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Abstract: Adaptive Random Prioritization is a Test Case Prioritization technique which 

orders test cases within a test suite with a goal of earlier fault detection using semi-random 

heuristics. Compared to other Test Case Prioritization methods, Adaptive Random 

Prioritization has only, an “average fault detection performance. However, it is less 

sensitive to some test suite features which negatively affect fault detection performance 

than other TCP techniques due to its semi-random nature. The article proposes an 

improved version of Adaptive Random Prioritization technique. The key idea behind the 

presented enhancement is to extend the test case selection process with additional 

information about control flow and change of test statements coverage, of a test suite. The 

enhancement replaces the original Test set distance function with a Multi-Criteria 

Decision-Making method. Validity of the proposed method is evaluated on data from six 

embedded systems. The evaluation criterion is fault detection performance expressed by 

Average Percentage of Faults Detection metric and Â12 statistic. The proposed 

improvement achieved better fault detection performance for all of the examined systems. 

Keywords: Adaptive Random Testing; Model-based testing; Multi-Criteria Decision-

Making 

1 Introduction 

Testing of modern electronic/software systems is an essential activity in the 

quality assurance process. Many approaches for how to design and execute a test 

suite currently exist. A test suite consists of individual test cases. Since testing 

resources are always limited, a research of optimization techniques focused on 

cost reduction is needed [1]. One way of testing automation is Model-Based 

Testing (MBT) [2, 3]. In MBT world, test cases are generated by a software tool 

from a model. E.g., System-under-Test (SUT) behavior is modeled by Finite State 

Machine and a test is an oriented path through the automaton. A test suite is 

produced by a graph traversal algorithm like a Breadth-First search. Due to the 

automatic nature, a Model-Based Test Suite can contain a tremendous number of 
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generated test cases. Optimization by ordering of these test cases according to 

given (structural model coverage, random and stochastic, data coverage ...) criteria 

is required. This problem is dealt with a category of techniques referred to as Test 

Case Prioritization (TCP) [4]. 

Recently, TCP techniques were explored mainly in code-based and regression 

testing areas [5, 6]. On the other hand, TCP techniques for MBT approach are not 

so well investigated. The main difference between these areas is that general TCP 

techniques in MBT do not use any external information, as historical information 

[6] or expert knowledge (Risk-based TCP [7]). Since this context is not so 

profoundly explored, further research in this area is needed. 

Results of a study on TCP techniques in the MBT area [8] show that no TCP 

technique has superior performance. Examined techniques performance varies for 

different scenarios. The study indicates TCP techniques based on Path Complexity 

and additional coverage of statements achieve good overall performance, but they 

are affected by the size of the test cases that fail. In contrast, Adaptive Random 

Prioritization (ARP) is less sensitive to the size of the test cases that fail, but they 

have only moderate fault detection results. 

Based on these results, an enhanced ARP technique is proposed. The presented 

technique replaces a standard Test set distance function (see Section 2.1) with a 

Multi-Criteria Decision-Making (MCDM) method [9]. The method combines 

criteria based not only on the distance metric but also on other test case features. 

These features include additional information to TCP process from various 

sources, which can be code-based, model-based, can use previous tests results, etc. 

The presented technique is mainly designed for testing of the embedded systems, 

described with high-level behavioral models and for cases where other 

information as source code, or fault history is not available. Therefore, the 

proposed technique uses only the MBT metrics with high fault detection 

performance. The primary goal is to improve the fault detection performance of 

adaptive random based techniques and simultaneously preserve their low 

sensitivity to the size of the test cases that fail. 

2 Background 

This section contains a summary of the ARP technique and other methods that are 

incorporated in proposed MCDM ARP enhancement, specifically Path 

Complexity and Additional coverage techniques. Besides that, a short overview of 

TCP in MBT area is outlined at the end of the section. 
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2.1 Adaptive Random Prioritization 

Adaptive Random Prioritization technique [10] belongs to a family of Adaptive 

Random Strategy (ARS) techniques. Chen et al. [11] initially proposed the ARS as 

an online test case generation method for software with numerical inputs. ARS 

was proposed as an alternative to a pure random test input generation strategy. 

The idea behind ARS is an input space estimation that selects areas that cause 

failures and spreads the test cases more efficiently over the input space. 

