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Abstract: This paper proposes a new formalization of the classical probability-possibility 

relation, which is further confirmed as a much complex, but natural provability –

reachability - possibility - probability - fuzzy membership – integrability interconnection. 

Searching for the right context in which this relation can be consistently expressed for the 

particular case of experimentally obtained iris recognition results brought us to a natural 

(canonic) and universal fuzzification procedure available for an entire class of continuous 

distributions, to a confluence point of statistics, classical logic, modal logic, fuzzy logic, 

system theory, measure theory and topology. The applications - initially intended for iris 

recognition scenarios - can be easily extrapolated anywhere else where there is a need of 

expressing the relation possibility - probability - fuzzy membership without weakening the 

σ -additivity condition within the definition of probability, condition that is considered 

here as the actual principle of possibility-probability consistency.  
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1 Introduction 

Implementing biometric identification systems means advancing from human 

intuition to artificial but formally correctly biometric decisions. To be specific, 

when a human agent analyzes a pair of two good quality iris biometric samples 

(two iris images) – for example, it is easy for him to decide if the pair is a genuine 

or an imposter one, hence it is simple for him to have the intuition that designing a 

reliable artificial agent able to recognize genuine against imposter pairs should be 

possible. A first guess is that, as a decision system, the biometric system should be 

a binary one. Theoretically, in ideal conditions, it should be able to map all its 

legal inputs (pairs of iris templates) onto a set of  two  concepts and linguistic 

labels ‘imposter’ and ‘genuine’ whose extensions should be disjoint, since in a 

logically consistent iris recognition system and also in our reasoning, no imposter 
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pair is a genuine one and vice versa. Unfortunately, the field of iris recognition is 

full of counter-examples to this ideal situation, some of them as old as the domain 

of iris recognition itself [3], [4] and others, very recent indeed [6]-[10], [24], [25], 

some of them in more direct connection with what follows to be presented in this 

paper [2], [12]-[17], [19]-[23]. In all of these counter-examples it happens that the 

linguistic labels ‘imposter’ and ‘genuine’ are, in fact, represented as two 

overlapping fuzzy sets of recognition scores, the overlapping being itself a fuzzy 

boundary in between the first two mentioned fuzzy sets. Therefore, a second guess 

is that, as a decision system, the biometric system outputs three possible values: 

‘imposter’, ‘uncertain’ and ‘genuine’. A step further is analyzing the causes for 

which some imposter similarity scores are too big and some genuine similarity 

scores are too small, in an attempt to better isolate from each other the extreme 

values imposter and genuine. The result is a 5-valued recognition function that 

splits the input space (of iris template pairs) in five fuzzy preimages of five labels 

imposter, hyena (degraded imposter), uncertain, goat (degraded genuine) and 

genuine, all of them represented as fuzzy sets of recognition scores. All in all, the 

non-ideal conditions occurred from the stage of image acquisition up to the stages 

of image processing and matching fuzzify the prototype binary crisp recognition 

function that all biometric systems are normally expected to have (in ideal 

conditions) up to a binary, ternary, quaternary or even quinary fuzzy recognition 

function. Therefore, the initial intention of designing an identification system must 

be weakened when necessary to designing verification systems. However, when 

the aim is to design a logically consistent recognition system within the limits of 

consistent biometry [22], the difference between verification and identification 

vanishes.  

This framework of iris recognition (and biometric recognition at large) is the 

context in which we talk here about fuzzy membership, probability and negation 

while searching for appropriate ways of expressing (precisiating, [31]) facts, rules 

and phenomena of iris recognition in a computational manner such that to 

maximize the cointension [31] between the real world of iris recognition and its 

computational model. By adopting a Turing perspective [27], we classify such a 

task as a process of human intelligence and its computational model as an artificial 

agent whose degree of intelligence can be determined through the test that today 

bears his name (Turing test, [27]). In other words, ideally, artificial intelligence is 

a way of representing processes of human intelligence as computational (artificial) 

software agents with as much cointension as possible, the degree of cointension 

being verifiable in principle [1] through a Turing test [27]. The results of all major 

iris recognition experiments (such as [4], [8], [10], [13], [19], [20], [22], [24]) are 

in fact partial Turing tests of iris recognition in which only the software agent is 

interrogated. Completing these partial tests can be done easily by attaching to 

them the corresponding iris recognition results obtained while interrogating 

qualified human agents using the same iris image databases. Surprisingly, 

especially when using iris image databases containing good quality images, the 

histogram of biometric decisions given by the human agents are indeed very 
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different by those summarizing the biometric decisions given by the artificial 

agents (the iris recognition systems). The huge discrepancy between the two types 

of iris recognition results was for the first time observed and understood in [21] 

and further commented and used in [22] as an argument for searching a better 

methodology for non-stationary machine-precisiation of iris recognition. Here we 

will insist now on the lack of cointension between the human-precisiated and 

machine-precisiated iris recognition and on the lack of instruments for quantifying 

it. Let us start with a tentative of quantifying the degree of separation between the 

distributions of imposter and genuine similarity scores. In the classical statistical 

approach of iris recognition proposed by Daugman, the decidability index,  
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is such a measure of separation (where Iµ , Gµ , 2
Iσ  and 2

Gσ are the means and the 

variances of imposter and genuine score distributions respectivelly), values of 4, 

8, and 14 being already reported in the literature [3], [4]. Hence, the separation 

between the distribution of imposter and genuine similarity scores is in this case 

precisiated numerically in such numeric values exemplified above. However, the 

histograms summarizing the biometric decisions given by qualified human agents 

are crisp 0-1 (binary) histograms for which the same decidability index takes the 

value of positive infinity. How relevant are 4, 8, or 14 against the infinity? How 

much cointension is in this case in between the human-precisiated and machine-

precisiated iris recognition? We could not say otherwise than not too much at all, 

and this is what motivates our paper, which is further organized as follows:  

