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Abstract: The approaches dedicated to the geometric model of the object, in the object-
oriented modeling framework, specific to robots, are focused on the computation of the 
position of the elements, relative to a global reference frame. One important problem, in 
this regard, is the direct geometry, which starts with the initial data represented by the 
generalized coordinates and parameters of each element (in its own reference frame) and 
calculates the configuration of the structure in the global reference frame. This paper 
extends the Authors’ geometrical modeling approach, referred to as the translated 
reference frame formalism, by changing the mathematical apparatus of homogeneous 
transformations with that specific to quaternions. This new approach has three main 
advantages over the state-of-the art, namely, it simplifies substantially the configuration 
modeling, the transformation parameters are intuitive, and the computation is substituted 
with the operation of choosing a suitable transformation that belongs to a set of six 
homogeneous transformations. The suggested approach is validated by the computation of 
the geometric models of two illustrative robotic examples. The source codes are available 
in a public repository. 
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1 Introduction 

Modeling is a process of knowledge, that uses two mechanisms of thinking, 
approximation and conceptualization. The approximation refers to the 
simplification of the phenomenon by eluding the features considered insignificant 
(by the model designer), and the conceptualization refers to the replacement of the 
particular by the general, by the concept. It is widely acknowledged that the model 
is an abstraction of reality; the difference between the model and the reality is 
inherent and called perturbation. In order to be aware of this difference, the model 
design is preceded by the specification of the hypotheses, i.e., the conditions that 
state when the model fully reflects the phenomenon. 

In the case of robotics, the object-oriented modeling framework organizes the 
model construction through a succession of increasingly precise model classes. 
The analysis and design principles specific to object-oriented framework are set in 
[1]. These principles are applied in [2] and [3] to create a software library that is 
used in engineering and teaching applications as suggestively illustrated in [4].  
An application of object-oriented modeling to delta robots is described in [5].  
The analysis and design principles are implemented in Modelica in [6], where 
predefined objects of Lego type are assembled in different configurations. 

In the context of object-oriented modeling, a succession of three classes of 
models, namely geometric, kinematic and dynamic ones, is formulated in [7]. 
Each class contains the related assumptions (hypothesis), the properties they use, 
as well as the methods they offer. The mentioned classes are in a parent-child 
relationship, which means that they can inherit their methods and properties.  
The basis of this succession is the geometric model, which is the father of the 
kinematic one, which in turn is the father of the dynamic one. 

The geometric model object contains the richest collection of hypotheses 
(eliminated, to a certain extent, by kinematic and dynamic models). Such 
examples of hypotheses are: the phenomena are out of time, there is no movement, 
bodies are rigid, interactions with the environment are non-existent, and there are 
no inertial effects. The properties of the geometric model refer to abstractions of 
the size and orientation of the bodies obtained by attaching reference (or 
coordinate) frames (or systems) to each element, as, for example, the lengths of 
the elements, the angles of rotation, and the displacements in the joints (i.e., the 
generalized coordinates). 

The approaches specific to the geometric model object deal with the computation 
of the position of the elements relative to a global reference frame. Two types of 
problems are important in this regard: 

(i) The direct geometry, which starts with the initial data represented by the 
generalized coordinates and parameters of each element (in its own 
reference frame), and calculates the configuration of the structure in the 
global reference frame. 
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(ii) The inverse geometry, which starts with the input data represented by the 
position of the gripper (effector), and calculates the generalized 
coordinates of the robot joints. 