The ARP is an application of ARS to the TCP problem. The technique is 

described in the Algorithm – Part 1. Where the UTS input is an unsorted test suite, 

and the output of the function is a prioritized test suite (PTS). In the first step (line 

3), the algorithm randomly selects a test case. It is saved as the first prioritized test 

case in PTS and subsequently removed from the UTS set (lines 4 and 5). 

Algorithm – Part 1: The main procedure 

1: function Prioritize(UTS) 

2:  PTS  ← Ø 

3: first  ← randomChoice(UTS) 

4:  PTS.add(first) 

5:  UTS.remove(first) 

6:  while UTS ≠ Ø do 

7:   cand ← genCandSet(UTS) 

8:   nextTC ←  selectNext(PTS, cand) 

9:   PTS.add(nextTC) 

10:   UTS.remove(nextTC) 

11:  end while 

12: return PTS 

13: end 

The prioritization of the suite is executed within the main loop on lines 6 to 11. In 

the first part of the loop (line 7), a set of candidates is generated according to Part 

2 of the Algorithm. 

Algorithm – Part 2: Candidates generation 

 UTS is the test suite 

 cand is the candidate set 

 candMax is the maximal size of cand set 

 S: {s1, s2, ...} is set of statements  

 S': {s'1, s'2, ...} is set of statements 

1: function genCandSet (UTS) 

2: S ← Ø 

3: S' ← Ø 

4: cand ← Ø 

5: TC ← randomSelect(UTS) 

6:  S ← statements covered by TC  
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7: if S'  S = S' then return cand   

8:  S'.add(S) 

9:  cand.add(TC) 

10: if cand.size == candMax then return cand 

11:  goto 5 

12: end 

The candidate set cand is iteratively selected by the candidate generation function. 

In each iteration step, the generation process randomly selects a not-yet-prioritized 

test case (Part 2 – line 5). The selection process continues until newly selected test 

cases increase coverage of candidate set (Part 2 – line 5 to 10), or until the 

maximum number of candidates is reached. 

The next step (Part 1 – Line 8) is the selectNextTestCase function, which selects a 

test case from the candidate set; Part 3 describes this function in detail. The 

selectNextTestCase function is based on functions f1 and f2. Function f1 (Part 3 – 

line 5) is Test case distance function that calculates distances between candidates 

and the test cases that were already prioritized and saves them into the distance 

matrix d. Jiang et al. [10] used Jaccard distance function [12] instead of Euclidean 

distance function, which was proposed for the original ARS. Zhou [13] proposed 

an application of modified Manhattan distance function. Lately, Zhou et al. 

compared both distance functions in an empirical study [14]. The study shows that 

the Manhattan function provides better fault detection performance than Jaccard in 

the code-based context. Further improvement was proposed by Coutinho et al. 

[15], where Similarity function was implemented instead of distance functions. 

Algorithm – Part 3: Next test case selection 

 PTS is the already prioritized test sequence 

 cand is the candidate set 

1: function selectNextTestCase(PTS, cand) 

2:  d ← array[PTS.size][cand.size] 

3:  for i = 0 to PTS.size - 1 do 

4:   for j = 0 to cand.size - 1 do 

5:    d[i,j] ← f1(PTS[i], cand [j]) 

6:   end for 

7:  end for 

8:  index ← f2(d) 

9:  nextTestCase ← cand.get(index) 

10: return nextTestCase 

11: end 

Function f2 is Test set distance function that returns the index of the selected test 

case that is farthest away from the prioritized set (Part 3 – line 8). This function 

can select test cases according to several prioritization rules. For example, the rule 

MaxMin – maximum of the minimum distances (similarities) first, determines the 

smallest distance of each candidate to all already prioritized test cases and then 
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finds a candidate with the lagest value of those minimal distances. If this rule is 

applied to the distance matrix in Figure 1, then the candidate TC2 would be 

selected. Jiang et al. [10] also examined MaxMax and MaxAvg variants. In the 

presented enhanced version of ARP technique, the function f2 is replaced with an 

MCDM method (see Section 3.1). 
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Figure 1 

Distance matrix 

In the last steps, the selected test case is removed from UTS and added into the 

prioritized test sequence PTS. (Part 1 – lines 9 and 10). This process is repeated 

until the prioritization process is finished (all the test cases are sorted). 