1.1 Outline 

Section 2 presents a newly proposed formalization of the classical probability-

possibility relation, whereas the sections 2.1 and 2.2 introduce the notions of 

consistent experimental setups and frameworks exemplified in section 2.3. Section 

3 presents and analyzes some cases of imperfect experimental frameworks 

(especially cases of iris recognition, see section 3.1) study that leads to the finding 

of a new possibility – probability – fuzzy membership relation for Gaussian 

distributed random numbers and also for other continuously distributed random 

numbers, finding that points out that weakening theσ −additivity condition is not 

necessarily required for establishing a consistent possibility-probability-fuzzy 

membership relation. On the contrary, the σ −additivity condition is the bridge 

that ensures this relation and therefore statistics and fuzzy logic could share a 

common side-by-side evolution – fact that is commented in section 3.4. The 

sections 3.5 and 3.6 are dedicated to exemplifying some issues that negation has 

when it comes to deal with fuzzy membership assignments. At last, the 4
th

 section 

deals with two types of negation in the context of implemented biometric systems 

and is followed by conclusions.  
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2 A new formalization of the classical probability-

possibility relation.  

Let us consider a data spring, i.e. an input-output relation R of a theoretical system 

ST actually implemented as SP, a data spring that throws an uniformly distributed 

number y in the discrete set of fuzzy values Y=[0:1:255]/255={yk=k/255 | 

k∈Z256} as a response to the excitation x∈X. By intentionally confounding the 

output y with the state of system S, X is the input space and Y is the state-output 

space. Given the fact that the data spring is a uniformly distributed number in Y, 

all y∈Y are observable outputs/states and the event y∈Y is not just possible, but 

certain. The possibility that y∈Y originates in the nature of data spring R, 

whereas for any R taken such that R(X)=Y, the probability of y∈Y is unitary. In 

such cases, while the system SP is functioning, the actual outcome y=R(x) cannot 

enter in the output/state space through its empty subset, i.e. the event R(x)∉Y is 

impossible, whereas its probability is zero. In such cases, even if we consider the 

possibility is a matter of degree, the (maximally) impossible event is not 

improbable (as Zadeh said in [30]), but actually it is not probable at all (i.e. it is 

0−probable). On the other hand, the maximally possible event is the certain event 

whose probability is unitary. In what follows here, all 0-probable events are 

impossible, all p-probable events with 1≥p>0 are possible and all 1-probable 

events are not just possible, but certain. The possibility of an event is not fuzzy, 

but binary: all possible or impossible events have their possibility coefficients 

equal to 1 or 0, respectively. Hence probability follows, originates in and 

expresses possibility (probable events are not impossible) and possibility is causal 

to probability. This state of facts is already expressed in probability theory as a 

precise law, namely the σ −additivity axiom within the definition of probability, 

which can be also viewed as a principle of consistent possibility-to-probability 

translation, i.e. as an instance of the so called possibility/probability consistency 

principle introduced by Zadeh in [30],  

∑
=

=
n

k

kkp

1

πγ , with p and π denoting probability and possibility values, (2) 

where all possibility values are taken unitary. In our modeling, a state or an output 

is observable if and only if it is possible, i.e. the possibility and observability are 

interchangeable (synonyms). In terms of formal languages, there is a formal 

grammar that describes the systems ST and SP able of producing that specific 

state/output also. In a consistent experimental setup, all possible events should be 

observed and, as a consequence, their statistics can be made, probability being a 

nuance, a refinement of possibility (among all possible events, some are more 

probable than others), a finer precisiation / quantization of possibility in a numeric 

space after the knowledge resulting from a certain experiment is gathered as 

statistics data. Hence, the main differences between the classical possibility-

probability relation that we are bounded to here and the model proposed by Zadeh 

in [30] are the following:  
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Possibility is encoded binary. Possibility is a matter of degree. 

Possibility and probability values 

satisfy theσ −additivity condition, 

and therefore, they are cointensive 

and fully consistent to each other – 

i.e. in formula (2), γ and possibility 

values are all unitary. 

Possibility and probability values are 

not necessarily cointensive, nor fully 

consistent to each other, since their 

degree of consistency (2) marks a 

weakening of the 

σ −additivity condition. 

For any consistent experimental setup ‘E’, any event ‘e’ and any p∈ (0,1]: 

impossible(e) ↔  0-probable(e, E) impossible(e) →  improbable(e) 

possible(e) ↔  p-probable(e, E) 
probable(e) →  possible(e) 

(if contrapositive principle still stands) 

certain(e) ↔  1-probable(e, E) formula (2) 

Let us comment now on these matters. First of all, the relation between 

impossibility and 0-probability, 

impossible(e) ↔  0-probable(e, E), (3) 

tells that in any consistent experimental setup ‘E’ (situation further denoted 

as ξ∈E , where the space of consistent experimental setups ξ  follows to be 

defined on the run, by natural restrictions that appear during formalization), an 

impossible event cannot be observed as an outcome, or otherwise, the 

experimental setup is not consistent (situation further denoted as ξ∉E ). This 

mechanism can be used to endow any computational artificial agent with the 

capacity of predicting (having an expectation and a prior knowledge on) the future 

outcomes of an experiment that it follows to witness, observe and understand, and 

also with the capacity of knowing who is responsible when these outcomes do not 

meet its expectation. However, formula (3) is a simplified instance of a more 

complex one that belongs in a second-order formal language describing the 

systems ST and SP (in what follows, t and f are used as true and false): 

impossible(e) ↔  {( ξ∈∀E )[ t→  0-probable(e, E) ]} (4) 

telling that an event ‘e’ is impossible if and only if, in any consistent experimental 

setup ‘E’, its probability is null. Its dual by contraposition principle is:  

possible(e) ↔  {  ( ξ∈∃E )[ 0-probable(e, E) →  f]  } (5) 

telling that an event ‘e’ is possible if and only if there is a consistent experimental 

setup in which the assertion that ‘e’ is 0-probable in ‘E’ is false. Formula (5) is 

further equivalent to:  

possible(e) ↔  {  ( ξ∈∃E )( ]1,0(p∈∃ )[ t →  p-probable(e, E)]  } (6) 

telling us that an event ‘e’ is possible if and only if there is a consistent 

experimental setup in which the assertion that the probability of ‘e’ is not null in 

‘E’ is true.  