Several formalisms have been proposed to solve the direct geometry problem. 
They will be briefly discussed as follows. The Denavit-Hartenberg (DH) 
formalism [8] [9] is the most popular one, it is imagined for a structure with 
arbitrary axes (the general case), but it proves to be difficult to be applied to 
structures with parallel or perpendicular axes. The DH formalism model describes 
the technological dimensions of robot’s elements through a sequence of four 
parameters, three constant ones and one variable one. The DH formalism is 
followed by Paul’s approach [10], which uses DH parameters but is focused on 
structures with translation and rotation couplets, and Khalil and Kleinfinger’s 
approach [11], which uses the same DH parameters but generalizes the formalism 
to closed and tree structures. A significant change is made by Craig in [12] in 
terms of moving the origin of the reference frame of the element from the 
upstream joint to the downstream joint. However, it is difficult to define the three 
parameters and to mathematically compute the homogeneous transformation.  
The DH and Craig’s formalisms are included in software packages as that 
developed by Corke in [13] for Matlab and in the Robot Analyzer coordinated by 
Saha [14]. Another formalism, proposed by Gogu and his co-authors in [15] and 
[16], conceives a significant simplification that refers to particular structures with 
parallel or perpendicular joints axes. It is also important to mention the screw 
theory-based formalism [17-19], which proves to be a modern and efficient 
alternative to the DH formalism. 

The paper is an extension of authors’ recent approach given in [20] and referred to 
as translated reference frame formalism by changing the mathematical apparatus 
of homogeneous transformations with that specific to quaternions. This novel 
approach to solve the direct geometry problem is important with respect to the 
state-of-the-art discussed above because of three reasons, (a), (b) and (c). (a) It 
simplifies substantially the configuration modeling. (b) The transformation 
parameters are intuitive. (c) The computation is substituted with the operation of 
choosing a suitable transformation that belongs to a set of six homogeneous 
transformations. In addition, the quaternion-based approach proposed by this 
paper is advantageous as it is attractive for rotational modeling and for 
generalization to structures with arbitrary axes. 

The paper is organized as follows: the stages of the translated reference frame 
formalism proposed in [20] are briefly recalled in the next section.  
The presentation of the mathematical apparatus associated to the formalism is 
prepared in Section 3 focused on quaternions. Sections 4 and 5 describe the 
proposed approach, in a particular version applied to structures with parallel and 
or perpendicular axes, and its generalization to arbitrary axes as well, respectively, 
and an algorithm is formulated in this regard. Section 6 gives the use of the 
suggested mathematical tools to calculate the Jacobian matrix. The theoretical 
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results are validated in Section 7 in terms of two illustrative examples, their 
analytical solution and the software implementation and application of the 
algorithm. The conclusions highlighted in Section 8 conclude the paper. 

2 Overview of Translated Reference Frame 
Formalism 

Since each element of the robot’s structure is defined in its own reference (or 
coordinate) frame (or system), the formalisms mentioned in the previous section 
are expressed as algorithms that ultimately determine the transformation operators 
from one reference frame to another one. More precisely, the parameters of each 
element are defined in its own (local) reference frame, and it is of interest to 
express their values in other reference frames (local or global ones). In this 
context, the position of the effector in the global reference frame is of interest, i.e. 

 (1) 

where p is the position of the gripper, o is the orientation of the gripper (in the 
Cartesian space), and q1, …, qn are the generalized coordinates (variables of joint 
space). The result in (1) is important in the representation of the configuration, the 
solution to the kinematic model (the calculation of the Jacobian matrix), and the 
construction of the dynamic model of the structure. 

The translated reference frame formalism [20] is described and organized in terms 
of several rules that involve the variables illustrated in Figure 1. For example, for 
the joint i, the generalized variable is qi, the origin of the reference frame is Oi, 
and the unit vector of the axis i is i

i 1ˆ −u  (defined in the reference frame {i–1}). 

 
Figure 1 

The link between the reference frames {i–1} and {i} (adapted from [20]) 

The formalism is organized in the following steps [20]: 
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1. The reference frames are attached to each element. 

1.a. The origins of the reference frames are defined as the points O1, …, On, on the 
axes of rotation or translation of each joint: 

).(iAxisOi ∈  (2) 

1.b. The generic reference frame of the first joint is defined so that one of the axes 
of the system coincides with the axis of rotation and / or translation of the joint: 

.ˆˆˆˆ|}0{ 1
0

000 uzyx ≡∨∨  (3) 

1.c. The chosen reference frame is translated to each chosen origin, obtaining a set 
of n reference frames. Since the joints have mutually parallel or perpendicular 
axes, each axis of the joints will overlap on one of the axes of the reference frame 
corresponding to that axis. The reference frame of the element i, namely {i}, is 
located on the i axis: 

....1},{||}0{ nii =∀  (4) 

2. The transformation parameters from the reference frame {i} to the reference 
frame {i–1} is defined. 

2.a. The position vector of the point Oi is expressed in the reference frame {i–1}. 