2.2 Path Complexity 

Kaur et al. [16] originally designed Path Complexity (PC) TCP technique for 

systems modeled as UML activity diagrams. Each test case is represented as a 

path through a Control Flow Graph (CFG), which is converted from a UML 

nested activity diagram. For each path P from a generated set, several properties 

are calculated: 

 Np - the number of nodes traversed by P 

 Wp - weight of test path P  

 Pp - number of predicate nodes traversed by P 

 Cp - number of logical conditions traversed by P 

 complexity C of P by using the formula C = Np + Wp + Pp + Cp 

Where the weight of the path is based on Information Flow metric (IF).  The IF 

metric was designed by Sharma et al. [17] and originally applied to the 

components of system design. In our case, it is used on each node N in the CFG 

model, and it is calculated as: 

     NFANOUTNFANINNIF   (1) 
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where, N is a node from CFG, FANIN(N) is a number of incoming flows to N, and 

FANOUT(N) is a number of outgoing flows from N. The weight of the path is a 

sum of IF from all nodes in the path. 

P

n

i

ip TPwW 
1

       (2) 

Where Wp is weight of the path P, wi is weight of ith node (IF(N)), n is a count of 

nodes in the current path P, and Tp is set of generated paths. When the complexity 

for all paths is calculated, the test cases (paths) are executed in order of 

complexity from highest to lowest. 

2.3 Additional Coverage 

The additional coverage technique is based on greedy reasoning applied to TCP 

[4]. The technique progresses iteratively through a test suite. In each step, a test 

case that yields the highest coverage of not yet covered statements, is selected. 

2.4 Related Work 

Code-based and regression testing are the most investigated TCP approaches [5, 6, 

18, 19]. In the MBT area, proposed TCP techniques are frequently connected with 

UML (Activity) diagrams models [14, 20-22]. These techniques implement a wide 

range of strategies. Some of the strategies are modified variants from code-based 

context; they can be relatively straightforward as Path Complexity, or more 

advanced ones that include historical data and data mining techniques. 

The proposed technique extends ARP technique, which is a general black-box 

technique. In this context, an interesting article was presented by Hemmati et al. 

[23]. The article compares three different black-box TCP (code-based) 

approaches: topic coverage, text diversity, and risk-driven heuristic. In the topic 

coverage TCP, topics are extracted from a textual description of test cases and 

their expected results by a text mining algorithm. In the subsequent step, the 

technique tries to prioritize test cases in a way to maximize coverage of those 

topics. The text diversity approach prioritizes test cases using a string distance 

between two text representations of the test cases. The risk-based approach uses 

information about detected faults in their previous executions for test case 

prioritization. If historical information is available, the results show that the risk-

based approach is superior. However, none of the approaches significantly 

outperform the others, if history is not available. 

Empirical study [24] performed by João Felipe Silva Ouriques et al. investigates 

the effect of the model structure and characteristics of test cases that fail on the 

fault detection capability of several TCP techniques. Study results show that the 
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characteristics of failed test cases affect the investigated techniques more 

significantly than the model layout. Due to the study being performed on synthetic 

data that may not exactly correspond to real systems, authors publish a replication 

study [8] on data from real industrial projects. In this study, multiple general TCP 

techniques were evaluated with similar results as in previous work. The results 

show that none of the compared techniques is the best, concerning fault detection 

ability. Besides, the study investigates a dependency between fault detection 

performance of particular techniques and different properties of test cases. 

Specifically, the effect of varying sizes of the test cases that fail is examined. 

Authors conclude that the examined techniques have different sensitivity to this 

test case feature. The presented article builds on these studies and presents a new 

enhanced version of ARP technique, which improves the fault detection 

performance of the standard version and preserves limited effect of this negative 

feature. 

3 Novel Enhanced ARP Technique 

The main objective of the novel enhanced ARP technique is to improve fault 

detection performance over the original ARP method. The ARP demonstrates 

consistent results in different scenarios thanks to its semi-random nature. The 

study results [8] show there are techniques with better fault detection 

performance, but their performance is also more affected by various test suite 

properties. One of those properties is an inconsistent fault detection performance 

between cases where failed test cases are shorter or longer than the average test 

case size in a test suite (see Section 4.1). The development of the proposed TCP 

technique was focused on fault detection performance enhancement while keeping 

relatively low sensitivity on the size of the test cases that fail. 

