
Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 125 –

Enhanced Adaptive Random Test Case

Prioritization for Model-based Test Suites

Tomas Pospisil, Jan Sobotka and Jiri Novak

Czech Technical University in Prague, Faculty of Electrical Engineering,

Technicka 2, 166 27 Prague, Czech Republic, E-mail: pospito7@fel.cvut.cz,

jan.sobotka@fel.cvut.cz, jnovak@fel.cvut.cz

Abstract: Adaptive Random Prioritization is a Test Case Prioritization technique which

orders test cases within a test suite with a goal of earlier fault detection using semi-random

heuristics. Compared to other Test Case Prioritization methods, Adaptive Random

Prioritization has only, an “average fault detection performance. However, it is less

sensitive to some test suite features which negatively affect fault detection performance

than other TCP techniques due to its semi-random nature. The article proposes an

improved version of Adaptive Random Prioritization technique. The key idea behind the

presented enhancement is to extend the test case selection process with additional

information about control flow and change of test statements coverage, of a test suite. The

enhancement replaces the original Test set distance function with a Multi-Criteria

Decision-Making method. Validity of the proposed method is evaluated on data from six

embedded systems. The evaluation criterion is fault detection performance expressed by

Average Percentage of Faults Detection metric and Â12 statistic. The proposed

improvement achieved better fault detection performance for all of the examined systems.

Keywords: Adaptive Random Testing; Model-based testing; Multi-Criteria Decision-

Making

1 Introduction

Testing of modern electronic/software systems is an essential activity in the

quality assurance process. Many approaches for how to design and execute a test

suite currently exist. A test suite consists of individual test cases. Since testing

resources are always limited, a research of optimization techniques focused on

cost reduction is needed [1]. One way of testing automation is Model-Based

Testing (MBT) [2, 3]. In MBT world, test cases are generated by a software tool

from a model. E.g., System-under-Test (SUT) behavior is modeled by Finite State

Machine and a test is an oriented path through the automaton. A test suite is

produced by a graph traversal algorithm like a Breadth-First search. Due to the

automatic nature, a Model-Based Test Suite can contain a tremendous number of

mailto:pospito7@fel.cvut.cz
mailto:jan.sobotka@fel.cvut.cz
mailto:jnovak@fel.cvut.cz

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 126 –

generated test cases. Optimization by ordering of these test cases according to

given (structural model coverage, random and stochastic, data coverage ...) criteria

is required. This problem is dealt with a category of techniques referred to as Test

Case Prioritization (TCP) [4].

Recently, TCP techniques were explored mainly in code-based and regression

testing areas [5, 6]. On the other hand, TCP techniques for MBT approach are not

so well investigated. The main difference between these areas is that general TCP

techniques in MBT do not use any external information, as historical information

[6] or expert knowledge (Risk-based TCP [7]). Since this context is not so

profoundly explored, further research in this area is needed.

Results of a study on TCP techniques in the MBT area [8] show that no TCP

technique has superior performance. Examined techniques performance varies for

different scenarios. The study indicates TCP techniques based on Path Complexity

and additional coverage of statements achieve good overall performance, but they

are affected by the size of the test cases that fail. In contrast, Adaptive Random

Prioritization (ARP) is less sensitive to the size of the test cases that fail, but they

have only moderate fault detection results.

Based on these results, an enhanced ARP technique is proposed. The presented

technique replaces a standard Test set distance function (see Section 2.1) with a

Multi-Criteria Decision-Making (MCDM) method [9]. The method combines

criteria based not only on the distance metric but also on other test case features.

These features include additional information to TCP process from various

sources, which can be code-based, model-based, can use previous tests results, etc.

The presented technique is mainly designed for testing of the embedded systems,

described with high-level behavioral models and for cases where other

information as source code, or fault history is not available. Therefore, the

proposed technique uses only the MBT metrics with high fault detection

performance. The primary goal is to improve the fault detection performance of

adaptive random based techniques and simultaneously preserve their low

sensitivity to the size of the test cases that fail.

2 Background

This section contains a summary of the ARP technique and other methods that are

incorporated in proposed MCDM ARP enhancement, specifically Path

Complexity and Additional coverage techniques. Besides that, a short overview of

TCP in MBT area is outlined at the end of the section.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 127 –

2.1 Adaptive Random Prioritization

Adaptive Random Prioritization technique [10] belongs to a family of Adaptive

Random Strategy (ARS) techniques. Chen et al. [11] initially proposed the ARS as

an online test case generation method for software with numerical inputs. ARS

was proposed as an alternative to a pure random test input generation strategy.

