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Abstract: An overview of methods of pseudo-analysis in applications on important

classes of nonlinear partial differential equations, occurring in different fields, is given.

Hamilton-Jacobi equations, specially important in the control theory, are for impor-

tant models usually with non-linear Hamiltonian H which is also not smooth, e.g.,

the absolute value, min or max operations, where it can not apply the classical math-

ematical analysis. Using the pseudo-analysis with generalized pseudo-convolution it

is possible to obtain solutions which can be interpreted in the mentioned classical

way. Another important classes of nonlinear equations, where there are applied the

pseudo-analysis, are the Burgers type equations and Black and Shole equation in op-

tion pricing. Very recent applications of pseudo-analysis are obtained on equations

which model fluid mechanics (Navier-Stokes equation) and image processing (Perona

and Malik equation).
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1 Introduction

The pseudo-analysis, see [12, 16, 17, 20, 21, 22], is based, instead of the usual
field of real numbers, on a semiring acting on the real interval [a, b] ⊂ [−∞,∞],
denoting the corresponding operations as ⊕ (pseudo-addition) and ¯ (pseudo-
multiplication), see Section 2. It is applied, as universal mathematical theory,
successfully in many fields, e.g., fuzzy systems, decision making, optimization
theory, differential equations, etc. This structure is applied for solving nonlin-
ear equations (ODE, PDE, difference equations, etc.) using the pseudo linear
principle, which means that if u1 and u2 are solutions of the considered non-
linear equation, than also a1 ¯ u1 ⊕ a2 ¯ u2 is a solution for any constants a1

and a2 from [a, b]. Based on the semiring structure (see [13]) it is developed in



[17, 18, 19, 20, 21, 22, 24] the so called pseudo-analysis in an analogous way as
classical analysis, introduced ⊕-measure, pseudo-integral, pseudo-convolution,
pseudo-Laplace transform, etc. There is so called ”viscosity solution” method
(see [14]) which gives upper and lower solutions but not a solution in the classi-
cal sense, i.e., that its substitution into the equation reduces the equation to the
identity. There is given an overview of methods of pseudo-analysis in applica-
tions on important classes of nonlinear partial differential equations occurring
in different fields, see [7, 8, 12, 16, 18, 19, 20, 21, 22, 24].

First we will show in Section 3 the pseudo linear superposition principle
on the Burgers equation and in the limit case on a Hamilton-Jacobi equa-
tion. Pseudo-analysis was applied for finding weak solution of Hamilton-Jacobi
equation with non-smooth Hamiltonian, [16, 22, 24], see Section 4. Another
important class of nonlinear equations, where it is applied the pseudo-analysis,
is the Black and Shole equation in option pricing, see Section 6. Very recent
applications of pseudo-analysis are obtained on equations which model fluid
mechanics, see Section 7. In the section 8 it is presented a general form of PDE
for image restoration and there is given a connection with Gaussian linear fil-
tering. The starting PDE in image restoration is the heat equation. Because
of its oversmoothing property (edges get smeared), it is necessary to introduce
some nonlinearity. Framework to study this equation is nonlinear semigroup
theory ([1, 2, 4]). It is proved that Perona and Malik equation satisfy the
pseudo linear superposition.

2 Pseudo-analysis

Let [a, b] be closed (in some cases semiclosed) subinterval of [−∞, +∞]. We
consider here a total order ≤ on [a, b]. The operation ⊕ (pseudo-addition)
is function ⊕ : [a, b] × [a, b] → [a, b] which is continuous, commutative, non-
decreasing, associative and has a zero element, denoted by 0. Let [a, b]+ =
{x : x ∈ [a, b] , x ≥ 0}. The operation ¯ (pseudo-multiplication) is a function
¯ : [a, b] × [a, b] → [a, b] which is continuous, commutative, positively non-
decreasing, i.e., x ≤ y implies x ¯ z ≤ y ¯ z, z ∈ [a, b]+ ,associative and for
which there exist a unit element 1 ∈ [a, b] , i.e., for each x ∈ [a, b] , 1 ¯ x = x.
We suppose 0¯ x = 0 and that ¯ is a distributive pseudo-multiplication with
respect to ⊕, i.e.,

x¯ (y ⊕ z) = (x¯ y)⊕ (x¯ z)

The structure ([a, b] ,⊕,¯) is called a semiring (see [13, 20]). We consider
here two special important cases ([0,∞), min,+) and the g-calculus, i.e., there
exists a bijection g : [a, b] → [0,∞] such that x ⊕ y = g−1(g(x) + g(y)) and
x¯ y = g−1(g(x)g(y)).

