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1 Óbuda University, John von Neumann Faculty of Informatics, Institute of Applied
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1 Introduction

The reliability equivalence has been introduced by Råde [9], who developed this
concept to improve the reliability of various systems [10]. Following Sarhan [11]
and Xia and Zhang [18], the reliability equivalence factor (REF) is a factor by which
the failure rates of some of the system’s components should be reduced in order to
reach equality of the reliability of another better system.
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Detailed account and numerous unification of Råde’s ideas can be found in Sarhan’s
articles [11, 12, 13, 14]. He studied among others the reliability of composite,
i.i.d. series/parallel systems decreasing their failure rates, and using hot-, and cold–
duplication. Also, he considered parameter estimation in composite systems and
related questions (mainly when the life distribution of components is exponential)
as well, consult Sarhan’s cited articles and the references therein.

Råde discussed three different methods to improve the systems reliability: 1. Im-
proving the quality of r ≤ n components by decreasing their hazard rates; 2. adding
a hot component to the system, and 3. adding a cold (redundant) component to the
system [9, 10].

Following Råde’s traces Sarhan [12] has introduced more general methods in sys-
tems reliability improvement either modifying the method 1. by introducing a re-
duction coefficient ρ ∈ (0,1); or completing the system by cold redundant standby
components connected with some components by perfect random switches. Both
authors considered components having exponential life distributions.

Finally, we point out some recent exceptions, e.g. the work by Xia and Zhang
[18], where the improvement of the reliability of the parallel system of gamma–
distributed components is considered in both hot–, and cold–duplication manner,
and the very recent article [8] by Pogány et al. in which the authors show that the
reduction method is actually not punctually superior to the classical Hot duplication
method in series and parallel composite systems which components are gamma–
Weibull distributed.

The hazard rate is constant only for exponential life distribution; the gamma–distri-
bution has a functional hazard rate. So, Sarhan’s results concerning the in parallel
connected systems having exponential distribution are generalized in [18] taking in-
stead of exponential distribution its generalization such as the gamma–distribution.
In the same time Xia and Zhang unify mutatis mutandis the concept of REF.

At this point we introduce a new concept, reads as follows: The survival equivalence
function (SEF) is a function by which the survival function of the considered system
has to be multiplied in order to reach pointwise equality of the survival function of
another better system.

In this article we obtain the SEF in general case, when each component’s life distri-
bution is described by a r.v. ξ having distribution function Fθ (x). The systems are
distinguished by their components connection topology: (i) (S) with independent
identical components (i.i.c.) in series connected, and (ii) (P) which components are
connected in parallel.

Composite system SEFs are obtained when the systems consist from i.i.c. possess-
ing gamma–Weibull gW (θ) life–distribution which has been intensively studied by
Leipnik and Pearce [4], Nadarajah and Kotz [6] and Pogány and Saxena [7]. Param-
eter estimation in Weibull models can be seen in [2].

Since the case of Hot Duplication was already discussed in detail in [8], we concen-
trate to the Cold Duplication case, comparing them by the reduction method applied
simultaneously to the same size composite system having identical topology.
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2 Survival functions of composite systems

In this section of introductionary character following mainly the notations used in
[8], we recall in short the basic probabilistic notations, concepts and tools we will
need frequently in the sequel.

Let ξ be a random variable defined over a standard probability space (Ω,F,P) with
the cumulative distribution function (CDF) Fθ (x)=P{ξ < x}, x∈R where θ stands
for the parameter vector. The related reliability function

Rθ (x) = P{ξ ≥ x}= 1−Fθ (x)
(
x ∈ R

)
.

Let us consider for the sake of simplicity a system (S) consisting of n i.i.c. con-
nected in series. The lifetime of any component is assumed to be a r.v. ξ having
the cumulative distribution function Fθ (x). Taking n independent replicæ of ξ , the
survival function, i.e. the common reliability function RS of the composite system
becomes

Sθ ,S(x) =
[
Rθ (x)

]n
=
[
1−Fθ (x)

]n
. (1)

However, in the case of parallel system (P) of n i.i.c. the related survival function

Sθ ,P(x) = 1−
[
1−Rθ (x)

]n
= 1−

[
Fθ (x)

]n
. (2)

Hence, it can be easily seen that we can express the both survival functions Rθ ,B(x),
B ∈ {S,P} either in therms of the reliability function Rθ of a consisting component,
or in therms of the probability distribution function Fθ , and of the system’s com-
ponents number n. Finally, we point out that a reliability function is of bounded
variation (Rθ (−∞) = 1,Rθ (∞) = 0), monotone non-increasing and left–continuous.
Any such function Rθ possesses a generalized inverse

R?(y) := inf{x : Rθ (x)≥ y}
(
0≤ y < 1

)
.