The idea behind ARS is an input space estimation that selects areas that cause

failures and spreads the test cases more efficiently over the input space.

The ARP is an application of ARS to the TCP problem. The technique is

described in the Algorithm – Part 1. Where the UTS input is an unsorted test suite,

and the output of the function is a prioritized test suite (PTS). In the first step (line

3), the algorithm randomly selects a test case. It is saved as the first prioritized test

case in PTS and subsequently removed from the UTS set (lines 4 and 5).

Algorithm – Part 1: The main procedure

1: function Prioritize(UTS)

2: PTS ← Ø

3: first ← randomChoice(UTS)

4: PTS.add(first)

5: UTS.remove(first)

6: while UTS ≠ Ø do

7: cand ← genCandSet(UTS)

8: nextTC ← selectNext(PTS, cand)

9: PTS.add(nextTC)

10: UTS.remove(nextTC)

11: end while

12: return PTS

13: end

The prioritization of the suite is executed within the main loop on lines 6 to 11. In

the first part of the loop (line 7), a set of candidates is generated according to Part

2 of the Algorithm.

Algorithm – Part 2: Candidates generation

 UTS is the test suite

 cand is the candidate set

 candMax is the maximal size of cand set

 S: {s1, s2, ...} is set of statements

 S': {s'1, s'2, ...} is set of statements

1: function genCandSet (UTS)

2: S ← Ø

3: S' ← Ø

4: cand ← Ø

5: TC ← randomSelect(UTS)

6: S ← statements covered by TC

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 128 –

7: if S' S = S' then return cand

8: S'.add(S)

9: cand.add(TC)

10: if cand.size == candMax then return cand

11: goto 5

12: end

The candidate set cand is iteratively selected by the candidate generation function.

In each iteration step, the generation process randomly selects a not-yet-prioritized

test case (Part 2 – line 5). The selection process continues until newly selected test

cases increase coverage of candidate set (Part 2 – line 5 to 10), or until the

maximum number of candidates is reached.

The next step (Part 1 – Line 8) is the selectNextTestCase function, which selects a

test case from the candidate set; Part 3 describes this function in detail. The

selectNextTestCase function is based on functions f1 and f2. Function f1 (Part 3 –

line 5) is Test case distance function that calculates distances between candidates

and the test cases that were already prioritized and saves them into the distance

matrix d. Jiang et al. [10] used Jaccard distance function [12] instead of Euclidean

distance function, which was proposed for the original ARS. Zhou [13] proposed

an application of modified Manhattan distance function. Lately, Zhou et al.

compared both distance functions in an empirical study [14]. The study shows that

the Manhattan function provides better fault detection performance than Jaccard in

the code-based context. Further improvement was proposed by Coutinho et al.

[15], where Similarity function was implemented instead of distance functions.

Algorithm – Part 3: Next test case selection

 PTS is the already prioritized test sequence

 cand is the candidate set

1: function selectNextTestCase(PTS, cand)

2: d ← array[PTS.size][cand.size]

3: for i = 0 to PTS.size - 1 do

4: for j = 0 to cand.size - 1 do

5: d[i,j] ← f1(PTS[i], cand [j])

6: end for

7: end for

8: index ← f2(d)

9: nextTestCase ← cand.get(index)

10: return nextTestCase

11: end

Function f2 is Test set distance function that returns the index of the selected test

case that is farthest away from the prioritized set (Part 3 – line 8). This function

can select test cases according to several prioritization rules. For example, the rule

MaxMin – maximum of the minimum distances (similarities) first, determines the

smallest distance of each candidate to all already prioritized test cases and then

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 129 –

finds a candidate with the lagest value of those minimal distances. If this rule is

applied to the distance matrix in Figure 1, then the candidate TC2 would be

selected. Jiang et al. [10] also examined MaxMax and MaxAvg variants. In the

presented enhanced version of ARP technique, the function f2 is replaced with an

MCDM method (see Section 3.1).

0.20.60.5

0.10.40.8

0.30.50.2Candidate TC1

Candidate TC2

Candidate TC3
P

ri
o
ri

ti
ze

d
 T

C
2

Figure 1

Distance matrix

In the last steps, the selected test case is removed from UTS and added into the

prioritized test sequence PTS. (Part 1 – lines 9 and 10). This process is repeated

until the prioritization process is finished (all the test cases are sorted).