The proposed modification replaces Test set distance function (function f2 

Algorithm 1 Part 3 – Line 8) with Weighted Product Model (MCDM) method [9]. 

The method compares candidates (test cases) among themselves, using distance, 

path complexity and additional coverage criteria. The novel enhanced TCP 

technique based on the MCDM method was named Multi-Criteria Adaptive 

Random Prioritization technique (MC-ARP). The advantage of MC-ARP is that 

the criteria can be extended/exchanged in a situation when a new source of 

information becomes available (e.g., fault history during testing of an updated 

system version). 

The introduced MC-ARP technique partially decreases the importance of test case 

distances and increases the chance of selection for test cases which cover more not 

yet covered statements, or test cases with higher path complexity. The method can 

be tuned by weights, which determine the strength of these properties and thus 
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also results of the prioritization. The novel MC-ARP technique is described in the 

following subsection. 

3.1 Multi-Criteria ARP Technique 

The proposed application of Weighted Product Model method has m alternatives 

(not-yet prioritized test cases) and n decision criteria. The method compares 

alternatives among themselves, using these decision criteria, and determines the 

one that is better than others. The decision criteria are benefit criteria (higher 

values are better), and they are divided into three main groups: 

 Distance criteria – performance value of a distance criterion corresponds 

to distance between a particular candidate and already sorted test cases 

(distance matrix – see Section 2.1) 

 Path Complexity – path complexity value of the candidate (see Section 

2.2) 

 Additional coverage – represents the count of newly covered statements, 

if the candidate is selected (see Section 2.3) 

Variable w, which determines the relative weight of importance of the criteria, is 

assigned to each of these criteria groups. Due to the fact that the count of 

prioritized test cases changes during the TCP process (each time when a new 

sorted test case is added), the weight of the individual criterion can be calculated 

as an equal share of initial weight for distance criteria wDC. 

DC

DC
i

n

w
w          (3) 

Where wi is weight for a specific distance criterion (prioritized test case), and nDC 

is the number of prioritized test cases. Weights for path complexity wPC and 

additional cover wAC do not change during algorithm iterations. Thus, the ratio 

between all weights is always the same; only the values of wi are iteratively 

changed. 

The performance value of candidate test case TCi during evaluation by criterion j 

is denoted as pvij. The following function P(TCK/TCL) compares two candidates 

TCK and TCL. In case the result is higher than value 1, the first candidate is 

superior to the second. The newly selected candidate should be better than or at 

least equal to all other candidates. 
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The example shows the method on model data. Let us say, there are three 

candidates and three already prioritized test cases, weights are set to wDC = 0.5, 

wPC = 0.2 and wAC = 0.3, and the performance values of candidates are depicted in 

Figure 2, where columns represent particular criteria, the first row shows weights 

for a specific criterion, and other rows are connected to candidate test cases 

(alternatives). In our case, distance criteria performance values match to the 

distance matrix d from the original ARP example. However, other criteria are now 

considered in the test case selection. 

The comparison of candidate TC1 and TC2 would be as follows: 
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Similarly,   79.031 TCTCP  and   62.032 TCTCP . Therefore, the selected 

candidate is TC3 (instead of TC2 from the ARP example), since it is better than all 

of the other candidates. 
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Figure 2 

MC-ARP Example 
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4 Experiments 

In this section, it is verified whether the proposed MC-ARP technique achieves 

better fault detection results than the original ARP. The second goal of the 

experiments is to investigate the effect of the size of the test cases that fail on fault 

detection performance of the proposed technique. The experimental evaluation on 

a broader sample of test suites is important for the assessment of the newly 

proposed technique, because TCP techniques may have an outstanding 

performance for one test suite and weak results for another. 

The section is divided into two main parts. The first part describes the 

experimental setup and other necessary aspects for the evaluation of the 

experiments. In the second part, the performance comparison of MC-ARP with the 

original ARP technique and investigation of sensitivity to the size of the test cases 

that fail, is presented. 

