

real-world CS, a simulation-based mechanism can be used, with identified models 

instead of the real-world CS. These models are only valid in the vicinity of the 

current iteration nominal trajectories. No additional experiments are required to 

collect data in a wide operating range for identification purposes so these models 

have scope only within the current iteration. 

In order to extend the applicability of this approach to smooth nonlinear systems 

that can be well approximated by linear systems near some operating points, NN-

based models can be used for the identification purposes. Our approach has two 

advantages. First, the closed-loop CS behaviour is usually of low-pass type; 

therefore, the models usually have simple dynamics. Second, the numerical 

differentiation issues which occur in noisy environments will be mitigated by our 

approach. Linear models could have been used as well for gradient estimation 

since they can be considered as particular cases of nonlinear ones. 

Let the nonlinear dynamic maps from the reference input to the controlled output 

ryM  and from the reference input to the control input 
ruM  are supposed to be 

characterized by the following nonlinear autoregressive exogenous (NARX) 

models [16, 17]: 
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A more compact representation that takes advantage of the supervector notation is 

)(RY ryM  and )(RU ruM . The current iteration trajectories },,{ jjj YUR  from 

the normal experiment are used to identify 
ryM  and 

ruM , respectively. Using (15) 

from the model-free gradient estimation algorithm (given in Section 3) in (22), an 

estimate of the gradient of the augmented o.f. is expressed as 
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 (26) 

where )( jθψ  is defined in (22), and 
UY  ,  are scaling factors chosen such that 

the perturbations are of small amplitude with respect to the current iteration 

reference input. The superposition principle invoked here is expected to work for 

small amplitude perturbations of the nominal trajectories at the current iteration. 

We are using a feed-forward NN architecture that consists of one hidden layer 

with a hyperbolic tangent activation function and a single linear neuron. The 

input-output map is [16, 17] 

))(),(()()1(ˆ kkkky T
xVσW , (27) 

where 1

10 ]...[  HT
Hwww RW  is the vector of output layer weights, 

])(...)(1[ 11 xVxVσ
T

HH

TT   is the vector of hidden layer neurons outputs, 

with the hyperbolic activation tangent activation functions 

Hmxxm ...1 ),tanh()(  , the first term in σ  corresponds to the bias of the output 

neuron, and each hidden layer neuron is parameterized by its vector of weights 
110 ]...[)(  nunu

mmm

Tm vvv RV , Hm ...1 , which multiplies the input vector 

]...[ 10 nu

T xxxx . 

Treating the NN as a nonlinear multi input-multi output dynamical system 

considered in the iteration domain [16, 17]: 
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where j is the iteration index, the dynamical system (28) is transformed into a 

static map from the inputs to the outputs, and the batch training of the NN can be 
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regarded as a supervised learning approach, that aims the minimization of the 

tracking error d

jj YYE   referred to also as training error. 

As shown in [16, 17], the input at each iteration is derived in the framework of 

norm-optimal ILC as the solution to an OP, is next transformed into another OP 

by a Taylor series expansion. The optimal vector solution to this OP consists of 

the increments of the NN weights, expressed as update laws, which actually 

represent our ILC-based training scheme for NNs. The norm-optimal ILC 

formulation is more general since the o.f. also includes the regularization term on 

the weights update, and it offers a degree of freedom in learning. 

6 Case Studies and Discussion of the Results 

The case studies apply our IRIT algorithm to the controller tuning for a 

representative mechatronics application, namely the angular positioning of the 

vertical motion of a twin-rotor aero-dynamical system experimental setup [16]. A 

rigid beam supports at one end a horizontal rotor which produces vertical motion 

and at the other end a vertical rotor causing horizontal motion. The horizontal 

position is considered fixed in this case study. The nonlinear equations that 

describe the vertical motion are [16] 

),()(

,

],sincos)[()(

vrvvv

vv

vvvvvvmvv

MUMI

CBAgkFlJ













 (29) 

where uUv (%)  is the control signal represented by the PWM duty-cycle 

corresponding to the input voltage range of the DC motor, V 24V 24  u , 

)/( sradv  is the angular speed of the rotor, yradv  )(  is the process output 

corresponding to the pitch angle of the beam which supports the main and the tail 

rotor, )/( sradv  is the angular velocity of the beam. The expressions of the other 

parameters and variables related to (29) are given in [16], and the parameter 

values are also given in [16] as 

. 0936.0, 2.0, 05.0

,/  0127.0,  105.4,  02421.0 2252

mkgradCmlmkgradAB

smkgkmkgImkgJ

m

vvv



 

 (30) 

The nonlinear model (50) is not used in the reference input tuning process except 

for obtaining an initial feedback controller, which can also be obtained by model-

free approaches. A discrete-time linear PID controller with the following t.f. is 

considered: 

).1/()001.0012.0()( 111   qqqH  (31) 
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The reference trajectory is prescribed in terms of the unit step response of a 

second-order normalized reference model with the t.f. )2/( 222

nnn ss   and 

the parameters rad/s 5.0n
 and 7.0 . The sampling period is s 1.0sT  and 

the length of experiments is of 400N  samples. The relative degree of )( 1qT  

is 1n  and the relative degree of )( 1qSur
 is 0m . 