Secondly, the relation between possibility and p-probability (when p∈ (0,1]),  
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possible(e) ↔  p-probable(e, E), (7) 

is also a simplified instance of a more complex formula: 

possible(e) ↔  {  ( ξ∈∀E )( ]1,0(p∈∃ )[ t→  p-probable(e, E) ]  }, (8) 

that tells that an event ‘e’ is possible if and only if, in any consistent experimental 

setup ‘E’, (is true that) its probability is not null. Formula (8) is actually a 

strengthening of (6) by universal quantification of E in ξ , and therefore, a 

strengthening of (4). Besides, the relations (8) and (5) could not be simultaneously 

true outside ξ , hence ξ  is necessarily defined as follows:  

2.1 Consistent experimental setups 

Definition 1 The space of consistent experimental setups ξ  for the system ST 

whose observable state/output space Y is entirely covered by its input-output 

(X-R-Y) relation (i.e. R(X)=Y) is a space of experiments (on implemented 

systems SP) in which:  

(i) any two members are interchangeable, i.e.:  

t →  {[( ξ∈∃E )(P(e, E))] →  [( ξ∈∀E )(P(e, E))]},  (9) 

where P(e, E) is a property of ‘E’ relative to a given event ‘e’. 

(ii) the following rewriting rule holds true:  

{( ]1,0(p∈∃ )[ t →  p-probable(e, E) ]} ↔  [0-probable(e, E) →  f] (10) 

(iii) there is a negation operator ‘n’ defined such that n
2
=1 (in terms of string 

functions) and:  

n{( ξ∈∀E )[t→ 0-probable(e,E)]}↔ {( ξ∈∃E )[0-probable(e, E)→ f]}, (11) 

(iv) the following rewriting rule for complementary events e and e  holds 

true:  

( ξ∈∀E )( ]1,0[p∈∀ ){[p-probable(e,E)]↔ [(1-p)-probable( e ,E)]} (12) 

 

 

  (8)↔ (4)  

  �  

 (8)↔ (5) AND (5)↔ (4)* 

 �   

(8)↔ (6) AND (10)  

�   

(9)   

(where * is provable by (11) and contraposition principle) 

(13) 

 

In these conditions, a formal proof that (8)↔ (4) is presented here as formula 

(13), where the equivalence relation * within the formula (13) is provable by (11) 
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and contraposition principle. The condition (iv) within Definition 1 establishes the 

natural meaning of both labels impossible and certain by correspondence with the 

trivial two-elements Boolean algebra defined by the empty set and Y, on the one 

hand, and with the two extreme values (0 and 1) that the cumulative of probability 

takes for the empty (impossible) and total (certain) events, respectively, on the 

other. 
 

In the third place, the relation between certain and 1-probable events: 

certain(e) ↔  1-probable(e, E), (14) 

is also a simplified instance of a more complex formula: 

certain(e) ↔  {( ξ∈∀E )[ t→  1-probable(e, E) ]}, (15) 

affirming that the event ‘e’ is certain, if and only if, it is 1-probable in any 

consistent experimental setup ‘E’. Given the rewriting rule (iv) stated in 

Definition 1, formula (15) is further equivalent to: 

impossible( e ) ↔  {( ξ∈∀E )[ t→  0-probable( e , E) ]}, (16) 

that further is an instance of formula (4). By summarizing this section up to this 

point, an important remark is that the three ways of describing the classical 

possibility-probability relation for the impossible, possible and certain events, 

namely the formulae (4), (8) and (15), or their simplified forms (3), (7) and (14) 

and also the axioms within the definition of probability are not independent, but 

intimately interconnected as three images of the same thing, namely the concept 

denoted above as ξ  - the space of all consistent experimental setups ξ  for the 

system ST whose observable state/output space Y is entirely covered by its input-

output relation. ξ  is a formal, logical, computational and physical concept, a 

coherent non-contradictory framework of expressing the natural relation between 

possibility, probability and negation for all observable states/outputs of a physical 

system SP given as an implementation of ST. By contrast, now the reader knows 

what could mean to weaken any of the three axioms within the probability 

definition while attempting to define a possibility-probability relation different 

from the canonic natural one that exists by default in ξ .  

A second remark is that investigating the possibility-probability relation in ξ  

shows how many things confirm each other and group together coherently in a 

consistent and computational knowledge ensemble.  

A third remark is that all formulae from above that contain the symbols t and f - 

i.e. (4)-(6), (8)-(12), (15) and (16) - are written in a formal logical dialect that 

extends the cognitive dialect introduced in [17], which on its turn is derived from 

the sound and complete formal theory of Computational Cognitive Binary Logic 

(CCBL) introduced in [15] and implemented online in [18]. However, the marker 

(!:) signalizing an assertion in cognitive dialect is omitted in the above formulae, 

because here in this article there is no chance of confusing queries and assertions. 

Hence, our discourse presented here on the possibility-probability relation is 

strictly a logical and computational one.  
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2.2 Consistent experimental frameworks 

An artificial computational agent produces its states/outputs accordingly to a 

sound formal theory in which the states/outputs are formally and logically 

provable in terms of a generative grammar. Hence, in ξ , a more complex relation 

holds between possibility, probability, observability and provability: observable 

events (states/outputs) of ST and SP are possible, probable and provable, any time 

when the input-state/output relation is theoretically known as a provable formula 

of a sound theory describing ST and practically implemented in SP without errors. 