More precisely, if Rθ is strong monotone, then R? ≡ R−1
θ

in the usual sense. Recall,
that in reliability theory it is convenient to consider r.v. ξ such that Rθ (x)≤ 1 only
for x > 0, equivalently supp

(
Fθ ) = supp

(
1−Rθ

)
= R+

1.

Finally, let as denote the SEF by r(x). According to the defintion of SEF, it will be

rD
B (x)Sθ ,B(x) = S D

θ ,B(x)
(
B ∈ {S,P}

)
,

where S D
θ ,B(x) denotes the survival function of a better, more reliable system, where

the superscript D will be fixed later.

1 The support of some g coincides with the set supp
(
g) = {x : g(x)}, where bar means

closure.
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2.1 Reduction method

Let us consider the systems (S),(P) such that become (Sr),(Pr) by improving r, 1≤
r ≤ n of its components assuming that their reliability is enlarged using

Rθ (ρx)
(
ρ ∈ (0,1)

)
instead of the original reliability Rθ (x) 2. The associated survival functions are:

S
ρ

θ ,Sr
(x) =

[
Rθ (ρx)

]r[Rθ (x)
]n−r

,

S
ρ

θ ,Pr
(x) = 1−

[
1−Rθ (ρx)

]r[1−Rθ (x)
]n−r

.

The multiplication of the original survival functions (1), (2) by SEF reduces r argu-
ments in the product to ρx,ρ ∈ (0,1). By definition of the SEF we have

rρ

Sr
(x) =

[
Rθ (ρx)
Rθ (x)

]r

,

rρ

Pr
(x) =

1− [1−Rθ (ρx)]r[1−Rθ (x)]n−r

1− [1−Rθ (x)]n
.

Choosing some convenient ρ ∈ (0,1), r ∈ {1, · · · ,n} we can work with exact SEF
functions such that are associated with the reduction method.

2.2 Cold duplication method

We improve p, 1 ≤ p ≤ n components by cold duplication method, i.e. p standby
components are connected in parallel by an identical one with a perfect switch get-
ting (SC

p), (P
C
p). We can express the survival function R(1)

θ
(x) of the connected work-

ing↔ standby components pair by the autoconvolution of Rθ (x), i.e.

R(1)
θ
(x) = 1−Fθ ∗Fθ (x) = 1−

∫
R

Fθ (x− t)dFθ (t) =−
∫ x

0
Rθ (x− t)dRθ (t) ,

being Rθ (x) = 0 for negative values of the argument, where ∗ denotes the convo-
lution operator to CDFs, id est to reliability functions as well. The corresponding
survival functions become

S C
θ ,Sp

(x) =
[
R(1)

θ
(x)
]p[Rθ (x)

]n−p

=

(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p [
Rθ (x)

]n−p
,

S C
θ ,Pp

(x) = 1−
[
R(1)

θ
(x)
]p[1−Rθ (x)

]n−p

= 1−

(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p[
1−Rθ (x)

]n−p
.

2 Being Rθ ↓ monotone nonincreasing, the concept needs only a new technological sup-
port, the introduced mathematical model is indeed well defined.
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Now, we equalize the reliabilities of the improved system, obtained by the reduction
method from one, and the cold duplication method from the other hand. Thus

S
ρ

θ ,Sr
(x) = S C

θ ,Sp
(x) ;

this equation reduces to

Rθ (ρx) =
[
Rθ (x)

]1−p/r

(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p/r

. (3)

This equation possesses solution only when the right–hand expression in (3) is less
then 1. Since Rθ (·)≤ 1, we conclude

−
∫ x

0
Rθ (x− t)dRθ (t) =

∫ x

0
Rθ (x− t)dFθ (t)

≤
∫ x

0
dFθ (x) = Fθ (x) = 1−Rθ (x) ,

being Fθ left–continuous. Now, looking for the maximum of the function g̃(x) =
x1−p/r(1− x), x ∈ (0,1) we have

g̃(p/r) := max
0<x<1

g̃(x) = g
( r− p

2r− p

)
=

(1− p/r)1−p/r

(2− p/r)2−p/r

(
p≤ r

)
.