The initial reference input is chosen such that to obtain a CS response that is very 

different from the targeted reference trajectory. Therefore, the initial reference 

input is set as a squared signal of amplitude 0.1, and this motion corresponds to a 

“take-off” manoeuvre followed by a “landing” manoeuvre. The coefficients of the 

initial polynomial fit obtained via a least squares algorithm of dimension 81rh  

are grouped in the parameter vector 

.]97.86  342.52  465.59  307.68  101.36  15.62  0.93  0.05[0

Tθ  (32) 

The NN architecture used in the identification and subsequently in the gradient 

estimation consists of one hidden layer with six neurons and one output layer with 

one neuron. As shown in Section 5, hyperbolic tangent activation functions are 

employed in the hidden layer, and a linear function is employed as the output 

neuron activation function. This NN architecture uses the last two outputs and the 

last two inputs in order to obtain the output prediction. The same simple 

architecture is used for both 
ryM  and 

ruM . The inputs of the two NNs are 

selected as 

.for    )]1(  )(  )1(  )(  1[)(

,for    )]1(  )(  )1(  )(  1[)(

ru

T

ru

ry

T

ry

Mkrkrkukuk

Mkrkrkykyk





x

x
 (33) 

The outputs of the NNs are the closed-loop output and the control signal, 

respectively. 

The training of the two NN architectures is carried out in our ILC framework. 

Each neuron in the hidden layer has five parameters, i.e., four weights and one 

bias. The output layer has seven weights including the bias. We trained the weight 

vectors 17RW  and 6...1 ,15   ii RV . The initial values of the hidden neurons 

parameters are chosen from a normal distribution centred at zero with variance 1. 

The NN-based identification is carried out on the nominal trajectories of the 

closed-loop for the initial controller parameters presented in the sequel. Only the 

results concerning the identified map 
ryM  are presented here. For the norm-

optimal ILC problem, the weighting matrices were chosen as 
400IR   and 

370001.0 IQ  , where 
I  is the general notation for th  order identity matrix. The 

evolutions of the training error throughout the iterations and of the simulated 

trajectory before and after training are shown in Figure 1. 
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Figure 1 

NN training error versus iteration number and controlled output response before and after training 

Two simulated case studies are next considered. The first simulated case study 

deals with the unconstrained optimization, where only the reference input signal is 

tuned according using our approach in order to ensure the output tracking 

improvement. A BFGS update was used for the Hessian estimate and the step size 

was chosen constant equal to 0.12. The final parameter vector that describes the 

reference input is 

.]97.86  342.52  465.59  307.69  101.35  15.66  0.88  0.04[22

Tθ  (34) 

Figure 2 gives the initial and final reference input after optimization and the o.f. 

decrease over the iterations. Only the first five parameters of the parameter vector 

are changed significantly. The control signal and the final controlled output before 

and after the optimization are shown in Figure 3 and in Figure 4, respectively. The 

rise of the reference input on the first 15 s with respect to the initial value and the 

decrease of the final reference input after 20 s compared to the initial reference 

input have to be correlated with the output response. This indicates that the 

reference input is tuned such as to anticipate the low bandwidth of the CS. As an 

effect, the final controlled output is rising faster under the take-off manoeuvre, 

and also tracks the reference input more accurately for the landing manoeuvre. 
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Figure 2 

Simulations results expressed as reference input versus time and as o.f. in (5) versus iteration number. 

The initial reference is dotted and the final reference input is black solid 

The second simulated case study corresponding to the optimization with control 

signal saturation and control signal rate constraints is presented as follows. The 

two inequality constraints are 12.0)(05.0  ku  and 015.0)(01.0  ku . 
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Figure 3 

Simulation results for the unconstrained case: control signal responses: initial (dotted) and final (solid) 

The algorithm is applied as in the deterministic case as follows. The sequence of 

penalty parameters in (18) was set to a constant value 9jp . Two constant 

values of the step-scaling parameter were used for the gradient descent. When no 

constraints are violated the step size was set to 1.0 ; otherwise, it was set to 

12.0 . 400 samples of the reference input are subject to optimization and a total 

of 796 constraints were used: 798 for control signal saturation and 798 for control 

signal rate saturation. The final parameter vector that describes the reference input 

is 

.]97.86  342.52  465.59  307.69  101.35  15.64  0.91  0.04[32

Tθ  (35) 
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Figure 4 

Simulation results for the unconstrained case expressed as position response: initial (black dotted), 

final response after optimization (black solid) and reference trajectory (black dashed) 

The evolution of the reference input during the learning process is presented in 

Figure 5. The final reference input parameterized by 
32θ  has higher amplitude for 

the first 20 sec and forces the take-off motion to respond faster but with higher 

overshoot. On the other hand, after 20 s, the final reference input drops below the 

initial reference input trajectory in order to compensate for the slow response in 

the landing manoeuvre and also to correct the steady-state error. 