There is introduced ⊕-measure m : A → [a, b] on a σ-algebra A of subsets
of a given set X, and the corresponding pseudo-integral, see [20]. Important
cases are ([0,∞),min, +) and g-calculus, where the corresponding integrals are



given, for mϕ(A) = infx ϕ(x) by

∫ min

f(x) dx = inf
x

(f(x) + ϕ(x)),

and by ∫ g

f(x) dx = g−1

(∫
g(f(x)) dx

)
,

respectively.
The pseudo-character of group (G,+), G ⊂ Rn, is a continuous (with re-

spect to the usual topology of reals) map ξ : G → [a, b], of the group (G,+)
into the semiring ([a, b],⊕,¯), with the property

ξ(x + y) = ξ(x)¯ ξ(y), x, y ∈ G.

The map ξ ≡ 0 is the trivial pseudo-character. The forms of the pseudo-
character in the special cases can be found in [9, 24], where for important cases
([0,∞), max, +) and g-calculus we have ξ(x, c) = c · x and ξ(x, c) = g−1(ecx),
respectively, for each c ∈ R.

Definition 2.1 The pseudo-Laplace transform L⊕(f) of a function f ∈ B(G, [a, b])
is defined by

(L⊕f)(ξ)(z) =
∫ ⊕

G∩[0,∞)n

ξ(x,−z)¯ dmf (x),

where ξ is the pseudo-character.
When at least pseudo-addition is idempotent operation we can consider the

second type of pseudo-Laplace transform:

(L⊕f)(ξ)(z) =
∫ ⊕

G

ξ(x,−z)¯ dmf (x),

i.e., pseudo-integral has been taken over the whole G.

For the special important cases ([0,∞), max,+) and g-calculus, we have that
the pseudo-Laplace transform has the following form

(Lminf)(z) = inf
x

(−xz + f(x)),

and

(Lgf)(z) = g−1

(∫ ∞

0

e−xzg(f(x)) dx

)
,

respectively.



3 Two simpe examples of nonlinear PDE

We start with two examples to illustrate how can be applied the pseudo-linear
superposition principle on some non-linear partial differential equations.

An important nonlinear partial differential equation is the Burgers equa-
tion for a function u = u(x, t). Burgers (1948), Hopf (1950) and Cole (1951)
investigated as a model of turbulence the following equation

∂v

∂t
+ v

∂v

∂x
=

c

2
∂2v

∂x2
, (1)

where c is a parameter. Putting v = ∂u
∂x in (1) and integrating with respect to

x we obtain the equation

∂u

∂t
+

1
2

(
∂u

∂x

)2

− c

2
∂2u

∂x2
= 0, (2)

for x ∈ R and t > 0, with the initial condition u(x, 0) = u0(x), where c is the
given positive constant, and which models the burning of a gas in a rocket. We
shall apply on this equation the g-calculus, with the generator g(u) = e−u/c.
Then, the corresponding pseudo-addition is u⊕ v = −c ln(e−u/c + e−v/c), and
the distributive pseudo-multiplication u ¯ v = u + v. Then for solutions u1

and u2 of (2) the function (λ1 ¯ u1) ⊕ (λ2 ¯ u2) is also a solution of Burgers
equation (2). The solution of the given initial problem is

u(x, t) =
c

2
ln(2πct)¯

∫ ⊕ (x− s)2

2t
¯ u0(s) ds.

Taking c → 0 in the Burgers equation (2) we obtain Hamilton-Jacobi equa-
tion

∂u

∂t
+

1
2

(
∂u

∂x

)2

= 0.

Then for solutions u1 and u2 the function (λ1 ¯ u1)⊕ (λ2 ¯ u2), where

u⊕ v = min(u, v) and u¯ v = u + v,

is also a solution of the preceding Hamilton-Jacobi equation.

4 Hamilton-Jacobi equation with non-smooth
Hamiltonian

We consider here the nonlinear PDE, so called Hamilton-Jacobi-Bellman equa-
tion

∂u(x, t)
∂t

+ H

(
∂u

∂x
, x, t

)
= 0, (3)



see [12, 16, 20, 21, 22, 24]. Hamilton-Jacobi equations are specially important
in the control theory. Unfortunately, usually the interesting models are repre-
sented by Hamilton-Jacobi equations in which the non-linear Hamiltonian H
is not smooth, for example the absolute value, min or max operations. Hence
we can not apply on such cases the classical mathematical analysis. There is
so called ”viscosity solution” method (see [14]) which gives upper and lower
solutions but not a solution in the classical sense, i.e., that its substitution into
the equation reduces the equation to the identity. Using the pseudo-analysis
with generalized pseudo-convolution it is possible to obtain solutions which can
be interpreted in the mentioned classical way.

