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and of recent results by Knockaert [13] for J–Bessel sampling and of currently established Y –
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almost sure (or with the probability 1) sense. The main derivation tools are the Piranashvili’s
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1 Introduction

The development and application of sampling theory in technics, engineering but
in parallel in pure mathematical investigations was rapid and continuous since the

– 7 –
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middle of the 20th century [4, 6, 9, 15, 16, 17]. It is one of the most important mathe-
matical techniques used in communication engineering and information theory, and
it is also widely represented in many branches of physics and engineering, such as
signal analysis, image processing, optics, physical chemistry, medicine etc. [9, 25].
In general sampling theory can be used where functions need to be restored from
their discretized–measured–digitalized sampled values, usually from the values of
the functions and/or their derivatives at certain points. Here we are focused to a kind
of Bessel–sampling restoration of finite second order moment stochastic processes
(signals), which correlation function possesses Hankel–transform type integral rep-
resentation. In the Bessel sampling procedure the sampling nodes we take to be the
positive zeros jν ,k,yν ,k of the Bessel functions Jν ,Yν respectively, depending on the
appearing Bessel function in the kernel of the integral expression representing the
correlation function of the considered initial stochastic signal.

The results obtained form a stochastic setting counterpart to recent results by Zayed
[25, 26, 24, 27], Knockaert [13] and Jankov et al. [7].

This paper is organized as follows: in the sequel we give a short account in cor-
relation and spectral theory of stochastic signals, which consists from a necessary
introductionary knowledge about different kind stochastic processes appearing in
the engineering literature together with associated mathematical models. Secondly,
J–Bessel and Y –Bessel deterministic sampling theorems are recalled together with
their ancestor result, that is the Kramer’s sampling theorem. In Section 2 we prove
our main results on the Bessel sampling restoration of stochastic signals in both
mean–square and almost sure manner. Finally, we proceed with restoration er-
ror analysis, presenting associated results in finding the uniform upper bounds for
newly derived truncated sampling series, which is a counterpart of deterministic re-
sults which has been considered in a number of publications in the mathematical
literature, consult for instance [7, 8, 9] and the appropriate references therein. In
Conclusion section we give an overview of the exposed matter together with new
research directions and improvement possibilities. The exhaustive references list
finishes the exposition.

1.1 Brief invitation to correlation theory of stochastic processes

Let (Ω,A,P) a standard fixed probability space and consider the random variables
ξ : T ×Ω 7→ C, T ⊆ R; the double–indexed infinite family of random variables
{ξ (t) ≡ ξ (t,ω) : t ∈ T, ω ∈ Ω} is a stochastic process. Here T is the index set of
the process ξ . Denote L2(Ω,A,P) [abbreviated to L2(Ω) in the sequel] be the space
of all finite second order complex–valued random variables defined on (Ω,A,P),
equipped with the norm

√
E| · |2 := ‖ · ‖2, where E means the expectation opera-

tor. Notice that L2(Ω) is a Hilbert–space with the inner (or scalar) product Eξ η

endowed. However, it is enough to restrict ourselves to the linear mean–square–
closure Ht(ξ ) := {L2{ξ (s) : s≤ t} spanned by all finite linear combinations and/or
their in medio limits generated by the family {ξ (s) : s≤ t}, t ∈ R, which is the lin-
ear subspace of the Hilbert space L2(Ω). It is well-known that H∞(ξ ) ≡H (ξ )
possesses also a Hilbert–space structure, keeping the norm and inner product of
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L2(Ω). We recall that when
⋂

t∈R Ht(ξ ) = /0, then ξ is purely indeterministic1, say;
moreover in the case

⋂
t∈R Ht(ξ ) = H (ξ ), process ξ is purely deterministic2.

The function mξ (t) = Eξ (t) is the expectation function. Let us assume through-
out that the considered stochastic processes are centered, that is mξ (t) ≡ 0, t ∈ R3.
The function Bξ (t,s) = Eξ (t)ξ (s) is the correlation function (or autocorrelation
function) of the centered process ξ at two ”times values” t,s ∈ T . By the Cauchy–
Buniakovskiy-Schwarz inequality it is straightforward that

|Bξ (t,s)|2 ≤ Bξ (t, t)Bξ (s,s), t,s,∈ T , (1)

being ξ with the finite second order moment rv, with any fixed t ∈ T . The function
Dξ (t) := Bξ (t, t) is the variance of the process ξ 4.