Figure 5 also shows the sum of penalty functions )()( θθ   that contributes to 

the augmented o.f. )(
~

θ
jpJ  in (18) to be optimized. Since the constraints are 

violated more, they weight more in the o.f., and they eventually provide a more 

significant contribution to the gradient of the o.f., thus driving the optimization in 

the direction of bringing the trajectories within the feasible boundaries. This has a 

negative impact on the reference tracking criterion. Even with the double 

approximation involved in the linearity assumption and in the NN-based gradient 

estimation, the o.f. decreases as shown in Figure 5 and the performance 

improvements are evident. 

The results given in Figure 5 have to be correlated with the control signal 

responses illustrated in Figure 6. There are several control signal trajectories 

during the learning process that violate the constraints more heavily. But, our IRIT 

algorithm brings the trajectories as much as possible close to the boundaries of the 

feasible region in such situations. 

The output trajectory evolution during the learning is presented in Figure 7, where 

the final output trajectory is closer to the reference trajectory when compared with 

the initial response. The corresponding final reference input overcomes the 

difficulty of both the take-off manoeuvre and the landing manoeuvre by 

anticipating the slow responses. 
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Figure 5 

Simulation results expressed as reference input versus time as the learning converges, augmented o.f. 

(18) versus iteration number and sum of penalty functions. The initial reference is dotted and the final 

reference input is black solid 
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Figure 6 

Simulation results for the constrained case expressed as control signal responses: initial (dotted) and 

final (solid). The constraints are dashed 

The advantage of the proposed approach is even more obvious because it can 

force the controlled output in the vicinity of the reference trajectory; the parameter 

tuning of the controller can next be carried out using similar model-free iterative 

techniques in linear or nonlinear formulations such as IFT [17]. Our approach 

prevents the optimization to get stuck in local minima that are far from the global 

minimum. Proceeding this way the windsurfing approach is actually solved using 

our algorithm in a two-degrees-of-freedom tuning setting. Therefore, the CS can 

be optimized in order to exhibit highly complex manoeuvres. 
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Figure 7 

Simulation results for the constrained case expressed as position response: initial (black dotted), final 

response after optimization (black solid) and reference trajectory (black dashed) and intermediate 

trajectories (grey) 

The optimization of the reference input sequence in the parameterized form leads 

to less spectacular results then in the case when the non-parameterized reference 

input is subjected to optimization [13-17]. However, the parameterization effect is 

that it reduces the many local minima specific to the case when no 

parameterization is used. It seems that the polynomial approximation employed 

for the reduction of the reference input dimension has limited potential and other 

basis functions may be exploited for this purpose such as radial basis functions. 

The convergence speed to the solution within few experiments on the real-world 

process depends on how many constraints are violated at each iteration. This 

depends on the interplay between the penalty parameter 
jp  and the step size of the 

search algorithm. 

The discussion presented in this section can be extended because different results 

will be obtained for other o.f.s and other constraints in the OPs. This depends on 

the performance specifications and objectives [29-34] for various CS applications 

[35-40]. 

The training approach using the ILC framework described in the paper can be 

extended to other NN architectures. Moreover, it can be employed for the same 

architecture that is used in this paper, with more than one hidden layer. 

Conclusions 

This paper has proposed a data-driven algorithm, which solves an optimal control 

problem in order to ensure the constrained reference trajectory tracking by few 

experiments conducted on the real-world CS. The new IRIT algorithm has three 

advantages. First, the closed-loop CS stability is not affected while solving the 
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trajectory tracking problem. Starting with a given closed-loop controller, the 

stability is maintained along the iterations of the IRIT algorithm and no additional 

tests are needed. The change in the controller parameters specific to other tuning 

techniques including IFT, which usually require attention in order to achieve the 

bumpless transfer between controllers, is mitigated by our approach. Second, cost-

effective controller designs and implementations are achieved because of the 

linear parameterization that ensures the reduced dimensionality of the reference 

input vector. Third, our IRIT algorithm is advantageous as it works for smooth 

nonlinear systems around some operating points 

The proposed algorithm can be generalized by considering other data-driven 

optimization approaches to controller tuning combined with ILC to optimize the 

reference input sequence. These techniques can yield automated tools for 

controller design and tuning, with benefits for the CS designers. 
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