2.2 Path Complexity

Kaur et al. [16] originally designed Path Complexity (PC) TCP technique for

systems modeled as UML activity diagrams. Each test case is represented as a

path through a Control Flow Graph (CFG), which is converted from a UML

nested activity diagram. For each path P from a generated set, several properties

are calculated:

 Np - the number of nodes traversed by P

 Wp - weight of test path P

 Pp - number of predicate nodes traversed by P

 Cp - number of logical conditions traversed by P

 complexity C of P by using the formula C = Np + Wp + Pp + Cp

Where the weight of the path is based on Information Flow metric (IF). The IF

metric was designed by Sharma et al. [17] and originally applied to the

components of system design. In our case, it is used on each node N in the CFG

model, and it is calculated as:

 NFANOUTNFANINNIF (1)

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 130 –

where, N is a node from CFG, FANIN(N) is a number of incoming flows to N, and

FANOUT(N) is a number of outgoing flows from N. The weight of the path is a

sum of IF from all nodes in the path.

P

n

i

ip TPwW
1

 (2)

Where Wp is weight of the path P, wi is weight of ith node (IF(N)), n is a count of

nodes in the current path P, and Tp is set of generated paths. When the complexity

for all paths is calculated, the test cases (paths) are executed in order of

complexity from highest to lowest.

2.3 Additional Coverage

The additional coverage technique is based on greedy reasoning applied to TCP

[4]. The technique progresses iteratively through a test suite. In each step, a test

case that yields the highest coverage of not yet covered statements, is selected.

2.4 Related Work

Code-based and regression testing are the most investigated TCP approaches [5, 6,

18, 19]. In the MBT area, proposed TCP techniques are frequently connected with

UML (Activity) diagrams models [14, 20-22]. These techniques implement a wide

range of strategies. Some of the strategies are modified variants from code-based

context; they can be relatively straightforward as Path Complexity, or more

advanced ones that include historical data and data mining techniques.

The proposed technique extends ARP technique, which is a general black-box

technique. In this context, an interesting article was presented by Hemmati et al.

[23]. The article compares three different black-box TCP (code-based)

approaches: topic coverage, text diversity, and risk-driven heuristic. In the topic

coverage TCP, topics are extracted from a textual description of test cases and

their expected results by a text mining algorithm. In the subsequent step, the

technique tries to prioritize test cases in a way to maximize coverage of those

topics. The text diversity approach prioritizes test cases using a string distance

between two text representations of the test cases. The risk-based approach uses

information about detected faults in their previous executions for test case

prioritization. If historical information is available, the results show that the risk-

based approach is superior. However, none of the approaches significantly

outperform the others, if history is not available.

Empirical study [24] performed by João Felipe Silva Ouriques et al. investigates

the effect of the model structure and characteristics of test cases that fail on the

fault detection capability of several TCP techniques. Study results show that the

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 131 –

characteristics of failed test cases affect the investigated techniques more

significantly than the model layout. Due to the study being performed on synthetic

data that may not exactly correspond to real systems, authors publish a replication

study [8] on data from real industrial projects. In this study, multiple general TCP

techniques were evaluated with similar results as in previous work. The results

show that none of the compared techniques is the best, concerning fault detection

ability. Besides, the study investigates a dependency between fault detection

performance of particular techniques and different properties of test cases.

Specifically, the effect of varying sizes of the test cases that fail is examined.

Authors conclude that the examined techniques have different sensitivity to this

test case feature. The presented article builds on these studies and presents a new

enhanced version of ARP technique, which improves the fault detection

performance of the standard version and preserves limited effect of this negative

feature.

3 Novel Enhanced ARP Technique

The main objective of the novel enhanced ARP technique is to improve fault

detection performance over the original ARP method. The ARP demonstrates

consistent results in different scenarios thanks to its semi-random nature. The

study results [8] show there are techniques with better fault detection

performance, but their performance is also more affected by various test suite

properties. One of those properties is an inconsistent fault detection performance

between cases where failed test cases are shorter or longer than the average test

case size in a test suite (see Section 4.1). The development of the proposed TCP

technique was focused on fault detection performance enhancement while keeping

relatively low sensitivity on the size of the test cases that fail.

The proposed modification replaces Test set distance function (function f2

Algorithm 1 Part 3 – Line 8) with Weighted Product Model (MCDM) method [9].

The method compares candidates (test cases) among themselves, using distance,

path complexity and additional coverage criteria. The novel enhanced TCP

technique based on the MCDM method was named Multi-Criteria Adaptive

Random Prioritization technique (MC-ARP). The advantage of MC-ARP is that

the criteria can be extended/exchanged in a situation when a new source of

information becomes available (e.g., fault history during testing of an updated

system version).

The introduced MC-ARP technique partially decreases the importance of test case

distances and increases the chance of selection for test cases which cover more not

yet covered statements, or test cases with higher path complexity. The method can

be tuned by weights, which determine the strength of these properties and thus

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 132 –

also results of the prioritization. The novel MC-ARP technique is described in the

following subsection.