This motivates the following definition:  
 

Definition 2 A Consistent Experimental Framework (CEF) is a formal 

ensemble (X,R,Y,ST,TS,ξ ) in which:  

(i) ξ  is the space of consistent experimental setups for the system ST;  

(ii) the observable state/output space Y of the system ST is entirely covered by 

the input-output (X-R-Y) relation (i.e. R(X)=Y); 

(iii) input-state/output relation (X-R-Y) is know explicitly as a provable formula 

of a sound formal theory TS describing ST, on the one hand, and implemented 

without errors on SP, on the other. 

 

In this context, since TS is a sound formal theory, it cannot prove contradictions. 

Therefore, contradictions are impossible / unreachable / unprovable events in TS. 

Since the formal theory of TS actually describes the functioning of ST and SP, the 

practice on SP is not able to deliver events that are theoretically impossible / 

unreachable / unprovable (in ST), and therefore, the practice on SP (further denoted 

PS) cannot deliver counter-examples for ST and TS. In other words, there is a 

unitary cointension between ST and SP, between the theory TS and the practice PS 

on the theoretical and actual systems ST and SP. In general, the lack of cointension 

between practice (experiments) and theory could be expressed in experimental 

results that contradict the theoretical model of the system in some aspects. On the 

contrary, a unitary cointension between practice and theory ensures that in any 

consistent experimental setup it is impossible to obtain experimental results that 

contradict the expectations motivated by the sound theory TS. There are only two 

possible gates that could allow inconsistency (contradiction) within an 

experimental framework, namely TS is not sound or PS is outside ξ . In addition, 

there are three ways in which contradiction could be expressed in an experimental 

framework: inside TS, inside PS, and between theoretically predicted events in TS 

and the actual events taking place in PS, i.e. between expectations and the actual 

experimental outcomes.  

2.3 Examples of consistent experimental frameworks 

The extension of the concept introduced in Definition 2 from above is not the 

empty set: propositional logic is the formal theory that describes any logical 

circuit both as theoretical design ST and as implemented system SP. Given a 
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sequence of excitations in the input space, the corresponding outputs are formally 

provable in propositional logic (hence, accordingly to the formal theory of the 

system they are expected values) and practically observable. For a given input-

output relation, any two consistent experimental frameworks differ only by 

equivalent (interchangeable) logical circuits that support that input-output relation. 

Given an input-output relation and a trajectory (x,y)t in X×Y, output statistics is 

invariant along all consistent experimental frameworks that support that input-

output relation, and therefore, the possibility-probability relation is invariant.  
 

This example is also important for establishing two things, once for good: logical 

circuits are the most basic intelligent agents (where intelligence means Turing 

defined intelligence, i.e. the artificial intelligence provable by Turing tests) and 

secondly, in a Turing test, it is mandatory that the human agent to be qualified 

(besides being informed). Obviously, there is only one chance for the human agent 

to predict correctly all outputs of a logical circuit, namely to know propositional 

logic (besides knowing the circuit design). Otherwise, the results of a Turing test 

on a logical circuit are not relevant at all. On the other hand, the human or 

artificial agent that organizes the Turing test must be able to recognize intelligence 

regardless if is human intelligence or artificial intelligence. The true output is 

either certain and 1-probable or possible and p-probable (with p∈ (0,1)) or 

impossible and 0-probable for any logical circuit implementing a tautology / a 

contextual truth / a contradiction, respectively.  
 

A second example of consistent experimental frameworks can be built for any 

digital circuit in general, by analogy with the first example from above. We make 

this remark because, ultimately, a biometric system can be viewed today as a 

complex digital circuit.  

3 Imperfect experimental frameworks 

ξ and CEF are introduced exactly for ensuring that what is theoretically possible / 

probable / certain is also practically possible / probable / certain, respectively. On 

the other hand, ξ  and CEF allow us to study weakened models, when the 

weakening is made otherwise than changing the axioms within the definition of 

probability, for example. We do not have any clue that weakening probability 

axioms could prove to be maximally productive, because even in imperfect 

experimental frameworks the probability theory continues to function despite the 

adequacy of our beliefs and intentions. In other words, when a system evolves on 

and within measurable sets/spaces, we can ignore the probability theory if we 

prefer, but we cannot abolish it, simply because it is engraved/embedded within 

the structure of the space itself. Besides, we will illustrate further, how probability 

distribution functions (PDFs) and cumulative distribution functions (CDFs) 

appearing in biometrics (or anywhere else) can generate fuzzy membership 

functions easily, in more than a single way. Hence, adopting a fuzzy approach in a 
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given matter is not necessary equivalent with contradicting probability theory (by 

weakening some of its axioms). The major difference between our approach and 

[30] is that in ours, the classical possibility-probability relation (described above 

in terms of ξ  and CEF) stays unchanged while the experimental frameworks that 

we work with - despite being allowed to be imperfect - are not allowed to decay 

up to the abolition of probability theory.  

 

A first degree of imperfection illustrated here is when accurately implementing ST 

is practically impossible or technically and economically unfeasible. For example, 

when N is big enough, a preferable alternative for implementing N-dimensional 

dynamical systems with predefined input-output behavior is designing a simpler 

n-dimensional system (n<<N) that supports almost the same input-output behavior 

- a technique known as order reduction. However, in such case, the practical 

n−dimensional implementation SPn and the theoretical N-dimensional model STN 

are still highly cointensive, whereas the practical n-dimensional implementation 

SPn and the theoretical n-dimensional reduced model STn are still totally 

cointensive, and therefore, the classical possibility-probability relations (3), (4), 

(7), (8), (14) and (15) still hold true in the consistent experimental framework 

(X,R,Y,STn,ξ ) when ξ  is SPn based.  