Very wide class of stochastic processes has been introduced by Piranashvili [18].
He has studied the sampling reconstruction of a class of nonstationary processes,
which correlation function (and a fortiori the initial process itself) possess spectral
representations in a form of a double integral. In fact Piranashvili extended the
Karhunen-Cramér theorem for a wider class stochastic processes; see the works of
Karhunen [11] and Cramér [3], also see [29, p. 156].

Theorem A. [Karhunen–Cramér–Piranashvili Theorem] Let a centered stochastic
L2(Ω)–process ξ has correlation function (associated to some domain Λ ⊆ R with
some sigma–algebra σ(Λ)) in the form:

B(t,s) =
∫

Λ

∫
Λ

f (t,λ ) f (s,µ)Fξ (dλ ,dµ), (2)

with analytical exponentially bounded kernel function f (t,λ ), while Fξ is a posi-
tive definite measure on R2 provided the total variation ‖Fξ‖(Λ,Λ) of the spectral
distribution function Fξ satisfies

‖Fξ‖(Λ,Λ) =
∫

Λ

∫
Λ

∣∣Fξ (dλ ,dµ)
∣∣< ∞.

Then, the process ξ (t) has the spectral representation as a Lebesgue integral

ξ (t) =
∫

Λ

f (t,λ )Zξ (dλ ); (3)

in (2) and (3)

Fξ (S1,S2) = EZξ (S1)Zξ (S2), S1,S2 ⊆ σ(Λ),

and vice versa.
1 In the Western terminology; however, according to the Eastern, Soviet/Russian proba-

bilistic terminology this kind process is regular.
2 Singular. It is worth to mention that we deal here with a class of weakly stationary

singular processes.
3 Otherwise we pick up the so–called centered process ξ0(t) = ξ (t)−mξ (t), which ex-

pectation function is obviously zero.
4 By (1) we see, that Dξ (t)≤ supu∈R B2

ξ
(u,u) :=B2

ξ
< ∞.
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Note that in the case of finite Λ we will talk on processes bandlimited to Λ.

If Fξ of (2) concentrates of diagonal λ = µ , that is Fξ (λ ,µ) = δλ ,µ Fξ (λ ), then the
resulting correlation is called of Karhunen class, and Bξ becomes

Bξ (t,s) =
∫

Λ

f (t,λ ) f (s,λ )Fξ (dλ ).

The spectral representation of the resulting Karhunen process ξ (t) remains of the
form given by (3).

Also, putting f (t,λ ) = eitλ in (2) one gets the Loève-representation:

B(t,s) =
∫

Λ

∫
Λ

ei(tλ−sµ)Fξ (dλ ,dµ).

Then, the Karhunen process with the Fourier kernel f (t,λ ) = eitλ we recognize as
the weakly stationary stochastic process having covariance

B(τ) =
∫

Λ

eiτλ Fξ (dλ ), τ = t− s.

The stochastic processes having correlation function expressible in the form (2) we
call harmonizable. Further reading about different kind harmonizabilities present
the works [10, 20, 21] and the appropriate references therein. Finally, when Λ =
(−w,w) for some finite w > 0 in this considerations, we get the band–limited vari-
ants of the above introduced processes. So, for ξ (t), being weak sense stationary
band–limited to w > 0, there holds the celebrated Whittaker–Kotel’nikov–Shannon
sampling theorem:

ξ (t) = ∑
k∈Z

ξ

(
π

w
k
) sin(wt− kπ)

wt− kπ
, (4)

uniformly convergent on all compact t–subsets of R, in both mean–square and al-
most sure sense; the latter has been proved by Belyaev [2].

1.2 Kramer’s theorem and Bessel sampling

Here we recall three theorems which will help us to derive our first set of Bessel
sampling restoration results for a class of harmonizable stochastic processes having
Karhunen representable correlation functions.