3.1 Multi-Criteria ARP Technique

The proposed application of Weighted Product Model method has m alternatives

(not-yet prioritized test cases) and n decision criteria. The method compares

alternatives among themselves, using these decision criteria, and determines the

one that is better than others. The decision criteria are benefit criteria (higher

values are better), and they are divided into three main groups:

 Distance criteria – performance value of a distance criterion corresponds

to distance between a particular candidate and already sorted test cases

(distance matrix – see Section 2.1)

 Path Complexity – path complexity value of the candidate (see Section

2.2)

 Additional coverage – represents the count of newly covered statements,

if the candidate is selected (see Section 2.3)

Variable w, which determines the relative weight of importance of the criteria, is

assigned to each of these criteria groups. Due to the fact that the count of

prioritized test cases changes during the TCP process (each time when a new

sorted test case is added), the weight of the individual criterion can be calculated

as an equal share of initial weight for distance criteria wDC.

DC

DC
i

n

w
w (3)

Where wi is weight for a specific distance criterion (prioritized test case), and nDC

is the number of prioritized test cases. Weights for path complexity wPC and

additional cover wAC do not change during algorithm iterations. Thus, the ratio

between all weights is always the same; only the values of wi are iteratively

changed.

The performance value of candidate test case TCi during evaluation by criterion j

is denoted as pvij. The following function P(TCK/TCL) compares two candidates

TCK and TCL. In case the result is higher than value 1, the first candidate is

superior to the second. The newly selected candidate should be better than or at

least equal to all other candidates.

jw

n

j Lj

Kj

LK
pv

pv
TCCTP

1

, for K, L = 1, 2, 3…. m; and K ≠ L (4)

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 133 –

The example shows the method on model data. Let us say, there are three

candidates and three already prioritized test cases, weights are set to wDC = 0.5,

wPC = 0.2 and wAC = 0.3, and the performance values of candidates are depicted in

Figure 2, where columns represent particular criteria, the first row shows weights

for a specific criterion, and other rows are connected to candidate test cases

(alternatives). In our case, distance criteria performance values match to the

distance matrix d from the original ARP example. However, other criteria are now

considered in the test case selection.

The comparison of candidate TC1 and TC2 would be as follows:

33.1

)1/3(*)15/10(*)1.0/3.0(*)4.0/5.0(*)8.0/2.0(3.02.06

1

6

1

6

1

21

TCTCP

Similarly, 79.031 TCTCP and 62.032 TCTCP . Therefore, the selected

candidate is TC3 (instead of TC2 from the ARP example), since it is better than all

of the other candidates.

0.20.60.5

0.10.40.8

0.30.50.2Candidate TC1

Candidate TC2

Candidate TC3

P
ri

o
ri

ti
ze

d
 T

C
2

1/61/61/6 0.30.2

12

15

10

4

1

3

Weights

Distance

criteria

Figure 2

MC-ARP Example

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 134 –

4 Experiments

In this section, it is verified whether the proposed MC-ARP technique achieves

better fault detection results than the original ARP. The second goal of the

experiments is to investigate the effect of the size of the test cases that fail on fault

detection performance of the proposed technique. The experimental evaluation on

a broader sample of test suites is important for the assessment of the newly

proposed technique, because TCP techniques may have an outstanding

performance for one test suite and weak results for another.

The section is divided into two main parts. The first part describes the

experimental setup and other necessary aspects for the evaluation of the

experiments. In the second part, the performance comparison of MC-ARP with the

original ARP technique and investigation of sensitivity to the size of the test cases

that fail, is presented.

4.1 Dataset

Dataset used in this section for evaluation of the proposed technique is obtained

from [25]. The dataset includes 17 test suites and information about faults from

six industrial systems (for overall characteristics see Table 1). Each system is

covered by two to four test suites, and each test suite has 4 to 24 test cases (for

more information see [8]). The projects included in the dataset are from different

areas, e.g., a cashdesk system that interacts with payment terminals, or a system to

manage lending of equipment/software and maintenance logs. The tested systems

were modeled in a high abstraction level as control-flow Labelled Transition

System models. The models represent use scenarios, which can include multiple

types of control flows (standard scenario, alternative user’s behavior, and

exception flow that covers systems errors). Test cases were generated as paths

through these models by traverses of a Depth-First Search algorithm.