Obviously g̃(p/r)≤ 1, so does a fortiori the right–side expression in the display (3).
But this means p≤ r. Hence, we have to incorporate the condition p≤ r throughout.

Finally, we get the pointwise survival equivalence factor related to Sr:

ρ
C
S = x−1R?

[[
Rθ (x)

]1−p/r

(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p/r]
. (4)

Solving now the equation S
ρ

θ ,Pr
(x) = S C

θ ,Pp
(x) by a similar procedure we arrive at

ρ
C
P = x−1R?

[
1−
[
1−Rθ (x)

]1−p/r

(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p/r]
, (5)

which presents the pointwise factor related to parallel system Pr.

Theorem 1. The pointwise cold–duplication SEF associated to n i.i.c. series com-
posite system (SC

p), p≤ r is given by

rC
Sr(x) =

[
Rθ (ρ

C
S x)

Rθ (x)

]r

.

The factor ρC
S is presented in the display (4).

The pointwise cold–duplication SEF corresponding to parallel system (PC
p) is

rC
Pr(x) =

1− [1−Rθ (ρ
C
Px)]r[1−Rθ (x)]n−r

1− [1−Rθ (x)]n

where ρC
P one can express by (5) and p/r is unrestricted.
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Corollary 1.1. Let the distribution function Fθ be strong monotone. Then

rC
Sr(x) =

[
Rθ (x)

]−p
(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p (
p≤ r

)
,

rC
Pr(x) =

1− [1−Rθ (x)]n−p
(
−
∫ x

0
Rθ (x− t)dRθ (t)

)p

1− [1−Rθ (x)]n
.

The proof is based again on the existence of inverse R−1
θ

since the reliability function
Rθ = 1−Fθ is monotone by assumption.

3 gamma–Weibull distribution and related reliability
functions

Leipnik and Pearce [4] introduced recently a new distribution referred to as the
gamma–Weibull distribution (gW); in fact, they renormalize the multiplied densi-
ties of the gamma–, and the Weibull–distributions to give a new density function.
Nadarajah and Kotz [6] pointed out that it is enough to take four parameters to define
the gW (θ) distribution having probability density function (PDF)

fgW (x) = Kxα−1 exp
{
−µx−axκ

}
χ(0,∞)(x)

(
θ := (α,µ,a,κ)> 0

)
, (6)

where χA(x) denotes the characteristic function of the set A, i.e. χA(x) = 1, x ∈ A
and χA(x) = 0,x 6∈ A. So, in this case the r.v. ξ is said to have gW (θ) distribution,
such that we write ξ ∼ gW (θ).

Before we characterize the gW (θ)–distribution, we introduce certain notations and
results we need for the further exposition.

Here, and in what follows, pΨq denotes the Fox–Wright generalization of the hy-
pergeometric pFq function with p numerator and q denominator parameters, defined
by

pΨq

[
(a1,α1), · · · ,(ap,αp)

(b1,β1), · · · ,(bq,βq)

∣∣∣∣∣x
]
= pΨq

[
(ap,αp)

(bq,βq)

∣∣∣∣∣x
]

:=
∞

∑
m=0

∏
p
`=1 Γ

(
a`+α`m

)
∏

q
`=1 Γ

(
b`+β`m

) xm

m!
(7)

under the parameter constraint

α` ∈ R+, `= 1, p; β j ∈ R+, j = 1,q; 1+
q

∑
`=1

β`−
p

∑
j=1

α j > 0 (8)

for suitably bounded values of |x| in terms of Euler’s gamma function:

Γ(s) =
∫

∞

0
ts−1e−t dt

(
ℜ{s}> 0

)
.
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Figure 1
gamma–Weibull density functions fgW (x) with α = 3, µ = 3, a = 2; κ = 0.363 dashed line, κ = 1 solid
line and κ = 2 thin solid line.

We note that in (7) the empty product means unity see e.g. [17]. The upper incom-
plete gamma–function [3, 8.350 2.] reads as follows:

Γ(s,z) :=
∫

∞

z
ts−1e−t dt ; lim

z→0
Γ(s,z) = Γ(s) .