4.1 Dataset 

Dataset used in this section for evaluation of the proposed technique is obtained 

from [25].  The dataset includes 17 test suites and information about faults from 

six industrial systems (for overall characteristics see Table 1). Each system is 

covered by two to four test suites, and each test suite has 4 to 24 test cases (for 

more information see [8]). The projects included in the dataset are from different 

areas, e.g., a cashdesk system that interacts with payment terminals, or a system to 

manage lending of equipment/software and maintenance logs. The tested systems 

were modeled in a high abstraction level as control-flow Labelled Transition 

System models. The models represent use scenarios, which can include multiple 

types of control flows (standard scenario, alternative user’s behavior, and 

exception flow that covers systems errors). Test cases were generated as paths 

through these models by traverses of a Depth-First Search algorithm. 

Table 1 

Systems overall characteristics [8] 

System Language Size (LOC) 

S1 Java 3000 

S2 C 3055 

S3 Java 13001 

S4 Groovy grails 3693 

S5 Groovy java 20713 

S6 Groovy JavaScript grails 13244 

Sensitivity to the size of the test case that has found a fault is defined by a relation 

between the sizes of test cases that fail and the rest of the test suite. The relation 

divides test cases into two groups. The first group contains short test cases that 
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execute fewer steps than the average number (test cases that commonly do not 

traverse loops). In contrast, the second group consists of long test cases, which 

perform more system steps than the average. In order to evaluate this sensitivity, it 

is necessary to know the failed test cases in advance. Then the test suites can be 

divided into the following groups: 

 ShortTC – test suites where every test case that fails is shorter than the 

average size of test case in the test suite. 

 LongTC – test suites where every test case that fails is longer than the 

average size of test case in the test suite. 

 ConstantSizeTC – test suites where all test cases have the same size. 

 MixedTC – test suites which do not fit to above mentioned groups. 

The terminology is taken from the original study [8], and the distribution of these 

groups in the dataset is shown in Figure 3. 

 

Figure 3 

Test Suites Distribution 

Random nature of ARP technique can affect TCP results. Therefore, the examined 

algorithms were executed 1000 times for each test suite (according to the 

suggestion in [26]); the experimental setup is shown in Figure 4. 
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Figure 4 

Setup overview 
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4.2 Effectiveness Metrics 

To evaluate the performance of the new enhanced ARP technique and to compare 

results with the original methods, the following metrics are used. 

Average Percentage of Faults Detection (APFD) developed by Elbaum et al. in 

[27] is used for evaluation of fault detection performance. The metric measures 

the rate of fault detection per percentage of test suite execution and is calculated 

as follows: 

nmn

TFTFTF
APFD m

2

1...
1 21 


     (5) 

where n is the number of test cases, and m is the number of faults which the test 

suite can reveal. The TFi is the position of the first test case that reveals the i–th 

fault. The APFD is a percentage (values 0 – 100), and higher values indicate better 

(faster) fault detection. 

Non-parametric statistical test, Kruskal-Wallis test [28], is applied to compare two 

distributions of the APFD results. The test determines whether the difference 

between the results is statistically significant using a 95% confidence level (i.e. p-

value < 0.05). The test resolves whether the differences are not random, but for 

performance comparison Vargha and Delaney’s Â12 statistic [29] is used. 

Vargha and Delaney’s Â12 statistic performs a pairwise comparison of results 

expressed by the APFD metric from two techniques A and B. It is a nonparametric 

effect size measure, which is popular in the software engineering area, where 

randomized algorithms are involved [30]. The Â12 metric measures the probability 

that running A produces a higher APFD than running B. The Â12 can be 

calculated: 

n
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A 2
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ˆ
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        (6) 

Where R1 is the rank sum of the APDF results from the first compared technique 

(the ranking is done through the results of both techniques). The m is the number 

of results from the first technique, and n is the number of results from the second 

technique. If the two techniques are equivalent, then Â12 = 0.5. In another case, 

one technique produces better results. 

4.3 Results 

The performance evaluation of the presented technique was done by comparison 

of fault detection capabilities of the original and enhanced technique. For 

evaluation, several variants of ARP technique with the following Test case 
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distance functions were chosen: Jaccard (ARPJac), Manhattan (ARPMan), and 

Similarity function (ARPSim). The original technique with Jaccard and Manhattan 

uses MaxMin Test set distance function, and Similarity function uses MaxMin and 

MaxMax Test set distance functions (marked ARPSim1 and ARPSim2). The 

proposed Multi-criteria ARP technique is marked MC-ARPXXX, where XXX 

distinguishes a specific variant with appropriate Test case distance function. The 

criteria weights for MC-ARP were experimentally set to: wDC = 0.5, wPC = 0.2 and 

wAC = 0.3. 