Table 1

Systems overall characteristics [8]

System Language Size (LOC)

S1 Java 3000

S2 C 3055

S3 Java 13001

S4 Groovy grails 3693

S5 Groovy java 20713

S6 Groovy JavaScript grails 13244

Sensitivity to the size of the test case that has found a fault is defined by a relation

between the sizes of test cases that fail and the rest of the test suite. The relation

divides test cases into two groups. The first group contains short test cases that

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 135 –

execute fewer steps than the average number (test cases that commonly do not

traverse loops). In contrast, the second group consists of long test cases, which

perform more system steps than the average. In order to evaluate this sensitivity, it

is necessary to know the failed test cases in advance. Then the test suites can be

divided into the following groups:

 ShortTC – test suites where every test case that fails is shorter than the

average size of test case in the test suite.

 LongTC – test suites where every test case that fails is longer than the

average size of test case in the test suite.

 ConstantSizeTC – test suites where all test cases have the same size.

 MixedTC – test suites which do not fit to above mentioned groups.

The terminology is taken from the original study [8], and the distribution of these

groups in the dataset is shown in Figure 3.

Figure 3

Test Suites Distribution

Random nature of ARP technique can affect TCP results. Therefore, the examined

algorithms were executed 1000 times for each test suite (according to the

suggestion in [26]); the experimental setup is shown in Figure 4.

APFDMC-ARP
17 Test Suites

17x 1000

Fault Reports

Figure 4

Setup overview

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 136 –

4.2 Effectiveness Metrics

To evaluate the performance of the new enhanced ARP technique and to compare

results with the original methods, the following metrics are used.

Average Percentage of Faults Detection (APFD) developed by Elbaum et al. in

[27] is used for evaluation of fault detection performance. The metric measures

the rate of fault detection per percentage of test suite execution and is calculated

as follows:

nmn

TFTFTF
APFD m

2

1...
1 21

 (5)

where n is the number of test cases, and m is the number of faults which the test

suite can reveal. The TFi is the position of the first test case that reveals the i–th

fault. The APFD is a percentage (values 0 – 100), and higher values indicate better

(faster) fault detection.

Non-parametric statistical test, Kruskal-Wallis test [28], is applied to compare two

distributions of the APFD results. The test determines whether the difference

between the results is statistically significant using a 95% confidence level (i.e. p-

value < 0.05). The test resolves whether the differences are not random, but for

performance comparison Vargha and Delaney’s Â12 statistic [29] is used.

Vargha and Delaney’s Â12 statistic performs a pairwise comparison of results

expressed by the APFD metric from two techniques A and B. It is a nonparametric

effect size measure, which is popular in the software engineering area, where

randomized algorithms are involved [30]. The Â12 metric measures the probability

that running A produces a higher APFD than running B. The Â12 can be

calculated:

n

m

m

R

A 2

1

ˆ

1

12

 (6)

Where R1 is the rank sum of the APDF results from the first compared technique

(the ranking is done through the results of both techniques). The m is the number

of results from the first technique, and n is the number of results from the second

technique. If the two techniques are equivalent, then Â12 = 0.5. In another case,

one technique produces better results.

4.3 Results

The performance evaluation of the presented technique was done by comparison

of fault detection capabilities of the original and enhanced technique. For

evaluation, several variants of ARP technique with the following Test case

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 137 –

distance functions were chosen: Jaccard (ARPJac), Manhattan (ARPMan), and

Similarity function (ARPSim). The original technique with Jaccard and Manhattan

uses MaxMin Test set distance function, and Similarity function uses MaxMin and

MaxMax Test set distance functions (marked ARPSim1 and ARPSim2). The

proposed Multi-criteria ARP technique is marked MC-ARPXXX, where XXX

distinguishes a specific variant with appropriate Test case distance function. The

criteria weights for MC-ARP were experimentally set to: wDC = 0.5, wPC = 0.2 and

wAC = 0.3.

The overall fault detection results of MC-ARP and original variants are presented

in Figure 5, and results for individual systems are shown in Figure 6. The pairwise

Â12 results comparison can be found in Table 2.

Table 2

Effect sizes of pairwise comparisons of MC-ARP and the original technique

 ARPJac ARPMan ARPSim1 ARPSim2

System S1 0.69 0.68 0.58 0.55

System S2 0.70 0.64 0.68 0.68

System S3 0.51 0.5 0.51 0.58

System S4 0.59 0.58 0.70 0.71

System S5 0.58 0.56 0.62 0.62

System S6 0.62 0.64 0.53 0.58

Overall 0.59 0.58 0.59 0.61

The overall comparison in Figure 5 shows that, in all cases, MC-ARP variants

have higher median value (better results), and boxplots are also more compact

(i.e., they have shorter interquartile ranges and more consistent results). Presented

results from Table 2 show that MC-ARP improves the overall performance of

ARP technique, and the improved fault detection performance is similar for each

distance function variant.