Replacing in series expansion (7) of pΨq all gamma–function terms by upper in-
complete gamma–function terms having identical second variables, we get the up-
per incomplete Fox–Wright Psi–Function firstly considered by Srivastava and the
first author [16]:

pψq

[
(a1,α1), · · · ,(ap,αp)

(b1,β1), · · · ,(bq,βq)

∣∣∣∣∣
Γ

(x,z)

]
= pψq

[
(ap,αp)

(bq,βq)

∣∣∣∣∣
Γ

(x,z)

]

=
∞

∑
m=0

∏
p
`=1 Γ

(
a`+α` m,z

)
∏

q
`=1 Γ

(
b`+β` m,z

) xm

m!
(
z≥ 0

)
for all parameters such that satisfy (8), that is for the parameter space

αk ∈ R+, k = 1, p; β j ∈ R+, j = 1,q; 1+
q

∑
k=1

β`−
p

∑
j=1

α j > 0 .

Subsequently, the normalizing constant K = K(θ) of the probability density func-
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tion (6) is [7, Eq. (9)]

K−1 = K−1(θ) =



µ−α
1Ψ0

[
(α,κ)

∣∣∣∣∣− a
µκ

]
0 < κ < 1

Γ(α)

(µ +a)α
κ = 1

1
κaα/κ

1Ψ0

[
(α/κ,1/κ)

∣∣∣∣∣− µ

a1/κ

]
κ > 1

, (9)

where 1Ψ0[·] stands for the so–called confluent complete Fox–Wright generalization
of the hypergeometric function, introduced via the series (7) above.

We only remark that in the case κ > 1 the reciprocal of the constant

K−1 = K−1(θ) =
∫

∞

0
xα−1 exp

{
−µx−axκ

}
dx

is obtainable by expanding e−µx into Maclaurin series, integrating termwise, then
summing up the resulting expression, while the case 0< κ < 1 we handle expanding
the term e−axκ

.

Finally, the remaining case κ = 1 coincides with the two–parameter gamma–distri-
bution; the approaching parameters are α and β = µ +a, [7].

Now, the reliability function RgW (x) of one–component, having gW (θ) life distri-
bution, related to the probability distribution function fgW (x) becomes

RgW (x) = χ(0,∞)(x)



1ψ0

[
(α,κ)

∣∣∣∣∣
Γ(
−aµ

−κ ,µx
)]

1Ψ0

[
(α,κ)

∣∣∣∣∣− a
µκ

] 0 < κ < 1

Γ
(
α,(µ +a)x

)
Γ(α)

κ = 1

1ψ0

[
(α/κ,1/κ)

∣∣∣∣∣
Γ(
−µa−1/κ ,axκ

)]

1Ψ0

[
(α/κ,1/κ)

∣∣∣∣∣− µ

a1/κ

] κ > 1

(10)

where 1ψ0 denotes the confluent upper incomplete Fox–Wright Psi–function, while
for x ≤ 0,Rθ (x) ≡ 1. Since x > 0 is understood, we omit to write χ(0,∞)(x) in the
sequel.
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In order to prove (10), let us assume κ > 1. Than we have

RgW (x) = K
∫

∞

x
tα−1e−µt−atκ

dt

= K
∞

∑
n=0

(−µ)n

n!

∫
∞

x
tα+n−1 exp

{
−atκ

}
dt

=
K

κaα/κ

∞

∑
n=0

(
−µ/a1/κ

)n

n!

∫
∞

axκ

y(α+n)/κ−1e−ydy

=
K

κaα/κ

∞

∑
n=0

Γ
(
(α +n)/κ, axκ

)
n!

(
− µ

a1/κ

)n
,

such that guarantees (10). In the case κ ∈ (0,1) we repeat the earlier procedure in
getting (9). The case κ = 1 is obvious.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 2
gamma–Weibull reliability functions RgW (x) with α = 3, µ = 3, a = 2; κ = 0.363 dashed line, κ = 1
solid line and κ = 2 thin solid line.

Theorem 2. Let us consider (S),(P) consisting from n i.i.c. such that have gW (θ)
life–distributions. Then the related survival functions have the form

SgW,S(x) =
[
RgW (x)

]n
SgW,P(x) = 1−

[
1−RgW (x)

]n
,

where RgW (x) is displayed in (10).