We extend now the pseudo-superposition principle to a more general case,
see [12, 21, 22].

Theorem 4.1 If u1 and u2 are solutions of the Hamilton-Jacobi equation (3),
where H ∈ C(Rn+2) and ∂u

∂x is the gradient of u, then (λ1¯u1)⊕(λ2¯u2) is also
a solution of the Hamilton-Jacobi equation (3), with respect to the operations
⊕ = min and ¯ = +.

Let C0(Rn) be the space of continuous functions f : Rn → P (P is of type
(min, +) or (min,max) ) with the property that for each ε > 0 there exists
a compact subset K ⊂ Rn such that d(0, inf

x∈Rn\K
f(x)) < ε, with the metric

D(f, g) = supx d(f(x), g(x)). Let Ccs
0 (Rn) be the subspace of C0(Rn) of func-

tions f with compact support supp0 = {x| f(x) 6= 0}. The dual semimodul
(C0(Rn))∗ is the semimodul of continuous pseudo-linear P -valued function-
als on C0(Rn) (with respect to pointwise operations). Analogously the dual
semimodul (Ccs

0 (Rn))∗ is the semimodul of continuous pseudo-linear P -valued
functionals on Ccs

0 (Rn) (with respect to pointwise operations). We shall need
the following representation theorem, see [12].

Theorem 4.2 Let f be a function defined on Rn and with values in the semi-
ring P of type (min, +) or (min, max), and a functional mf : Ccs

0 (Rn) → P is
given by

mf (h) =
∫ ⊕

f ¯ dmh = inf
x

(f(x)¯ h(x)).

Then

1) The mapping f 7→ mf is a pseudo-isomorphism of the semimodule of
lower semicontinuous functions onto the semimodule (Ccs

0 (Rn))∗.

2) The space C∗0(Rn) is isometrically isomorphic with the space of bounded
functions, i.e., for every mf1 ,mf2 ∈ C∗0(Rn) we have

sup
x

d(f1(x), f2(x))

= sup{d(mf1(h),mf2(h)) : h ∈ C0(Rn), D(h,0) ≤ 1}.



3) The functionals mf1 and mf2 are equal if and only if Clf1 = Clf2, where

Clf(x) = sup{ψ(x) : ψ ∈ C(Rn), ψ ≤ f}.

We consider now the following Cauchy problem for Hamilton-Jacobi(- Bell-
man) equation

∂u

∂t
+ H

(
∂u

∂x

)
= 0, u(x, 0) = u0(x), (4)

where x ∈ Rn, and the function H : Rn → R is convex (by boundedness
of H it is also continuous). For control theory the important examples of the
Hamiltonian H are non-smooth functions, e.g., max and |.|. The approach with
pseudo-analysis avoids the use of the so called ”viscosity solution” method,
which does not give the exact solution of (4) (see [14]). We apply now the
methods of pseudo-analysis. For that purpose we define the family of operators
{Rt}t>0, for a function u0(x) bounded from below in the following way

u(t, x) = (Rtu0)(x) = inf
z∈Rn

(u0(z)− tLmin(H)(
x− z

t
)), (5)

where L is considered on the whole Rn. The operator Rt is pseudo-linear with
respect to ⊕ = min and ¯ = +, where L⊕(H)(q) = inf

p∈Rn
(−pq + H(p)).

First we suppose that u0 is smooth and strongly convex. We shall use the
notations < x, y > and ‖x‖ for the scalar product and Euclidean norm in Rn,
respectively. For a function F : Rn → [−∞, +∞] its subgradient at a point
u ∈ Rn is a point w ∈ Rn such that F (u) is finite and

< w, v − u > +F (u) ≤ F (v)

for all v ∈ Rn. Then we have by [12].

Lemma 4.3 Let u0(x) be smooth and strongly convex and there exists δ > 0
such that for all x the eigenvalues of the matrix u′′0(x) of all second derivatives
are not less than δ. Then

1) For every x ∈ Rn, t > 0,there exists a unique ξ(t, x) ∈ Rn such that
x−ξ(t,x)

t is a subgradient of the function H at the point u′0(ξ(t, x)) and

(Rtu0)(x) = u0(ξ(t, x))− tLmin(H)(
x− ξ(t, x)

t
).

2) The function ξ(t, x) for t > 0 satisfies the Lipschitz condition on compact
sets, and lim

t→0
ξ(t, x) = x.

3) The Cauchy problem (4) has a unique C1 solution given by (4.3), and

∂u

∂x
(t, x) = u′0(ξ(t, x)).