Theorem B. [Kramer’s Theorem], [12, 13] Let K(x, t) be in L2[a,b],−∞ < a < b <
∞ a function of x for each real number t and let E = {tk}k∈Z be a countable set of
real numbers such that {K(x, tk)}k∈Z is a complete orthogonal family of functions
in L2[a,b]. If

f (t) =
∫ b

a
g(x)K(x, t)dx,
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for some g ∈ L2[a,b], then f admits the sampling expansion

f (t) = ∑
k∈Z

f (tk)S?(t, tk) ,

where

S?(t, tk) =

∫ b

a
K(x, t)K(x, tk)dx∫ b

a
|K(x, tk)|2 dx

.

Remark 1. Annaby reported, that points {tk}k∈Z, which are for practical reasons
preferred to be real, can also be complex, [1, p. 25].

Obviously, the function f , having above integral representation property bandlim-
ited to the region Λ = [a,b].

Now we give the two Bessel–sampling theorems, the J–Bessel derived e.g. by Za-
yed [25, p. 132], but the J–Bessel sampling method was known already by Whit-
takers [22, 23], Helms and Thomas [5] and Yao [30].

Theorem C. It there is some G ∈ L2(0,b) with a finite Hankel–transform

f (λ ) =
2ν Γ(ν +1)

bν+ 1
2 λ ν

∫ b

0
G(x)
√

xJν(xλ )dx , (5)

then there holds

f (t) =
2Jν(bt)
bν z, tν ∑

k≥1

jν+1
ν ,k f (a−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)
,

where the series converges uniformly on any compact subset of the complex t–plane.
Here λk denote the kth zero of Jν(b

√
λ ).

In turn the Y –Bessel sampling theorem has been recently derived by Jankov Maširević
et al. in [7, p. 81, Theorem 4].

Theorem D. Let for some G∈ L2(0,a),a > 0, function f possesses a finite Hankel–
transform

f (t) =
∫ a

0
G(x)
√

xYν(tx)dx , (6)

then, for all t ∈ R, ν ∈ [0,1), the function f admits the sampling expansion

f (t) = 2Yν(at) ∑
k≥1

f (b−1yν ,k)
yν ,k

(y2
ν ,k−a2t2)Yν+1(yν ,k)

,

where yν ,k, k ∈ N are the positive real zeros of the Bessel function Yν(t). Here the
convergence os uniform in all compact t–subsets of C.
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2 Main results

Although formula (4), Theorem C and Theorem D yield an explicit restoration of
bandlimited weakly stationary stochastic process ξ (t) by the WKS sampling theo-
rem, and Hankel-transformable f (t) by either J–Bessel or Y –Bessel sampling pro-
cedures respectively, these results are usually considered to be of theoretical interest
only, because the restoration procedures require computations of infinite sums. In
practice, we truncate the sampling expansion series. The sampling size N is deter-
mined by the relative error accepted in the reconstruction. Thus the error analysis
plays a crucial role in setting up the interpolation formula, and it is of considerable
interest to find sampling series truncation error upper bounds (the exact value of
the truncation error is in general a ”mission impossible”) which vanishes with the
growing sampling size.

Here and in what follows we will concentrate to a class of harmonizable stochastic
processes having spectral representation of the form (3) with the kernel function

f (t,λ ) ∈ L2(0,b), b > 0 ,

with respect to the time–parameter t.

According to these requirements, we introduce the notations for both kind Bessel
sampling procedures:

S J
N(G; t) :=

2Jν(bt)
bν tν

N

∑
k=1

jν+1
ν ,k G(b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)

S Y
N (G; t) := 2Yν(bt)

N

∑
k=1

yν ,k G(b−1yν ,k)

(y2
ν ,k−b2t2)Yν+1(yν ,k)

,

for the truncated (partial) Bessel sampling series expansions either of L2(0,b)–
bandlimited signal f , or for the stochastic process ξ , that is G ∈ { f ,ξ}. Next,
we introduce the sampling series restoration truncation error, read as follows