Proof. By (1), (2) we build easily the survival functions of systems (S),(P) apply-
ing n i.i.d. replicæ of a r.v. ξ ∼ gW (θ) such that describes the life–distribution of
all involved components.
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Remark 1. The pointwise SEF rH and survival equivalence factors ρH for both -
series and parallel composite systems are already given by Pogány et al. in [8]. �

Finally, it remains to expose the results upon the pointwise SEF rC and survival
equivalence factor ρC for the series and parallel composite systems, assuming 1 ≤
p ≤ n components are improved by cold–duplication method. At this moment the
need of new mathematical tool arises. Let us introduce the Srivastava–Daoust gen-
eralized Kampé de Fériet hypergeometric function in two variables [15, Eq. (2.1)]:

SA:B;B′
C:D;D′

 [
(a) : θ ,φ

]
:
[
(b) : ψ

]
; [(b′) : ψ ′][

(c) : δ ,ε
]

:
[
(d) : η

]
;
[
(d′) : η ′

]
∣∣∣∣∣ x

y



=
∞

∑
m,n=0

A
∏
j=1

Γ(a j +mθ j +nφ j)
B
∏
j=1

Γ(b j +mψ j)
B′

∏
j=1

Γ(b′j +nψ ′j)

C
∏
j=1

Γ(c j +mδ j +nε j)
D
∏
j=1

Γ(d j +mη j)
D′

∏
j=1

Γ(d′j +nη ′j)

xm yn

m!n!
(11)

where the coefficients θ1,φ1,ψ1,ψ
′
1,δ1,ε1,η1,η

′
1, · · · ,θA,φA,ψB,ψ

′
B′ ,δC,εC,ηD,η

′
D′

are real and positive and (a) denotes a sequence of A parameters a1, · · · ,aA. The
convergence of (11) is ensured for

1+
C

∑
j=1

δ j +
D

∑
j=1

η j−
A

∑
j=1

θ j−
B

∑
j=1

ψ j > 0

1+
C

∑
j=1

ε j +
D

∑
j=1

η
′
j−

A

∑
j=1

φ j−
B

∑
j=1

ψ
′
j > 0 .

In the cold duplication method the reliability of two in parallel connected identical
components has to be determined when one of them is active and the other one is
standby. Assume that both of them possess gW (θ) life–distribution. We calculate
the related PDF ϕ(x) using the autoconvolution of the input gW (θ) density (6). So,
we have

ϕ(x) =
∫
R

f (x− t) f (t)dt = K2e−µx
∫ x

0
[t(x− t)]α−1e−a[(x−t)κ+tκ ] dt

= K2e−µxx2α−1
∫ 1

0
[t(1− t)]2α−1e−axκ [(tκ+(1−t)κ ]dt

= K2e−µxx2α−1
∞

∑
m=0

∞

∑
n=0

(−axκ)m+n

m!n!

∫ 1

0
tκm+α−1(1− t)κn+α−1dt

= K2e−µxx2α−1
∞

∑
m=0

∞

∑
n=0

Γ(κm+α)Γ(κn+α)

Γ
(
κ(m+n)+2α)

) (−axκ)m+n

m!n!

= K2e−µxx2α−1 S0:1;1
1:0;0

 − : [α : κ] ; [α : κ][
2α : κ,κ

]
: − ;−

∣∣∣∣∣ −axκ

−axκ

 . (12)

Of course, for x≤ 0, the density ϕ(x) terminates. Using (9) and (12) we build easily
the PDF, the associated CDF and the related reliability function of the sum ξ +η of
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two i.i.d. r.v.’s having gW (θ) distribution. Indeed, the distribution function becomes

Φ(x) = K2
∫ x

0
e−µtt2α−1 S0:1;1

1:0;0

 − : [α : κ] ; [α : κ][
2α : κ,κ

]
: − ;−

∣∣∣∣∣ −atκ

−atκ

 dt , (13)

therefore, taking the above introduced setting, the reliability function of the switched
active↔ standby component–couple will be

R(1)
gW (x) = K2

∫
∞

x
e−µtt2α−1 S0:1;1

1:0;0

 − : [α : κ] ; [α : κ][
2α : κ,κ

]
: − ;−

∣∣∣∣∣ −atκ

−atκ

 dt , (14)

remarking that in both last relations x≥ 0, while for x < 0, Φ(x) = 1−R(1)
gW (x)≡ 0.

By these facts we prove our next principal result.

Theorem 3. Let n components, having gW (θ),θ = (α,µ,a,κ) > 0 life distribu-
tions, be connected in series forming a composite system (S), and connected in
parallel to form a composite system (P). Improving the pointwise reliability of
1≤ r ≤ n components by reduction method and by cold–duplication 1≤ p≤ n, the
associated pointwise SEF rC

A(x|gW ) and the related pointwise survival equivalence
factors ρC

A,gW , A ∈ {S,P} are given by

rC
S(x|gW ) =

[
RgW (xρC

S,gW )

RgW (x)

]p

,

ρ
C
S,gW = x−1R−1

gW

([
RgW (x)

]1−p/r[R(1)
gW (x)

]p/r
)

;

rC
P(x|gW ) =

1− [1−Rgw(xρC
P,gW )]p[1−RgW (x)]n−p

1− [1−RgW (x)]n
,

ρ
C
P,gW = x−1R−1

gW

(
1−
[
1−RgW (x)

]1−p/r[R(1)
gW (x)

]p/r
)

(x > 0) .