2.b. The unit vector of the i axis is expressed in the reference frame {i–1}. 

2.c. The generalized variable qi is expressed, i.e., the angle of rotation or the 
length of translation at joint i. 

3. The mathematical formulae of the formalism are applied. 

3.a. Six homogeneous transformations have been identified to solve all 
configurations: 

 (5) 

where },,,{ IRRRQ zyx∈  is the rotation component of the operator, Rx, Ry and Rz 

are the elementary angle rotations around the X, Y and Z axes attached to qi: 
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If the joint i is prismatic, three translations in the directions X, Y, Z are possible, 
Q = I, and the translation component of the transformation is 

.ˆ1 i
iiii

i
i q 11 utP −−

− ε+=  (7) 

If the joint i is revolute, then εi = 0 in (7). 

3.b. The generalization of the formalism, its use for structures with arbitrary axes 
(not necessarily parallel or perpendicular) is conducted by means of a 
homogeneous operator that rotates the axis i–1 to the axis i: 

 (8) 

where )ˆ,( vR α  is a Rodriguez-type rotation matrix, α is the angle of rotation and 
v̂  is the unit vector of the axis of rotation (also illustrated in Figure 2). 

 
Figure 2 

The general form of the formalism (adapted from [20]) 

This formalism, which actually carries out the transformation from the reference 
frame {i} to the reference frame {i–1}, can be intuited as a journey of the 
reference frame {i–1} to the reference frame {i}. In other words, it performs the 
translation of the reference frame {i–1} to the origin of the reference frame {i}, 
followed by the rotation with the angle α around the unit vector v̂ , and finally by 
the rotation or translation corresponding to the generalized variable qi. 

The subject of this paper is the transformation of the proposed formalism by 
modifying the mathematical formulae given above. This modification concerns 
the relations that use homogeneous matrices with new ones that manipulate 
quaternions. The steps 1 and 2 of the formalism will be kept, and the step 3 will be 
modified in terms of introducing new relations. 
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3 Definitions and Operations on Quaternions 

Quaternions are hypercomplex numbers defined by Hamilton in [21] to describe 
the three-dimensional rotations of objects. The notation q will be used as follows 
for a quaternion, and it employs the following equivalent forms: 

),(
),(

,   
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a
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kdjciba

=
=

+++=
 (9) 

where a, b, c and d are real numbers, i, j and k are the imaginary elements (a 
generalization of the imaginary element i of a complex number), a is the real part 
of the quaternion, v is its vector part 

,   kdjcib ++=v  (10) 

and the imaginary elements fulfill 
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Two operations are defined on the set of quaternions, namely addition and 
multiplication (non-commutative): 
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where: 
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=
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1
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which means that they belong to a non-commutative algebraic structure. 

Rotations are described by rotation operators. For example, the rotation of the 
vector p, its transformation into the vector q around the unit vector v with the 
angle α is expressed as 
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The operations will be integrated in matrix computation in the next section. 
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4 Integration of Quaternions in the Translated 
Reference Frame Formalism 

The proposed formalism preserves the first two steps that define the local 
reference frame (or coordinate systems) but modifies the mathematical apparatus. 
The transformation from the reference frame {k} to the reference frame {i–1} is 
carried out using 
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qi is the generalized variable at joint i, i
i 1ˆ −u  is the unit vector on which the 

movement of the joint i takes place, expressed in the reference frame {i–1}, tx,i–1, 
ty,i–1 and tz,i–1 are the components of the vector linking the origin of the reference 
frame {i–1} to the reference frame {i} expressed in the reference frame {i–1}. 
Pointing out that 
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with 1 and 0 defined in (13), the relationship (15) is iterative in i, it starts with the 
reference frame k=1…n and iterates downstream, at the limit, to the global 
reference frame {0}. 