Results for individual systems indicate that the more significant performance

improvement is evident in systems S1, S2, and S4. These systems mostly contain

MixedTC and LongTC test suites (see Figure 3). This improvement is due to Path

Complexity and Additional Coverage criteria, which prefer more complex test

cases with a higher amount of non-covered statements. In other cases, MC-ARP

technique still has the same or better results than the original ARP variants i.e.,

boxplots are more compact or median values are similar or higher.

For overall results, Kruskal-Wallis test produces the highest p-value < 0.001.

Therefore, the techniques present different performances than their original

versions. For individual systems, the results are statistically similar (p-

value > 0.05) only in the case of the system S3 for techniques ARPJac, ARPMan,

and ARPSim1.

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 138 –

Figure 5

Comparison of overall results

Figure 6

Performance of techniques for individual SUT

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 139 –

The effect of the size of the test cases that fail is investigated using ShortTC and

LongTC suite samples. These samples contain test suites where failed test cases

are shorter or longer than the average test cases size in that test suite.

Figure 7 presents the results for evaluated techniques. Detailed pairwise

comparison is in Table 3 for ShortTC, respectively LongTC. The results show that

the MC-ARP has better fault detection performance than the original ARP

technique (mainly due to path complexity guidance) for LongTC samples. The

MC-ARP variants have the same or higher median values and more compact

boxplots. On the other hand, for ShortTC samples, Table 3 presents that MC-ARP

has only slightly better performance than the original technique for Jaccard and

Manhattan distance functions. The MC-ARP variant with Jaccard function has a

higher median, but the boxplot is more spread out. The Manhattan variants have

similar boxplots; however MC-ARP achieve higher median value. In case of

Similarity function, the results are worse than the original technique, which is

mainly noticeable on the boxplot for ARPSim1.

In the comparison of MC-ARP and the original variants, Kruskal-Wallis test

results reach maximal p-value < 0.001. Hence, the techniques also produce

different performance results.

Table 3

Effect sizes of pairwise comparisons of MC-ARP and the original ARP for ShortTC and LongTC

ShortTC ARPJac ARPMan ARPSim1 ARPSim2

MC-ARPXXX 0.54 0.54 0.33 0.42

LongTC ARPJac ARPMan ARPSim1 ARPSim2

MC-ARPXXX 0.60 0.57 0.60 0.60

Pairwise Â12 between ShortTC and LongTC for a technique represents sensitivity

to the size of the test cases that fail. The technique insensitive to the size of the

test cases that fail should reach a value 0.5 when performance for both groups is

the same. The results for ARP and MC-ARP techniques are presented in Table 4.

At this point, the proposed technique achieved a minor decrease compared to the

original ARP values. This increase of sensitivity is caused by an unequal

improvement of results between ShortTC and LongTC samples. However, the

sensitivity of MC-ARP still achieves decent values in comparison to other TCP

techniques (for more information about these techniques see [8]).

Records for ARP technique variants are duplicated in Table 4. Values based on

data from our ARP implementation have the blue italic font. The results of the

original study are listed in black font. These values have been added, because they

are slightly dissimilar to the original, probably due to a different implementation

of the ARP algorithm.

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 140 –

Figure 7

Boxplots of ShortTC and LongTC samples

Table 4

Effect sizes of the comparisons between ShortTC and LongTC [8]

Technique Â12 Technique Â12

Ran 0.4443 PC 0

ARPJac 0.3945 Stoop 0.5833

ARPMan 0.374 SDh 0.0833

ARPSim1 0.4725 SDe 0.1666

ARPSim2 0.3892 SDm 0

ARPJac 0.44 ST 1

ARPMan 0.4 SA 0.1609

ARPSim1 0.51 MC-ARPJac 0.35

ARPSim2 0.4 MC-ARPMan 0.34

FW 1 MC-ARPSim 0.22

Conclusions

This work presents a new Adaptive Random Prioritization technique (referred to

as MC-ARP); the technique replaces the original Test set distance function, with a

Multi-Criteria Decision-Making method. This enhancement incorporates

additional criteria (other than the test case distances) into a decision which test

case should be selected from the candidate set. The key idea of ARP technique

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 141 –

performance improvement is to add guidance based on the path complexity and

additional coverage techniques that have better overall fault detection

performance. The PC technique calculates a score based on a path through a

control flow model for each test case and the test cases with a higher score, are

preferred over the others. An additional cover technique calculates how many yet,

uncovered statements, will be covered when a test case will be added to the set of

already the prioritized ones. The test case with the highest number of newly

covered statements is preferred.