T J
N (G; t) :=G(t)−S J

N(G; t) =
2Jν(bt)

bν tν ∑
k≥N+1

jν+1
ν ,k ξ (b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)
(7)

T Y
N (G; t) :=G(t)−S Y

N (G; t) = 2Yν(bt) ∑
k≥N+1

yν ,k ξ (b−1yν ,k)

(y2
ν ,k−b2t2)Yν+1(yν ,k)

,

Our main goal in that stage of investigation is to establish as sharp as possible mean
square truncation error upper bounds in both Bessel–sampling procedures, that is
for

∆
B
N (ξ ; t) = E

∣∣ξ (t)−S B
N (ξ ; t)

∣∣2 = E
∣∣T B

N (ξ ; t)
∣∣2, B ∈ {J,Y} .

Firstly, we establish the spectral representation formula for S J
N(ξ ; t).
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Theorem 1. Let ξ (t), t ∈ T ⊆ R a harmonizable stochastic process of Piranashvili
class, that is

ξ (t) =
∫

Λ

f (t,λ )Zξ (dλ )

with the kernel function f (t,λ ) ∈ L2(0,b) with respect to t and any fixed λ ∈ Λ.
Then we have

S B
N (ξ ; t) =

∫
Λ

S B
N ( f ; t)Zξ (dλ ), B ∈ {J,Y} .

Moreover, there holds true

T B
N (ξ ; t) =

∫
Λ

T B
N ( f ; t)Zξ (dλ ), B ∈ {J,Y} ;

both formulae are valid in the mean square sense.

Proof. The sampling series expansion of the kernel function f (t,λ ) which appears
in the representation (3), when truncated to the terms indexed by N becomes S J

N( f ; t).
Now, by (7) we get

S J
N(ξ ; t) =

2Jν(bt)
bν tν

N

∑
k=1

jν+1
ν ,k ξ (b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)

=
2Jν(bt)

bν tν

N

∑
k=1

jν+1
ν ,k

(b2t2− j2
ν ,k

)J′ν( jν ,k)

∫
Λ

f (a−1 jν ,k,λ )Zξ (λ )

=
∫

Λ

{
2Jν(bt)

bν tν

N

∑
k=1

jν+1
ν ,k

(b2t2− j2
ν ,k

)J′ν( jν ,k)
f (b−1 jν ,k,λ )

}
Zξ (λ );

here all equalities are in the mean square sense used. This is exactly the statement
for B = J. The case of Y –Bessel sampling we handle in the same way.

The second assertion we prove directly:

T J
N (ξ ; t) = ξ (t)−S J

N(ξ ; t) =
∫

Λ

f (t,λ )Zξ (dλ )−
∫

Λ

S J
N( f ; t)Zξ (dλ )

=
∫

Λ

{
f (t,λ )−S J

N( f ; t)
}

Zξ (dλ )

=
∫

Λ

T J
N ( f ; t)Zξ (dλ ) .

The equalities are also in the mean square sense used. The rest is clear.

Theorem 2. Let the situation be the same as in Theorem 1. Then we have

∆
B
N (ξ ; t) =

∫
Λ

∫
Λ

T B
N ( f ; t)T B

N ( f ; t)Fξ (dλ ,dµ), B ∈ {J,Y} , (8)

in the mean square sense.
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The proof is a straightforward consequence of the Karhunen–Cramér–Piranshvili
Theorem A and the spectral representation formulae of stochastic process ξ , there-
fore we omit it.

Remark 2. Obviously Theorem 2 is devoted to the case of Piranashvili processes.
For the Karhunen processes this result reduces to

∆
B
N (ξ ; t) =

∫
Λ

∣∣T B
N ( f ; t)

∣∣2 Fξ (dλ ), B ∈ {J,Y} . (9)

Denote L2(Λ;Fξ ) the class of square–integrable on the support domain Λ, complex
functions with respect to the measure Fξ (dλ ), i.e.

L2(Λ;Fξ ) :=
{

ϕ :
∫

Λ

|ϕ|2 Fξ (dλ )< ∞

}
.