Here RgW (x) is given in (10) and R−1
gW is its inverse RgW ; while R(1)

gW (x), the reliabili-
ty function of working ↔ standby cold–duplication components pair, is given by
(14).

4 Estimating ρC close to the origin

The building blocks of the reliability functions RgW and R(1)
gW , that is for the survival

functions SgW,S,SgW,P for the gamma–Weibull distribution are the upper incom-
plete Gamma function, and a fortiori the Srivastava–Daoust S–function. Therefore
to establish their asymptotics when x→ 0+, we need the following auxiliary result.

Here, and in what follows, the Landau’s O–notation is used, that is f = O(g) near
to some x0 means that there exists some absolute constant M for which | f/g| ≤M
for all x in the neighborhood of x0.
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Lemma 1. For all s,B,b > 0, z→ 0+ we have

1ψ0

[
(B,b)

∣∣∣∣∣
Γ

(s,z)

]
= 1Ψ0

[
(B,b)

∣∣∣∣∣s
]
− zB

B
+O(zB+1) . (15)

Proof. Having in mind the expansion

Γ(s,z) = Γ(s)− zs

s
+O

(
zs+1) (s > 0,z→ 0) ,

which follows by [1, p. 197, Eqs. (4.4.5–6)], we have

H = 1ψ0

[
(B,b)

∣∣∣∣∣
Γ

(s,z)

]
=

∞

∑
n=0

Γ(B+bn,z)
sn

n!

=
∞

∑
n=0

[
Γ(B+bn)− zB+bn

B+bn
+O(zB+bn+1)

] sn

n!

= 1Ψ0

[
(B,b)

∣∣∣∣∣s
]
− zB

b

∞

∑
n=0

(szb)n

(B/b+n)n!
+O

(
∞

∑
n=0

zB+bn+1

n!

)

Since

1
B/b+n

=
Γ(B/b+n)

Γ(B/b+1+n)
=

b
B

(B/b)n

(B/b+1)n

where the Pochhammer symbol

(β )m =
Γ(β +m)

Γ(β )
= β (β +1) · · ·(β +m−1),

(
m ∈ N, β ∈ C

)
,

while we take by convention that (0)0 = 1, and in terms of the confluent hypergeo-
metric function

1F1

[ a
c

∣∣∣t]= ∞

∑
n=0

(a)n

(c)n

tn

n!
,

expressing

∞

∑
n=0

(B/b)n (szb)n

(B/b+1)n n!
= 1F1

[
B/b

B/b+1

∣∣∣∣∣szb

]
,

we get

H = 1Ψ0

[
(B,b)

∣∣∣∣∣s
]
− zB

B 1F1

[
B/b

B/b+1

∣∣∣∣∣szb

]
+O

(
zB+1eszb

)
.

Knowing that 1F1[·|szb] = 1+O(zb), moreover eszb
= 1+O(zb) when z approaches

zero, (15) is proved.
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To determine the asymptotics of RgW (x) for small positive x from (10), it is enough
to apply (15) from Lemma to the numerator expressions. So the

Lemma 2. For all θ = (α,µ,a,κ)> 0 and x→ 0+ we have

RgW (x) = 1− K
α

xα +O
(

xα+max(1,κ)
)
. (16)

Proof. Assume κ > 1. Direct application of (15) to the appropriate case in (10)
results in

RgW (x) =
1ψ0

[
(α/κ,1/κ)

∣∣∣∣∣
Γ(
−µa−1/κ ,axκ

)]

1Ψ0

[
(α/κ,1/κ)

∣∣∣∣∣− µ

a1/κ

]

= 1− κ (axκ)α/κ

α 1Ψ0

[
(α/κ,1/κ)

∣∣∣∣∣− µ

a1/κ

] +O
(
[xκ ]α/κ+1

)

= 1− K
α

axα +O
(
[xκ ]α/κ+1

)
,

which is exactly the considered case in (16). We handle the remaining two cases,
κ ∈ (0,1) and κ = 1 in the same way.