The relationship (15) can be reversed as follows: 
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with the interpretation that knowing the transformation from the reference frame 
{k} to the reference frame {i–1}, the transformation to the reference frame {i} can 
be calculated. Specifically, an upstream iteration is carried out. 

If the orientations of the effector are intended to be computed, making use of the 
calculation of the unit vectors of its reference frame in the basic reference frame, 
the following formula can be used: 
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where n
0w  is the quaternion corresponding to the unit vectors in the basic 

reference frame, and 
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where n̂ , ô  and â  are highlighted in Figure 3. It is underlined that the cuaternion 
product is associative but not commutative. 

 
Figure 3 

Jacobian matrix computation 

5 Generalization to Arbitrary Axes 

The translated reference frame formalism can be generalized to any type of 
structure as illustrated in Figure 2. The structures of serial robots have, generally, 
parallel or perpendicular to the axes of rotation or translation. This substantially 
simplifies the calculation of the rotation quaternion 
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where i
i 1ˆ −u  is the unit vector of axis i, expressed in the reference frame{i–1}, with 

the possible expressions 
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But if a more general situation with two rotations is considered, the first overlaps 
the axis of the joint i–1 with the axis of the joint i, and the second rotates the joint 
with the generalized variable qi in terms of 
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where: 
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T
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and iẑ  is the unit vector of the axis of rotation, expressed in the reference frame 
{i–1}. 

The proposed formalism and the steps presented in previous section along with the 
information in this section are organized systematically in the algorithm presented 
in Figure 4. 

6 Jacobian Matrix Computation 

The Jacobian matrix is the fundamental concept of the kinematic model 
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where v and ω are the linear and the angular velocities, respectively, of the point 
of interest, respectively (at the limit of the origin of the effector the coordinate 
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v
 is the Jacobian matrix expressed in the global reference 

frame, consisting of the two elements, the upper one referring to linear velocities, 
and the lower one corresponding to angular velocities, T

nqq ]...[ 1=q  is the 
vector of generalized variables, T indicates matrix transposition, and n is the 
number of degrees of freedom of the structure. 
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Figure 4 

The block diagram of the proposed formalism 

The computation of the Jacobian matrix is done as follows separately for the two 
elements mentioned above in relation with Figure 3. The upper element, 
corresponding to the linear velocities, is calculated using the partial derivatives of 
the components of the vector included in the quaternion 
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The lower element, corresponding to the angular velocities, is computed using the 
rotation axes 

],ˆ...ˆ[ 0
1
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n
n wwJ ⋅ε⋅ε=ω  (28) 
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where i
0ŵ  is the unit vector of the {i} axis expressed in the base reference frame, 

and 
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Once again it is underlined that the cuaternion product is associative but not 
commutative. 

7 Examples 

Two simple preparatory cases are first presented. They refer to planar structures 
such as Rotation Rotation (RR) and Rotation Translation (RT). 

Since the principles from which the two alternatives of the proposed formalism 
start (included in steps 1 and 2 of the algorithm) are identical, this allows the idea 
of carrying out their comparison. The solution to the direct geometry problem 
obtained by both approaches will be presented as follows. 

Figure 5 illustrates an RR type structure, which according to the first two steps of 
the presented formalism contains the four coordinate systems {0 = 1}, {2}, {e} 
attached to the base, the elements and the gripper, respectively. There are also 
illustrated here the components of the translation vector that connects the 
mentioned coordinate systems, l1 and l2. The axes of the two joints are 
perpendicular to the plane of the structure 21 ˆˆˆ uuz ≡≡ . Figure 5 also shows the 
two generalized angular variables q1 and q2. The use of the homogeneous 
transformations for the RR structure is synthesized in Table 1. 