The overall fault detection results of MC-ARP and original variants are presented 

in Figure 5, and results for individual systems are shown in Figure 6. The pairwise 

Â12 results comparison can be found in Table 2. 

Table 2 

Effect sizes of pairwise comparisons of MC-ARP and the original technique 

 ARPJac ARPMan ARPSim1 ARPSim2 

System S1 0.69 0.68 0.58 0.55 

System S2 0.70 0.64 0.68 0.68 

System S3 0.51 0.5 0.51 0.58 

System S4 0.59 0.58 0.70 0.71 

System S5 0.58 0.56 0.62 0.62 

System S6 0.62 0.64 0.53 0.58 

Overall 0.59 0.58 0.59 0.61 

The overall comparison in Figure 5 shows that, in all cases, MC-ARP variants 

have higher median value (better results), and boxplots are also more compact 

(i.e., they have shorter interquartile ranges and more consistent results). Presented 

results from Table 2 show that MC-ARP improves the overall performance of 

ARP technique, and the improved fault detection performance is similar for each 

distance function variant. 

Results for individual systems indicate that the more significant performance 

improvement is evident in systems S1, S2, and S4. These systems mostly contain 

MixedTC and LongTC test suites (see Figure 3). This improvement is due to Path 

Complexity and Additional Coverage criteria, which prefer more complex test 

cases with a higher amount of non-covered statements. In other cases, MC-ARP 

technique still has the same or better results than the original ARP variants i.e., 

boxplots are more compact or median values are similar or higher. 

For overall results, Kruskal-Wallis test produces the highest p-value < 0.001. 

Therefore, the techniques present different performances than their original 

versions. For individual systems, the results are statistically similar (p-

value > 0.05) only in the case of the system S3 for techniques ARPJac, ARPMan, 

and ARPSim1. 
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Figure 5 

Comparison of overall results 

 

Figure 6 

Performance of techniques for individual SUT 
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The effect of the size of the test cases that fail is investigated using ShortTC and 

LongTC suite samples. These samples contain test suites where failed test cases 

are shorter or longer than the average test cases size in that test suite. 

Figure 7 presents the results for evaluated techniques. Detailed pairwise 

comparison is in Table 3 for ShortTC, respectively LongTC. The results show that 

the MC-ARP has better fault detection performance than the original ARP 

technique (mainly due to path complexity guidance) for LongTC samples. The 

MC-ARP variants have the same or higher median values and more compact 

boxplots. On the other hand, for ShortTC samples, Table 3 presents that MC-ARP 

has only slightly better performance than the original technique for Jaccard and 

Manhattan distance functions. The MC-ARP variant with Jaccard function has a 

higher median, but the boxplot is more spread out. The Manhattan variants have 

similar boxplots; however MC-ARP achieve higher median value. In case of 

Similarity function, the results are worse than the original technique, which is 

mainly noticeable on the boxplot for ARPSim1. 

In the comparison of MC-ARP and the original variants, Kruskal-Wallis test 

results reach maximal p-value < 0.001. Hence, the techniques also produce 

different performance results. 

Table 3 

Effect sizes of pairwise comparisons of MC-ARP and the original ARP for ShortTC and LongTC 

ShortTC ARPJac ARPMan ARPSim1 ARPSim2 

MC-ARPXXX 0.54 0.54 0.33 0.42 

LongTC ARPJac ARPMan ARPSim1 ARPSim2 

MC-ARPXXX 0.60 0.57 0.60 0.60 

Pairwise Â12 between ShortTC and LongTC for a technique represents sensitivity 

to the size of the test cases that fail. The technique insensitive to the size of the 

test cases that fail should reach a value 0.5 when performance for both groups is 

the same. The results for ARP and MC-ARP techniques are presented in Table 4. 

At this point, the proposed technique achieved a minor decrease compared to the 

original ARP values. This increase of sensitivity is caused by an unequal 

improvement of results between ShortTC and LongTC samples. However, the 

sensitivity of MC-ARP still achieves decent values in comparison to other TCP 

techniques (for more information about these techniques see [8]). 