3.1 Imperfect experimental frameworks in iris recognition 
 

One of the worst but still manageable (hence acceptable) degree of imperfection is 

when the required (target) input-output (i-o) behavior is known as being possible, 

but all practical implementations SP attempted up to some point for mimicking the 

target i-o behavior are almost failed resulting in practical i-o behaviors that are 

very different from the target i-o behavior. This is currently the case of all iris 

recognition results and biometric systems belonging to the statistical paradigm 

pioneered by Daugman [3], [4]. The target i-o behavior assigned to an a priori 

unknown target system ST that the user intends to design (proved possible by 

interrogating a qualified human agent during a Turing test while using good 

quality eye images) can be statistically illustrated as a 0-1 histogram of correct 

biometric decisions (0 - for identifying a pair of iris images taken for different 

eyes, 1 - for identifying a pair of iris images taken for the same eye), as in 

Figure 1, whereas the i-o behavior of implemented system is statistically 

illustrated in Figure 2. As exemplified in Figure 1 and Figure 2, plotting the 

statistics of the results recorded in a Turing test is a way of visually quantifying 

the loss in precision occurred for the implemented system in comparison with the 

target i-o behavior. The lack of cointension between target i-o behavior and 

implemented i-o behavior is obvious. Figure 1 illustrates a logically consistent, 

crisp, artificial and binary understanding (logical, crisp, binary and lossless 

human-precisiation of meaning) for two concepts whose extension are not just 

disjoint but complementary in the input space of the recognition system: ‘imposter 

pairs’ (IP) and ‘genuine pairs’ (GP). Figure 2 illustrates a lossy compression of the 

original meaning of the two concepts, a fuzzy artificial perception and a fuzzy 
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machine-precisiation of meaning for the two original human-precisiated concepts. 

The artificially perceived fuzzy concepts (further denoted as f-IP and f-GP or as f-

imposter and f-genuine) are no longer disjoint. There are pairs of irides qualifying 

simultaneously and equally as f-genuine and f-imposter pairs, while others qualify 

ambiguously but with different probabilities. A better situation in terms of 

cointension can be observed by comparing Figure 1 from here to Figure 2 from 

[19], Figure 4 from [20] and Figure 5 from [22]. 
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Figure 1   
Human-precisiation of iris recognition: PDFs 

corresponding to the correct biometric 

decisions given by a qualified human agent 
during a Turing test of iris recognition 

(diamond for imposter pairs, square for 

genuine pairs) 
 

Figure 2   
Machine-precisiation of iris recognition: 

PDFs of the imposter scores (diamond) and 

genuine scores (square) collected during a 
Turing test of iris recognition while 

interrogating an artificial agent implementig 

statistical iris recognition.  
 

The imperfection of such an experimental framework illustrated in Figure 1 and 

Figure 2 is further commented in terms of possibility-probability relation: in 

theoretical target system corresponding to Figure 1 the confusion between an 

imposter and a genuine pair is impossible, whereas in the implemented system it is 

possible, indeed. Forcing the correct recognition of all imposter pairs within the 

implemented system comes at the price of not recognizing correctly all genuine 

pairs. This trade-off is inherent in classical statistical iris recognition. Therefore, 

despite the original concepts consistently support negation, the fuzzy concepts f-IP 

and f-GP cannot be consistently negated.  
 

The consistent experimental frameworks are contexts in which the cointension 

between a target formal theory and the actual implemented system transports 

probability-possibility relation between theory and practice in the same manner in 

which continuity transports convergence from the argument space to the image 

space in the framework of topology. On the contrary, in the imperfect 

experimental frameworks the cointension between theory and practice (or between 

target and implemented system) can be so weak that even theoretically but still 

logically impossible events could appear as practically probable (hence practically 

possible). However, the fact that cointension is weak enough and consequently 

unable to establish a consistent bridge between what is practically probable and 

theoretically possible does not mean that the possibility-probability relation is 
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broken inside the set of events concerning the implemented system alone: 

confusion between the two artificially perceived concepts (imposter and genuine 

pairs) is practically p-probable (1>p>0) and therefore practically possible. On the 

other hand, when logical inconsistency gets its place inside an imperfect 

experimental framework, the right contra-measure to take is attempting to recover 

logical consistency, not attempting to redefine possibility-probability relation, 

because otherwise, contradiction being explosive, sooner or later, anything can be 

proved and some logically impossible events could appear as proved/supported by 

“experimental evidence” to be probable (hence possible) events. In short, when it 

comes to test or to design systems in imperfect experimental frameworks, there is 

no sound argument to extrapolate experimental evidence to expectations for real 

life without precautions, regardless if the channel on which the extrapolation is 

made is possibility-to-probability or possibility-to-fuzzy membership relation.  

3.2 A possibility – probability – fuzzy membership relation 

for Gaussian events 

The most important aspect revealed by the comparison between Figure 1 and 

Figure 2 is the lack of cointension between what is maximally achievable 

(Figure 1) and what is currently achieved in implementation (Figure 2). The 

relation between what is theoretically possible and practically probable is broken, 

whereas the relation between what is practically possible and practically probable 

still stays consistent. Translating probability to fuzzy membership is possible in 

many ways. However, this operation is closed in the semantics of implemented 

system, is an operation whose result is at most an equivalent of some facts already 

known, i.e. it is at most a rule for rewriting known facts, not an attempt to improve 

the actual implemented system. Regardless the way chosen to express fuzzy 

membership based on statistics of experimental data, in the absence of 

cointension, there is no instrument to carry this information back and forth 

between theory and practice. Besides, as the following example illustrates, forcing 

the meaning of the data to conform to a pattern that it is not really exhibited as an 

observable behavior, inevitably brings more inconsistency to an already imperfect 

experimental framework. In short, interpreting the experimental data does not 

solve the problems, but only point out to them.  
 