The mentioned features and distances between a candidate and already prioritized

test cases are used as decision criteria in Weighted Product Model method. The

method performs a pairwise comparison of all candidates. The proposed change

partially limits the random nature of ARP and prefers to select more complex test

cases or test cases with more uncovered statements over others.

The novel Test set distance function helps to improve the fault detection

performance of ARP technique. Improvement of fault detection performance

across all tested systems has been noticed. Moreover, experiment results show that

MC-ARP has the same or better performance across all systems than the original

ARP.

For test suites where every test case that fails is shorter than the average size (i.e.,

the test cases with less complex paths), MC-ARP with Jaccard, or Manhattan

distance functions achieve slightly better results. Thanks to the guidance, MC-

ARP outperforms the original technique when every test case that fails is longer

than the average size of test cases in the test suite. The resulting sensitivity to the

size of the test cases that fail is moderately higher than the original technique, due

to uneven performance improvements in the scenarios mentioned above.

However, it still achieves good results compared to other techniques.

Regarding threats to validity, the evaluation of the proposed MC-ARP technique

was performed on the dataset that contains data from six industrial projects. The

systems were modeled as Labelled Transition, and the test suites were generated

by Depth-First Search algorithm, which traverse the models and saves paths as test

cases. Therefore, the results cannot be generalized for other kinds of systems or

other test case generation algorithms. However, it can be assumed, that for similar

systems and test case generation approaches, the technique will perform at similar

performance level. The evaluation was done only on fault detection and the effect

of the size of test cases that fail, however, other aspects as the number of test cases

in the dataset or the proportion of test cases that fail may affect the fault detection

performance. Moreover, some test suites in the dataset are relatively small, and

they may not be entirely suitable for prioritization.

In future work, the technique herein will be applied in the area of automotive

Hardware-in-the-Loop (HIL) Integration Testing [31]. In this domain, MBT

approach is used for Integration Testing of Electronic Control Units (ECUs). The

goal of this testing phase is to estimate if a cluster of ECUs operates in synergy

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 142 –

and functions distributed among multiple ECUs work as expected. There is a need

for optimization of automatically generated test suites. Those test suites are

generated from Timed Automata models using our testing tool called Taster [32,

33]. The size of a test suite depends on a Timed Automata model complexity and

used a state-space traversal algorithm. In general, it can be enormous. The MC-

ARP will be implemented as part of this software. The expectation is to attain test

suite optimization, towards shorter test times, while maintaining a reasonable test

coverage. Further experiments will be performed on a HIL testing platform, in

cooperation with our Industrial Partner. This HIL testbed is dedicated to the

testing of comfort and radar sensor-based driver-assistance systems.

Acknowledgement

The work was supported from ERDF/ESF project "Advanced Testing of

Automotive Radars" (No. CZ.02.1.01/0.0/0.0/16_025/0007318). This support is

gratefully acknowledged.

References

[1] Ammann, P., J. Offut: Introduction to software testing, 1 ed., Cambridge

University Press, New York, NY, USA, 2008

[2] Utting, M., B. Legeard: Practical model-based testing: a tools approach.

Elsevier, 2010

[3] Zander, J., I. Schieferdecker, and P. J. Mosterman: A taxonomy of model-

based testing for embedded systems from multiple industry domains,

Model-based testing for embedded systems, 2011, pp. 3-22

[4] Elbaum, S., A. G. Malishevsky, and G. Rothermel: Test case prioritization:

A family of empirical studies. IEEE transactions on software engineering,

2002, 28(2): pp. 159-182

[5] Catal, C. and D. Mishra: Test case prioritization: a systematic mapping

study. Software Quality Journal, 2013, 21(3): pp. 445-478

[6] Khatibsyarbini, M., et al.: Test case prioritization approaches in regression

testing: A systematic literature review. 2018, 93: p. 74-93

[7] Stallbaum, H., A. Metzger, and K. Pohl: An automated technique for risk-

based test case generation and prioritization. in Proceedings of the 3rd

international workshop on Automation of software test. 2008

[8] Ouriques, J. F. S., E. G. Cartaxo, and P. D. Machado: Test case

prioritization techniques for model-based testing: a replicated study.

Software Quality Journal, 2017, pp. 1-32

[9] Triantaphyllou, E.: Multi-criteria decision making methods, in Multi-

criteria decision making methods: A comparative study. 2000, Springer, pp.