This class form also a Hilbert–space and the correspondence ξ (t)←→ f (t,λ ) de-
fines an isomorphism between H (ξ ) and L2(Λ;Fξ ). Therefore by the existing
isometry, we conclude (9).

Next, a special case of the Karhunen process is the weakly stationary stochastic
process5. Choosing Λ = (−w,w), we arrive at

∆
B
N (ξ ; t) =

∫ w

−w

∣∣T B
N (eitλ )

∣∣2 Fξ (dλ ), B ∈ {J,Y} .

Now, we are ready to state our Bessel–sampling series finding for stochastic pro-
cesses.

Theorem 3. Let {ξ (t) : t ∈T⊆R} a Piranashvili process (3) with a kernel function
f (t,λ ) ∈ L2(0,b) which possesses a Hankel–transform representation either of the
form (5) (J–Bessel sampling) or (6) (Y –Bessel sampling). Then we have

ξ (t) = S J(ξ ; t) =
2Jν(bt)

bν tν ∑
k≥1

jν+1
ν ,k ξ (b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)

ξ (t) = S Y (ξ ; t) = 2Yν(bt) ∑
k≥1

yν ,k ξ (b−1yν ,k)

(y2
ν ,k−b2t2)Yν+1(yν ,k)

,

respectively. Both equalities hold in the mean square sense.

Proof. Having in mind that (8)

∆
B
N (ξ ; t) = E|T B

N (ξ : t)|2 =
∫

Λ

∫
Λ

T B
N ( f ; t)T B

N ( f ; t)Fξ (dλ ,dµ) ,

and T B
N ( f ; t) vanishes pointwise and uniformly [25, p. 132] (J–Bessel sampling),

that is [7, p. 83, Theorem 4] (Y –Bessel sampling) with the growing N, we deduce

lim
N→∞

∆
B
N (ξ ; t) = 0, B ∈ {J,Y} ,

which completes the proof.
5 Also known as stationary in the Khintchin sense.
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3 Truncation error bounds for Y –Bessel sampling of
Karhunen processes

In this section we would derive uniform upper bound for the truncation error for the
Y –Bessel sampling expansion of the Karhunen process ξ (t), t ∈ T ⊆ R:

S Y (ξ ; t) = 2Yν(t)
N

∑
k=1

yν ,k ξ (yν ,k)

(y2
ν ,k− t2)Yν+1(yν ,k)

,

setting for the sake of simplicity b = 1, ν ∈ [0,1) and the function f has a band–
region contained in (0,1). Having in mind (9) exposed in Remark 2, we specify:

∆
Y
N(ξ ; t) =

∫
Λ

∣∣T Y
N ( f ; t)

∣∣2 Fξ (dλ ) . (10)

The truncation error upper bound has been already calculated in under the polyno-
mial decay condition (see e.g. [14])

| f (t)| ≤ A
|t|r+1 , A > 0, r > 0 , t 6= 0. (11)

The corresponding truncation error upper bound [7, p. 83, Theorem 5] for all

ν ∈ [0,1), t ∈ (ν ,yν ,2), min{A,r}> 0, N ≥ 2

reads as follows

T Y
N ( f ; t)<

2AH(t)MN(ν)

π2 LN+1(ν)
:=UY

N (t) ,

where

H(t) = 1+
2t

π(t2−ν2)

MN(ν) = exp

{(
N +

1−π +2(ν− yν ,2)

2π

)−1
}
−1

LN+1(ν) =
2√
π

yr
ν ,N+1

{
y2

ν ,N+1− (2ν +3)(2ν +7)

(4yν ,N+1−ν−1)
3
2 +µ∗

} 1
2

and µ∗ = (2ν +3)(2ν +5).

Moreover, for any fixed t ∈ (ν ,yν ,2) and growing N the following the asymptotic
behavior results holds [7, p. 83, Eq. (15)]

T Y
N ( f ; t) = O

(
N−r− 5

4

)
.