Since in the case investigated here, the errors are inherent to the implemented 

system (Figure 2), computing right-to-left CDF under the imposter distribution 

(FAR - False Accept Rate, diamond markers in Figure 3 and Figure 4) and left-to-

right CDF under the genuine distribution (FRR - False Reject Rate, square 

markers in Figure 3 and Figure 4) define a way of interpreting fuzzy membership 

of the recognition scores obtained by the input iris pairs to two fuzzy sets 

corresponding to the two artificially perceived concepts f-imposter and f-genuine 

scores (see Figure 3 and Figure 4). However, according to this interpretation, 0 is 

an imposter score (a convenable interpretation, given the target behavior in 

Figure 1), fact that is neither confirmed experimentally (Figure 2) nor confirmed 
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theoretically in statistical iris recognition. Moreover, the means of the two 

Gaussian variables in Figure 2 have the degrees of membership to the fuzzy sets f-

imposter and f-genuine scores expressed as 0.5, which is clearly counter-intuitive, 

the mean being the most representative sample of a Gaussian signal.  
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Figure 3   

Machine-precisiation of statistical iris 
recognition: False Accept Rate (FAR, 

diamond markers) and False Reject Rate 

(square markers) represented with liniear y 
coordinate; zoom to membership degrees that 

the means of the two Gaussians (Figure 2) 

have in f-imposter and f-genuine fuzzy sets.  
 

Figure 4   
Machine-precisiation of statistical iris 
recognition: False Accept Rate (FAR, 

diamond markers) and False Reject Rate 

(square markers) represented with logarithmic 
y coordinate - zoom to the Equal Error Point 

(indicated above by the continuous horizontal 

line situated slightly under 1E-2).  
 

Experimental data can be interpreted using fuzzy if-then rules. For example, the 

ensemble of fuzzy if-then rules producing the fuzzy-membership assignments 

represented in Figure 3 as FAR and FRR curves is the following:  

- fewer successors a score has within the imposter distribution, weaker its 

degree of membership to f-imposter fuzzy set is; 

- fewer predecessors a score has within the genuine distribution, weaker its 

degree of membership to f-genuine fuzzy set is; 

However, the same interpretation can easily fail in contradiction or in counter-

intuitive facts, as illustrated above.  

A different interpretation of experimental data can be made accordingly to the 

following ensemble of fuzzy if-then rules, which is better suited for describing 

Figure 2 (probability) in terms of fuzzy membership as in Figure 5:  

- for scores situated on the right/left side of the mean, fewer successors / 

predecessors a score has within the (imposter or genuine) distribution, weaker 

its degree of membership to the corresponding fuzzy set (f-imposter or f-

genuine) is; 

- recognition score equals to the mean of (imposter or genuine) distribution has 

unitary membership degree with respect to the corresponding fuzzy set (f-

imposter or f-genuine); 
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Figure 5  

Machine-precisiation of statistical iris recognition: fuzzy membership assignment of the 

recognition scores obtained experimentally and represented in Figure 2 as the two fuzzy sets f-

imposter (diamond markers) and to f-genuine (square markers).  

Given the symmetry of Gaussian variables, the fuzzy membership function should 

also be symmetric. For any given distribution and any given score from Figure 2 

there is a pair of left- and right-side cumulatives under that distribution and the 

sub-unitary ratio of these two cumulatives is a plausible fuzzy membership 

assignment of the given score to the corresponding fuzzy set (f-imposter or f-

genuine) that satisfies the two fuzzy if-then rules from above. Fuzzy membership 

functions constructed this way are illustrated in Figure 5, which represents a fuzzy 

decisional model associated to the statistics of experimental data within Figure 2. 

This second interpretation of the experimental data within Figure 2 is better that 

the previous one (illustrated in Figure 3 and Figure 4) at least for three reasons: 

the means are scored with a unitary degree of membership, membership is not 

arbitrarily extended to scores that are not obtained experimentally, and at last, but 

not the least, the abscise of the Equal Error Point is preserved from Figure 4 to 

Figure 5 (i.e. the point of equal error expressed in Figure 5 in terms of fuzzy 

memberships corresponds exactly to the point of equal error expressed in Figure 4 

in statistical terms of FAR and FRR).  
 

Summarizing, even in imperfect experimental frameworks, iris recognition 

experimental results can be expressed in terms of practical possibility - probability 

- fuzzy membership on the experimental side of the framework, because a 

recognition event ‘es’ with a given score ‘s’ recorded experimentally (in Figure 2) 

is practically possible, practically probable and maps the input pair into the two 

fuzzy sets f-imposter through the fuzzy membership assignment illustrated in 

Figure 5. However, in an imperfect experimental framework there are at least two 

unsolved problems: 
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- the formal logic involving experimentally recorded recognition events is 

contextual and temporal because all true sentences that can be derived on the 

experimental side of the framework are true at some specific time, in some specific 

case, accordingly to a specific experiment, accordingly to specific experimental 

data. This situation emphasizes the importance of condition (9) within the 

Definition 1. 

- the huge difference between what is achievable (in human-precisiated iris 

recognition Figure 1) and what is achieved (in machine-precisiated statistical iris 

recognition, Figure 2, Figure 5), a gap that can be filled through creativity only, 

not through interpretation.  
 

On the other hand, Gaussian events that vanish at some left- and right-side points 

(for example, the recognition of imposter pairs in statistical iris recognition and 

the corresponding Gaussian distributed numbers) define specific fuzzy sets as 

follows: if sg / eg is a Gaussian distributed number / event vanishing at some left 

and right points, its membership to any continuous or (discretized) interval 

considered within the vanishing left and right limits can be expressed as a fuzzy 

degree of membership (Figure 2, Figure 5):  

FM(sg) = min(LC(sg)/RC(sg), RC(sg)/LC(sg)), (17) 

where LC(sg) and RC(sg) are the left- and right-side cumulatives under the given 

Gaussian distribution to the left and right vanishing points, respectively. 

3.3 Natural fuzzification of a continuous distribution 

Theorem 1: For any 1-dimensional, real-valued random variable s that is 

continuously distributed on a real interval and vanishes at some left and right 

points, the fuzzy membership FM defined in formula (17) is bounded in [0,1] and 

has a single global maximum point sM for which FM(sM)=1;  
 

Proof: When thinking at the upper bound of FM, the most favorable situation is 

for that point sM where the right-side cumulative equals the left-side cumulative. 