Lemma 3. For all θ = (α,µ,a,κ)> 0 and x→ 0+ we have

R(1)
gW (x) = 1− K2 Γ2(α)

Γ(2α +1)
x2α +O(x2α+κ) . (17)

Proof. Consider the first three addends in series:

S0:1;1
1:0;0

 − : [α : κ] ; [α : κ][
2α : κ,κ

]
: − ;−

∣∣∣∣∣ −axκ

−axκ

= s0 + s1xκ +O(x2κ) ,

where

s0 =
Γ2(α)

Γ(2α)
, s1 =−2a

Γ(α)Γ(α +κ)

Γ(2α +κ)
.

Thus the PDF (12) and the CDF (13) behave like

ϕ(x) =
K2 Γ2(α)

Γ(2α)
x2α−1 +O(x2α+κ−1)

Φ(x) =
∫ x

0
ϕ(t)dt =

K2 Γ2(α)

Γ(2α +1)
x2α +O(x2α+κ) ,

which confirms the stated expansion.
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Now, we are ready to obtain the factors ρC in function of the variable x→ 0+.

Theorem 4. For all θ = (α,µ,a,κ) > 0 and x→ 0+ the p–cold duplicated com-
ponents, r–equivalence reduction improved pointwise survival equivalence factor in
the case of series composite system, is equal to

ρ
C
S,gW =

(
1− p

r
+

pK Γ(α)Γ(α +1)
r Γ(2α +1)

xα +O(x2α)

)1/α

. (18)

Moreover, p–cold duplicated, r–equivalence reduction improved pointwise survival
equivalence factor in the case of parallel composite system will be

ρ
C
P,gW = x−p/r

(
α

K

)p/(αr)
(

1− pK2 Γ2(α)

r Γ(2α +1)
x2α +O(x2α+κ)

)1/α

. (19)

Proof. We have to solve the equations

S
ρ

gW,Sr
(x) = S C

gW,Sp(x), S
ρ

gW,Pr
(x) = S C

gW,Pp(x)

in ρ for some enough small positive fixed x.

Knowing the constraint p ≤ r for the series system (Sr), the first equation one re-
duces via (3) to

RgW (ρx) =
[
RgW (x)

]1−p/r [R(1)
gW (x)]p/r .

In turn, applying Lemmata 2 and 3 we obtain

1− K
α
(ρx)α +O(xα+M) =

[
1− K

α
xα +O(xα+M)

]1−p/r

×
[
1−C(1)

gW x2α +O(x2α+κ)
]p/r

,

where

M = max{1,κ}, C(1)
gW =

K2 Γ2(α)

Γ(2α +1)
.

Therefore

ρ
C
S,gW =

(
1− p

r
+

pK Γ(α)Γ(α +1)
r Γ(2α +1)

xα +O(x2α)

)1/α

.

The parallel connected system (Pr) with r reduction–improved and p cold dupli-
cated components will have the same survival function value at some fixed time
x, when the second equation, reads S

ρ

gW,Pr
(x) = S C

gW,Pp
(x) holds true; it can be

rewritten into

RgW (ρx) = 1−
[
1−RgW (x)

]1−p/r [R(1)
gW (x)]p/r .
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However, for vanishing x, in turn, this equation one can transform into

1− K
α
(ρx)α +O(xα+M) = 1−

[K
α

xα +O(xα+M)
]1−p/r

×
[
1−C(1)

gW x2α +O(x2α+κ)
]p/r

,

which solution is

ρ
C
P,gW = x−p/r

(
α

K

)p/(αr)
(

1− pK2 Γ2(α)

r Γ(2α +1)
x2α +O(x2α+κ)

)1/α

.

The proof is completed.

Remark 2. From (18) follows that

lim
x→0+

ρ
C
S =

(
1− p

r

)1/α

= L .

However, this result shows that the the gamma–Weibull lifetime distribution cannot
guarantee stable series connected system at the functioning beginning when α is
small, because p≤ r and

L =
(

1− p
r

)1/α

−−−−−→
α→0+

0 .

In some cases, when the parameter α depends on the cold duplicated components,
and the size of components have been improved by reduction method, that is α =
α(p,r), the quantity L can take positive limit with vanishing α . Indeed, e.g. for
p� αr, we have L→ e−1, when α → 0+.

The situation with the growing α is the opposite: L approaches 100%. �

5 Simulation results and conclusion

To illustrate how the theory, which was obtained in the previous sections, can be
applied, three different parameter cases are presented in this section.