Records for ARP technique variants are duplicated in Table 4. Values based on 

data from our ARP implementation have the blue italic font. The results of the 

original study are listed in black font. These values have been added, because they 

are slightly dissimilar to the original, probably due to a different implementation 

of the ARP algorithm. 
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Figure 7 

Boxplots of ShortTC and LongTC samples 

Table 4 

Effect sizes of the comparisons between ShortTC and LongTC [8] 

Technique Â12 Technique Â12 

Ran 0.4443 PC 0 

ARPJac 0.3945 Stoop 0.5833 

ARPMan 0.374 SDh 0.0833 

ARPSim1 0.4725 SDe 0.1666 

ARPSim2 0.3892 SDm 0 

ARPJac 0.44 ST 1 

ARPMan 0.4 SA 0.1609 

ARPSim1 0.51 MC-ARPJac 0.35 

ARPSim2 0.4 MC-ARPMan 0.34 

FW 1 MC-ARPSim 0.22 

Conclusions 

This work presents a new Adaptive Random Prioritization technique (referred to 

as MC-ARP); the technique replaces the original Test set distance function, with a 

Multi-Criteria Decision-Making method. This enhancement incorporates 

additional criteria (other than the test case distances) into a decision which test 

case should be selected from the candidate set. The key idea of ARP technique 
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performance improvement is to add guidance based on the path complexity and 

additional coverage techniques that have better overall fault detection 

performance. The PC technique calculates a score based on a path through a 

control flow model for each test case and the test cases with a higher score, are 

preferred over the others. An additional cover technique calculates how many yet, 

uncovered statements, will be covered when a test case will be added to the set of 

already the prioritized ones. The test case with the highest number of newly 

covered statements is preferred. 

The mentioned features and distances between a candidate and already prioritized 

test cases are used as decision criteria in Weighted Product Model method. The 

method performs a pairwise comparison of all candidates. The proposed change 

partially limits the random nature of ARP and prefers to select more complex test 

cases or test cases with more uncovered statements over others. 

The novel Test set distance function helps to improve the fault detection 

performance of ARP technique. Improvement of fault detection performance 

across all tested systems has been noticed. Moreover, experiment results show that 

MC-ARP has the same or better performance across all systems than the original 

ARP. 

For test suites where every test case that fails is shorter than the average size (i.e., 

the test cases with less complex paths), MC-ARP with Jaccard, or Manhattan 

distance functions achieve slightly better results. Thanks to the guidance, MC-

ARP outperforms the original technique when every test case that fails is longer 

than the average size of test cases in the test suite. The resulting sensitivity to the 

size of the test cases that fail is moderately higher than the original technique, due 

to uneven performance improvements in the scenarios mentioned above. 

However, it still achieves good results compared to other techniques. 

Regarding threats to validity, the evaluation of the proposed MC-ARP technique 

was performed on the dataset that contains data from six industrial projects. The 

systems were modeled as Labelled Transition, and the test suites were generated 

by Depth-First Search algorithm, which traverse the models and saves paths as test 

cases. Therefore, the results cannot be generalized for other kinds of systems or 

other test case generation algorithms. However, it can be assumed, that for similar 

systems and test case generation approaches, the technique will perform at similar 

performance level. The evaluation was done only on fault detection and the effect 

of the size of test cases that fail, however, other aspects as the number of test cases 

in the dataset or the proportion of test cases that fail may affect the fault detection 

performance. Moreover, some test suites in the dataset are relatively small, and 

they may not be entirely suitable for prioritization. 

In future work, the technique herein will be applied in the area of automotive 

Hardware-in-the-Loop (HIL) Integration Testing [31]. In this domain, MBT 

approach is used for Integration Testing of Electronic Control Units (ECUs). The 

goal of this testing phase is to estimate if a cluster of ECUs operates in synergy 
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and functions distributed among multiple ECUs work as expected. There is a need 

for optimization of automatically generated test suites. Those test suites are 

generated from Timed Automata models using our testing tool called Taster [32, 

33]. The size of a test suite depends on a Timed Automata model complexity and 

used a state-space traversal algorithm. In general, it can be enormous. The MC-

ARP will be implemented as part of this software. The expectation is to attain test 

suite optimization, towards shorter test times, while maintaining a reasonable test 

coverage. Further experiments will be performed on a HIL testing platform, in 

cooperation with our Industrial Partner. This HIL testbed is dedicated to the 

testing of comfort and radar sensor-based driver-assistance systems. 
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