Indeed, if such point sM exists, FM(sM)=1. Since the left-side cumulative on the 

given continuous distribution computed in the current point s with respect to the 

left vanishing point increases with s and since the value of the left-side cumulative 

evolves continuously between 0 and 1, the point sM exists and it is defined by the 

abscise where the left-side and right-side cumulatives are equal to 0.5. Hence, FM 

has upper bound that is also its maximum value 1. Given the definition (17), FM 

strictly increases with s - when s is between left-side vanishing point and sM, and 

strictly decreases with s - when s is between sM and the right-side vanishing point 

of the given distribution, hence, (sM, 1) is the only local and global maximum 

point of FM, whereas its lower bound is given by the values of FM in the left and 

right vanishing points of the distribution, namely zero.  
 

Formula (17) establishes the degree of fuzzy membership (FM) as being the most 

pessimistic degree of interiority that sg has with respect to the left and right 
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vanishing points of the distribution. FM is bounded between 0 and 1, and has 

always a single maximum point. In the case of Gaussian events, this maximum 

point corresponds to the mean and is the first point around which long enough 

experiments throws enough neighboring values such that to emulate topological 

density in a given precision (a property that does not hold true for bimodal 

Gaussian distributed numbers – for example).  

Searching for the right context in which the relation between possibility, 

probability and fuzzy membership can be consistently expressed for the particular 

case of experimentally obtained iris recognition results brought us inevitably to a 

natural (canonic) and universal fuzzification procedure available for an entire 

class of continuous distributions, for which the formula (17) is formally correct (is 

actually making sense) due to Riemann integrability of all continuous 

distributions. Formula (17) is a meeting point where classical logic, modal logic, 

fuzzy logic, probability theory, measure theory, system theory and topology shake 

their hands explaining consistently the complex but natural provability – 

observability / reachability - possibility - probability - fuzzy membership - 

integrability relation without pointing out to a need for weakening the 

σ −additivity condition within the definition of probability up to the formula (2). 

The σ −additivity condition is actually the true principle of possibility-probability 

consistency. Conversely, not any fuzzy membership assignment that we would 

wish to operate with can be consistently mapped onto a continuous distribution, 

especially when it is not compatible with the σ −additivity condition and 

consequently, the interpretation given by such fuzzy membership assignments can 

be neither confirmed nor infirmed by measurable experiments (organized in 

consistent experimental frameworks). Therefore, the reader should figure out if 

using such fuzzy membership assignments in connection with measurable things 

and spaces is a matter of excessive oratorical talent or a matter of logic and sound 

science.  

3.4 The future of statistics and fuzzy logic 

In the context of measurable spaces and consistent experimental frameworks, the 

σ −additivity condition ensures that the answer to the question “is there a need of 

fuzzy logic?” (Zadeh, [31]) is “yes, in the same degree in which there is a need for 

statistics, classical logic, modal logic, system theory, measure theory and 

topology”. Otherwise, operating fuzzy logic while weakening σ −additivity 

condition results in a contradiction, namely the finding of a hypothetically 

consistent way (science/theory) of quantifying things that by their nature are not 

theoretically (mathematically) measurable and practically (physically / 

experimentally) measurable, a theory that unfortunately, cannot be confirmed with 

instruments of statistics, classical logic, modal logic, system theory, measure 

theory and topology. On the contrary, formula (17) shows there is at least one way 

of consistently expressing an agreement point for all these sciences/theories 
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(including fuzzy logic) while maintaining σ −additivity condition. The lack of 

interconnection between probability theory and fuzzy logic evidenced here when 

fuzzy logic accepts the weakening of theσ −additivity condition is just the small 

empty part of a bottle of very old wine: given the huge diversity of fuzzy 

membership assignments and the natural parity that exists between at least a part 

of them and the continuous distributions, a real explosion of new probability 

distribution models is expected to happen in the years to come, marking a point 

from where fuzzy logic and statistics will further develop side-by-side exactly 

because of the bridge established in between them by the σ −additivity condition.  

3.5 Negation of fuzzy membership 

As far as we know, expressing probable events (like those represented in Figure 2) 

as fuzzy membership (Figure 5) is a matter of interpretation, a matter of rewriting 

some facts from a dialect of statistics to a dialect of fuzzy logic using a rewriting 

rule, for example formula (17) – in our specific case considered here. Therefore, 

in this context, the negation operates at a semantic level: for example, if 0.5 is 

interpreted as a certain imposter score - and this interpretation is allowed by 

formula (17) because FM(0.5)=1 (despite the fact that the statistics of 

experimental data says nothing more than 0.5 score is the most probable imposter 

score), then logically, should be impossible for the same 0.5 score to be 

interpreted as a genuine score, fact that is indeed true, despite some false 

appearances in Figure 2 and Figure 5. Indeed, the index of genuine pairs can be 

intoxicated accidentally by wrong segmentation results or by the impossibility that 

the implemented recognition system to deal successfully with the variability of 

acquired iris instances. This is also another facet of the imperfect experimental 

frameworks where the job of solving apparently conflicting information obtained 

through interpretation of experimental data must be done carefully by a qualified 

human operator / system administrator.  

3.6 Blind negation of fuzzy membership 

If no attention is given to the semantic of actually implemented system and to the 

actual input-output relation, negation can be made by applying fuzzy complement 

[29]. For example, if FM is defined by (17) as the fuzzy membership of all scores 

within [0,1] interval with respect to the imposter distribution, 1-FM is a 

complementary fuzzy membership assignment defining a sort of negation in 

which a single element within [0,1] interval is certainly a non-imposter score, 

namely 0.5 – the mean of the imposter distribution. This fact is, of course, 

counter-intuitive with respect to the practical problem. Besides, we are talking 

again about many values situated outside the set of experimentally observed 

imposter scores. This operation is meaningless with respect to the actual 

implemented system. This is why we called this sort of negation, blind negation.  
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On the contrary, if we remember that negation by complement should have a 

meaning with respect to the practical problem (implemented system) and should 

make a real sense inside the set of reachable scores, the situation changes 

completely: since f-imposter and f-genuine are two fuzzy granules covering the set 

of reachable scores, the assertion ‘s is an f-imposter score’ means accordingly to 

the actual experimental data that s is the Gaussian distributed number as illustrated 

in Figure 2 (i.e. is 0.5 with maximal probability, 0.51 with other probability and so 

on) whereas its negation should be ‘s is an f-genuine score’ whose interpretation 

should be derived by analogy from the previous one.  