Now, we are ready to formulate our next main result.
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Theorem 4. Let ξ (t), t ∈ R a Karhunen process with the kernel function f satis-
fying polynomial decay condition (11). Then for all ν ∈ [0,1), for all t ∈ (ν ,yν ,2),
min{A,r}> 0 and all N ≥ 2, we have

∆
Y
N(ξ ; t)≤

A2 ‖Fξ‖(Λ)(πνt +2)2 [(4yν ,N+1−ν−1)
3
2 +(2ν +3)(2ν +5)]

π5 ν2 t2 y2r
ν ,N+1[y

2
ν ,N+1− (2n+3)(2n+7)]

×

(
exp

{(
N +

1−π +2(ν− yν ,2)

2π

)−1
}
−1

)2

,

where ‖Fξ‖(Λ) stands for the total variation of the spectral distribution function Fξ .

Moreover, the decay magnitude of the truncation error is

∆
Y
N(ξ ; t) = O

(
N−2r− 5

2

)
. (12)

Proof. Because of the spectral representation formula (10) and the functional trun-
cation error upper bound (11) by Jankov Maširević et al. we have

∆
Y
N(ξ ; t) =

∫
Λ

∣∣T Y
N ( f ; t)

∣∣2 Fξ (dλ )≤
∫

Λ

∣∣UY
N ( f ; t)

∣∣2 Fξ (dλ ) .

Now routine calculations lead to the statement. Relation (12) is the immediate con-
sequence of this upper bound result.

Next, we consider the almost sure convergence in the Y –Bessel sampling series
restoration of the Karhunen process.

Theorem 5. Let ξ (t) a Karhunen process with the kernel function f satisfying poly-
nomial decay condition (11). Then for all ν ∈ [0,1), for all t ∈ (ν ,yν ,2), min{A,r}>
0 and all N ≥ 2, we have

P

{
lim

N→∞
S Y

N (ξ ; t) = ξ (t)
}
= 1 .

Proof. Firstly, for some positive ε we evaluate the probability

PN = P
{∣∣ξ (t)−S Y

N (ξ ; t)
∣∣≥ ε

}
.

Applying the Čebyšev inequality, then Theorem 3 we conclude th estimate

PN ≤ ε
−2E

∣∣T Y
N (ξ ; t)

∣∣2 = O
(

N−2r− 5
2

)
.

For certain enough large absolute constant C the following bound follows in terms
of the Riemann Zeta function:

∑
N≥2

PN ≤C ∑
N≥2

N−2r− 5
2 =C

[
ζ
(
2r+ 5

2

)
−1
]
,

and the series converges, being r > 0. Now, by the Borel–Cantelli lemma it follows
the a.s. convergence, which completes the proof.
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4 Final remarks

In the footnote 2 it was mentioned that we work throughout with singular, or purely
deterministic processes. Indeed, having in mind that the initial input process of Pi-
ranashvili type ξ (t) possesses spectral representation (3) in which the kernel func-
tion is a Hankel transform of some convenient G ∈ L2(0,b), we deduce

ξ (t) =
∫

Λ

f (t,λ )Zξ (dλ )

=
2ν Γ(ν +1)

bν+ 1
2

∫
Λ

{
1

λ ν

∫ b

0
G(x)
√

xJν(xλ )dx
}

Fξ (dλ )

=
2ν Γ(ν +1)

bν+ 1
2

∫ b

0
G(x)
√

x
{∫

Λ

Jν(xλ )

λ ν
Fξ (dλ )

}
dx

=
2ν Γ(ν +1)

bν+ 1
2

∫ b

0
G(x)
√

xΨν(x)dx.

Obviously ξ (t) is bandlimited to (0,b). (We mention that the sample function
ξ (t) ≡ ξ (t,ω0) and f (t,λ ) possess the same exponential types [2, Theorem 4],
[18, Theorem 3], and also by the Paley–Wiener theorem we conclude that ξ (t) is
bandlimited to the support set (0,b)).

The Kolmogorov–Krein analytical singularity criterion states that the singular pro-
cesses possesses divergent integral:

∫
R

log d
dλ

Fξ (dλ )

1+λ 2 dλ =−∞ ,

which is obviously true, being the Radon–Nikodým derivative (or in other words
spectral density) in the integrand equal to zero on a set of positive Lebesgue mea-
sure.
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