The gW (θ) lifetime–distribution’s PDF takes three analytically different forms de-
pending on the κ , compare Fig 1. So do the associated reliability functions as illus-
trates Fig 2. via (10). Therefore we decide to study the PDF (6) when (α,µ,a) =
(3,3,2) and κ ∈ {0.363,1,2} as shown in Fig 1.

Assume that (S),(P) consist from n = 8 IID components, while improving r =
3, p = 2 components by reduction method we get (S3),(P2) respectively. These
systems are now treated by cold duplication. According to Theorem 1 p ≤ r = 3
components have to be improved by cold duplication in (S); no such limitation
occurs for (P).

The values of normalizing constant K in the considered cases become

K(3,3,2,0.363) = 84.8514, K(3,3,2,1) = 62.5000, K(3,3,2,2) = 45.3513;
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the calculations where performed by the WolframAlpha|PRO computational engine.
However, the parameter L = 1/ 3

√
3 throughout.

The numerical simulation results include three cases: κ ∈ (0,1),κ = 1,κ > 1, pre-
sented on Table I, II and III respectively. The tables contain five sampled values of
the reliability function RgW (x) of a component, the realibility function R(1)

gW (x) of the
cold duplicated, switched active ↔ standby component–couple, the survival func-
tions SgW,S(x), SgW,P(x) of series and parallel systems respectively; the survival
equivalence factors ρH

S ,ρH
P all under the same number of components r = 3, p = 2

improved by reduction method and by cold duplication respectively, all nearby to
the origin. The sample nodes x = 0.10 + j · 0.05, j = 0,4 are used in all cases
(by comparison purposes). Thus, the not to large argument values x� 1 enable
to approximate all these functional characteristics by Theorem 2, Lemmata 2, 3
and Theorem 4 respectively. More precisely, writing G̃ for the approximant in the
asymptotic expansion G(x) = G̃(x)+O(xυ), for certain suitable G,υ , the formulae
applied read as follows:

R̃gw(x) = 1− K
α

xα , R̃(1)
gw (x) = 1− K2 Γ2(α)

Γ(2α +1)
x2α

S̃gW,S(x) =
(

1− K
α

xα

)8

, S̃gW,P(x) = 1−
(

K
α

xα

)8

ρ̃
C
S,gW =

(
1
3
+

2K Γ(α)Γ(α +1)
3Γ(2α +1)

xα

)1/α

ρ̃
C
P,gW = x−2/3

(
α

K

)2/(3α)
(

1− 2K2 Γ2(α)

3Γ(2α +1)
x2α

)1/α

.

According to Remark 2, L ' 0.69336 when x→ 0+ which is visible in all three
tables – compare the sixth columns first data.

After these SEF simulations the considered models’ (S),(P) survival functions ex-
pose the full meanings of Theorems 2, 3 and 4, where the IID components reli-
ability function is, for the first time, applied to the gamma–Weibull distribution,
since gW (θ) generalizes Gamma–distribution [18] and the various topology com-
posite systems for the exponential E (λ ) lifetime–distribution studied by Sarhan
[11, 12, 13, 14]. The simulations were realized near to the origin, which show
that the asymptotics is polynomial in all cases. Accordingly, the cold duplication
can be successfully replaced by reliability reduction method using the at most the
same number of improved components for (S), while the reduction method is inde-
pendent of cold duplication in the case of parallel systems (P). Also, it would be
of considerable interest to connect our results and/or extend it to another fashion
questions discussed e.g. in the recent paper by Morariu and Zaharia, see [5].
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[8] T. K. POGÁNY, V. TOMAS AND M. TUDOR, Hot duplication versus survivor
equivalence in gamma–Weibull distribution, J. Stat. Appl. Pro. 2 (2013), No.
1, 1–10.
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[10] L. RÅDE, Reliability survival equivalence, Microelectronics and Reliability
33 (1993), 881–894.

[11] A. SARHAN, Reliability equivalence with a basic series/parallel system, Appl.
Math. Comput. 132 (2002), 115–133.

[12] A. SARHAN, Reliability equivalence of independent and non–identical com-
ponents series systems, Reliability and Engineering Safety 20 (2000), 293–
300.

[13] A. SARHAN, Reliability equivalence of a series–parallel system, Appl. Math.
Comput. 154 (2004), 257–277.

[14] A. SARHAN, Reliability equivalence functions of a parallel system, Reliability
and Engineering Safety 84 (2005), 405–411.

[15] H. M. SRIVASTAVA, M. C. DAOUST, A note on the convergence of Kampé
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