4 Negation in biometrics 

The important remark to make here is that since the fuzzy membership assignment 

is an interpretation of data, there is not a unique way of negating it, as already 

exemplified above. Even at this stage it is not capitally important to find a 

negation operator meaningful with respect to the practical problem, we will try 

this in a future paper, eventually. Bell that saved us this time is the fact that the 

final stage in obtaining a practicable crisp decisional model from the fuzzy model 

within Figure 5 is defuzzification of f-imposter and f-genuine fuzzy sets to 

classical disjoint intervals labeled ‘imposter’ and ‘genuine’ and partitioning [0,1] 

interval.  

4.1 Negation as a Boolean algebraic operator  

After defuzzification, the Boolean logic of recognition can be expressed through 

isomorphism with the Boolean algebra generated by the empty set, [0,1] interval 

and the two intervals ‘imposter’ and ‘genuine’, whereas negation is simply a 

transcript of complement operation within this Boolean algebra. This is a way of 

implementing a binary recognition function and a binary decisional model for 

biometrics, a model in which the recognition error rates are hopefully stationary 

(there is no proof for that, whereas increased recognition errors over time is 

already documented under the wrong name of “template ageing” (critical analyses 

of this concept can be found also in [6] and [9]). A ternary recognition function 

and a ternary decisional model for biometrics is obtained if the two intervals 

‘imposter’ and ‘genuine’ are separated by a third one labeled ‘uncertain’ and 

covering ambiguous score values. 
 

By investigating the consistency of the concepts of “template ageing” and 

“biometric menagerie” [12], [23] we found an improved quinary recognition 

function and a quinary decisional model for iris biometrics, which is obtained 

while practicing iris recognition on intelligent iris verifier systems with stored 

digital identities [22]. In such systems, it is possible that the lowest scores are 
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imposter scores, followed by a class of degraded imposter scores obtained by 

dishonest users when claiming (actively hunting) different identities than they 

actually have (hyena), followed by a class of uncertain scores centered in 0.5, and 

further to the right by a class of degraded genuine scores (goats). The rightmost 

class is that of genuine scores. All of these models are illustrated in Figure 6, 

whereas the binary and the ternary models are applicable also for classical 

statistical iris recognition (Figure 2, Figure 5).  
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Figure 6  

A better machine-precisiation of statistical iris recognition with distant imposter and genuine 

score classes; From top to bottom: binary, ternary, respectively quinary decisional models.  
 

For all decisional models within Figure 6, negation is expressed within a Boolean 

logic induced by a partial power set Boolean algebra (in a similar manner as that 

described in [21]): the negation of the assertion ‘s is an impostor score’ is 

intuitively and naturally expressed as ‘s is either hyena, or uncertain, or goat, or 

genuine score’, for example. This is why we did not insist on finding the negation 

operator in the previous step (prior to defuzzification). Besides, between an 

interpretation and a Boolean logic, the latter is clearly the appropriate context of 

negation.  

4.2 Strong negation in biometrics 

Blind negation of fuzzy membership by fuzzy complement (see section 3.6) is a 

negation practiced in the codomain of the fuzzy membership function. On the 

contrary, the negation by complement applied to individual recognition scores s,  

N(s) = 1-s, (18) 

acts in the domain of that fuzzy membership function. The negation N in (18) 

satisfies boundary condition N(0)=1, is continuous, involutive and decreasing with 
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respect to the score s, hence it is a strong negation [7], as all instances of Sugeno 

λ - complement [26], [32]. The effect of this negation is a rewriting of all 

recognition results from terms of similarity (proximity) in terms of non-similarity 

(distance). For example, applying the strong negation (18) for all available 

Hamming distance scores, expresses the same experimental results in terms of 

Hamming similarity (the complement of Hamming distance) and vice versa.  

Graphically, the effect of this negation is that the score distributions are all 

symmetrized against the vertical pointing in 0.5, regardless how many they are (2, 

3 or 5). Hence, strong negation on all recognition scores has a meaningful effect 

with respect to the practical problem of recognition. However, the appropriate 

context of applying it is prior to defuzzification. After defuzzification, depending 

on the number of values chosen for the recognition function, the decisional model 

is still binary, ternary or quinary, but the order of the intervals reverses: genuine, 

imposter – for the binary case, genuine, uncertain, imposter – for the ternary case, 

and finally, genuine, goat, uncertain, hyena, imposter – for the quinary case.  

Conclusions 

This paper proposed a new formalization of the classical probability-possibility 

relation, which was further confirmed as a much complex, but natural relation 

between provability, observability, reachability, possibility, probability, fuzzy 

membership and Riemann integrability. Searching for the right context in which 

this relation can be consistently expressed for the particular case of experimentally 

obtained iris recognition results brought us inevitably to a natural (canonic) and 

universal fuzzification procedure - formula (17) - available for an entire class of 

continuously distributed random numbers, as a confluence point of statistics, 

classical logic, modal logic, system theory, measure theory and topology. The 

applications were initially intended for iris recognition scenarios and can be easily 

extrapolated anywhere else where there is a need of expressing the relation 

possibility - probability - fuzzy membership without weakening the σ -additivity 

condition within the definition of probability, which as this paper suggested is 

actually the true principle of consistent possibility-probability translation. . 
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