5-21

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 143 –

[10] Jiang, B., et al.: Adaptive random test case prioritization. in Proceedings of

the 2009 IEEE/ACM International Conference on Automated Software

Engineering. 2009

[11] Chen, T. Y., H. Leung, and I. Mak: Adaptive random testing. in Annual

Asian Computing Science Conference. 2004, Springer

[12] Jaccard, P.: Comparative study of the floral distribution in a portion of the

Alps and the Jura Mountains (Étude comparative de la distribution florale

dans une portion des Alpes et des Jura) 1901, 37: pp. 547-579

[13] Zhou, Z. Q.: Using coverage information to guide test case selection in

adaptive random testing. in 2010 34th Annual IEEE Computer Software and

Applications Conference Workshops. 2010

[14] Zhou, Z. Q., A. Sinaga, and W. Susilo: On the fault-detection capabilities

of adaptive random test case prioritization: Case studies with large test

suites. in System Science (HICSS), 2012 45th Hawaii International

Conference on. 2012

[15] Coutinho, A. E. V. B., E. G. Cartaxo, and P. D. de Lima Machado:

Analysis of distance functions for similarity-based test suite reduction in

the context of model-based testing. Software Quality Journal, 2016, 24(2):

pp. 407-445

[16] Kaur, P., P. Bansal, and R. Sibal: Prioritization of test scenarios derived

from UML activity diagram using path complexity. in Proceedings of the

CUBE International Information Technology Conference. 2012

[17] Sharma, C., S. Sabharwal, and R. Sibal: Applying genetic algorithm for

prioritization of test case scenarios derived from UML diagrams.

arXiv:1410.4838, 2014

[18] Kumar, A. and K. J. C. Singh: A Literature Survey on test case

prioritization. 2014, 3(5): p. 793

[19] Korel, B., L. H. Tahat, and M. Harman: Test prioritization using system

models. in Software Maintenance, 2005. ICSM'05. Proceedings of the 21st

IEEE International Conference on. 2005

[20] Mahali, P., D. P. J. I. J. o. S. A. E. Mohapatra, and Management: Model

based test case prioritization using UML behavioural diagrams and

association rule mining. 2018, 9(5): pp. 1063-1079

[21] Kundu, D., et al.: System testing for object‐oriented systems with test case

prioritization. Software Testing, Verification Reliability, 2009, 19(4): p.

297-333

[22] Sapna, P. and H. Mohanty: Prioritization of scenarios based on uml activity

diagrams. in Computational Intelligence, Communication Systems and

Networks, 2009, CICSYN'09, First International Conference on. 2009

T. Pospisil et al. Enhanced Adaptive Random Test Case Prioritization for Model-based Test Suites

 – 144 –

[23] Hemmati, H., Z. Fang, and M. V. Mantyla: Prioritizing manual test cases in

traditional and rapid release environments. in Software Testing,

Verification and Validation (ICST), 2015 IEEE 8th International

Conference on. 2015

[24] Ouriques, J. F. S., et al.: Revealing influence of model structure and test

case profile on the prioritization of test cases in the context of model-based

testing. 2015. 3(1): p. 1

[25] Ouriques, J. F. S.: Replication of Failure Characteristics Experiment;

Available from:https://sites.google.com/site/joaofso/research/experiments/

replication-of-failure-characteristics-experiment

[26] Arcuri, A. and L. Briand: A practical guide for using statistical tests to

assess randomized algorithms in software engineering. in Software

Engineering (ICSE), 2011 33rd International Conference on. 2011

[27] Elbaum, S., A. G. Malishevsky, and G. Rothermel: Prioritizing test cases

for regression testing. Vol. 25, 2000

[28] Sheskin, D. J.: Handbook of parametric and nonparametric statistical

procedures. crc Press. 2003

[29] Vargha, A. and H. D. Delaney: A critique and improvement of the CL

common language effect size statistics of McGraw and Wong. Journal of

Educational Behavioral Statistics

[30] Poulding, S. and J. A. Clark: Efficient software verification: Statistical

testing using automated search. IEEE Transactions on Software

Engineering, 2010. 36(6): pp. 763-777

[31] Sobotka, J. and J. Novak: Automation of automotive integration testing

process. in 2013 IEEE 7th International Conference on Intelligent Data

Acquisition and Advanced Computing Systems (IDAACS) 2013

[32] Krejci, L. and J. Novak: Model-based testing of automotive distributed

systems with automated prioritization. in Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications (IDAACS),

2017 9th IEEE International Conference on. 2017

[33] Sobotka, J. and L. Krejci: Testing of Automotive Systems-Complex vs.

Simple Environment Models. in 2018 16th Biennial Baltic Electronics

Conference (BEC). 2018

https://sites.google.com/site/joaofso/research/experiments/%0breplication-of-failure-characteristics-experiment
https://sites.google.com/site/joaofso/research/experiments/%0breplication-of-failure-characteristics-experiment