 
Figure 5 

The RR structure 

The approach proposed in this paper modifies the mathematical apparatus, i.e., it 
uses quaternions instead of homogeneous transformations in step 3. Table 2 gives 
the application of the transformation equations (15) to the RR structures.  
The transformations as well as the elements that are included in these 
transformations are defined. The quaternions are actually computed for each 
transformation. 
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Table 1 
Homogeneous transformations for the RR structure 
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Use of quaternions for the RR structure 
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Figure 6 illustrates a RT type structure, which according to the first two steps of 
the presented formalism, contains the four coordinate systems {0 = 1}, {2}, {e} 
attached to the base, the elements and the gripper, respectively. In addition, Figure 
6 highlights the components of the translation vector that connects the mentioned 
coordinate systems, l1 and l2, the axes of the two joints 1uz ˆˆ =  and 2ux ˆˆ = , and the 
two generalized angular variables q1 and q2. The use of the homogeneous 
transformations for the RT structure is synthesized in Table 3. 
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The RT structure 
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Table 4 gives the application of the transformation equations (15) to the RT 
structures. The transformations as well as the elements that are included in these 
transformations are defined. The quaternions are computed, as in the previous 
example, for each transformation. 
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The translated reference frame formalism is described in [20] along with its 
comparison to the DH formalism for a PUMA type robot structure. This time, 
considering the same structure illustrated in Figure 7, a comparison will be carried 
out as follows between the two mathematical formulations of the same formalism, 
namely that proposed in [20] and the formulation proposed in this paper. 
Therefore, an answer is given to the question of comparing the mathematical 
apparatus of homogeneous transformations with that of quaternions. 

Table 5 given in [22] describes the parameters and homogeneous transformations 
in accordance with (2). The second column specifies the elements of the 
homogeneous transformation, i.e., the rotation matrices and the translation 
vectors. Each row in the table refers to the transformation from the reference 
frame {i} to the reference frame {i–1}. 

Table 6 given in [22] gives details on the transformations defined using 
quaternions. The rows in the table offer, similar to the rows in Tables 2 and 4, the 
transformation applied, and the quaternions used by it as well. 

 
Figure 7 

The RT structure 
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8 Simulation Results 

The Matlab program used in the automation of the formalism proposed is freely 
available at https://autocarsim.com/use-of-quaternions/. The program refers to the 
PUMA type robot structure. The use of the program is described in the dedicated 
script. 

The transformations specified in Table 6 are implemented in a Matlab program, 
which allows determining the position of each element, validating the theoretical 
results, and obtaining the graphical representation of the structure configuration. 
Table 7 given in [22] describes a sample of the results of several simulations 
conducted for different angular variables. 

The figures included in Table 7, describe the reference frame of the base and that 
of the effector (the CAD convention was used to color the axes), the elements of 
the structure and the joints (circles). The values of the angular variables are 
specified in the title of each figure. 

Conclusions 

This paper further developed the authors’ previous approach, regarding a new 
formalism for solving the direct geometry problem of manipulators suggested in 
[20]. The advantages of the proposed formalism are the simplicity to define the 
reference frames of the elements, and the simplicity of defining the mathematical 
transformations. More precisely, it has been shown in [20] that a set of six generic 
transformations is available to be easily customized to any transformation used by 
the formalism. The paper brings novelties in the mathematical apparatus of the 
formalism, i.e., it suggests an alternative to replace the computation of 
homogeneous transformations with that of quaternions. 

The quaternions are employed in solving the direct geometry problem and the 
Jacobian matrix calculation. The proposed formalism was exemplified and 
compared in three structures, namely RR, RT and PUMA type. The examples also 
include the conversion of algorithms into computer programs, which allowed the 
simulation of solving the direct geometry problem. 

Future research will be focused on the application of authors’ formalism to the 
design of control systems for robots in real-world applications. Such applications 
are popular in several fields including path planning [23] [24], electric vehicles 
[25] [26], haptic interfaces [27], manufacturing processes [28-30]. Several 
optimization algorithms can be used in these applications for performance 
improvement and also reducing the heuristics in the design, as, for example, 
cellular genetic algorithms [31], tabu search based on quantum computing [32], 
Bacterial Foraging Optimization Algorithms [33] [34], Clonal Selection 
Algorithms [34], Grey Wolf Optimizers [35], Particle Swarm Optimization 
Algorithms [36], Slime Mold Algorithms [29], classical optimization algorithms 

https://autocarsim.com/use-of-quaternions/
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[37], multi-parametric quadratic programming [38], and Metaheuristic Algorithms 
with parameter adaptation [39]. 
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