The Cauchy problem

∂u

∂t
+ H

(
−∂u

∂x

)
= 0, (6)

u(0, x) = u0(x),

is the adjoint problem of the Cauchy problem (4). The classical resolving
operator R∗t of the Cauchy problem (6) on the smooth convex functions by
Lemma 4.3 is given by

(R∗t u0)(x) = inf
ξ

(u0(ξ)− tLmin(H)(
ξ − x

t
)).

We note that R∗t is the adjoint of the resolving operator Rt with respect to
bipseudo-linear functional ∫ ⊕

Rn

f ¯ h dm.

Then we can introduce, as in the theory of linear equation, the notion of gen-
eralized weak solution (using Theorem 4.2), see [12].

Definition 4.4 Let u0 be a bounded from below function u0 : Rn → R∪{+∞}
and mu0 the corresponding functional from C∗0(Rn). The generalized weak
pseudo solution of Cauchy problem (4) is a continuous function from below
(Rtu0)(x) which is defined uniquely by

mRtu0(ϕ) = mu0(R
∗
t ϕ)

for all smooth convex functions ϕ.

We can construct the solution for the case when u0 is a smooth strictly convex
function by Lemma 4.3. Then it follows by Theorem 4.2 and Definition 4.4.

Theorem 4.5 For an arbitrary function u0(x) bounded from below the weak
pseudo-solution of the Cauchy problem (4) is given by

(Rtu0)(x) = (RtClu0)(x) = inf
z

(Clu0(z) + tLmin(H)(
x− z

t
)),

where
Clf(x) = sup{ψ(x) : ψ ∈ C(Rn), ψ ≤ f}.

5 Bellman differential equation for multicrite-
ria optimization problems

We present results from [12] obtained for the controlled process in Rn specified
by a controlled differential equation ẋ = f(x, v) (where v belongs to a metric



control space V ) and by a continuous function ϕ ∈ B(Rn × V,Rk), which
determines a vector-valued integral criterion

Φ(x( · )) =
∫ t

0

ϕ(x(τ), u(τ)) dτ

on the trajectories. Let us pose the problem of finding the Pareto set ωt(x) for
a process of duration t issuing from x with terminal set determined by some
function ω0 ∈ B(Rn,Rk), that is,

ωt(x) = Min
⋃

x(·)
(Φ(x( · ))¯ ω0(x(t))), (7)

where x( · ) ranges over all admissible trajectories issuing from x. We can
encode the functions ωt ∈ B(Rn, PRk) by the functions

u(t, x, a) : R+ × Rn × L → R.

The optimality principle permits us to write out the following equation, which
is valid modulo O(τ2) for small τ :

u(t, x, a) = Minv(hτϕ(x,v) ? u(t− τ, x + ∆x(v)))(a).

It follows from the representation of hτϕ(x,v) and from the fact that n is, by
definition, the multiplicative unit in CSn(L) that

u(t, x, a) = min
v

(τϕ(x, v) + u(t− τ, x + ∆x(v), a− τϕL(x, v))).

Let us substitute ∆x = τf(x, v) into this equation, expand S in a series modulo
O(τ2), and collect similar terms. Then we obtain the equation

∂u

∂t
+ max

v

(
ϕL(x, v)

∂u

∂a
− f(x, v)

∂u

∂x
− ϕ(x, v)

)
= 0. (8)

Although the presence of a vector criterion has resulted in a larger dimension,
this equation coincides in form with the usual Bellman differential equation.
Consequently, the generalized solutions can be defined on the basis of the idem-
potent superposition principle, as Section 4. We have the following result by
[12].

Theorem 5.1 The Pareto set ωt(x) (7) is determined by a generalized so-
lution ut ∈ B(Rn, CSn(L)) of (8) with the initial condition u0(x) = hω0(x) ∈
B(Rn, CSn(L)). The mapping RCS : u0 7→ ut is a linear operator on B(Rn, CSn(L)).

6 Option pricing

Black-Sholes and Cox-Ross-Rubinstein formulas are basic results in the modern
theory of option pricing in financial mathematics. They are usually deduced



by means of stochastic analysis; various generalizations of these formulas were
proposed using more sophisticated stochastic models for common stocks pricing
evolution. The systematic deterministic approach to the option pricing leads
to a different type of generalizations of Black-Sholes and Cox-Ross-Rubinstein
formulas characterized by more rough assumptions on common stocks evolution
(which are therefore easier to verify). This approach reduces the analysis of the
option pricing to the study of certain homogeneous nonexpansive maps, which
however, unlike the situations described in previous subsections, are ”strongly”
infinite dimensional: they act on the spaces of functions defined on sets, which
are not (even locally) compact.

In the paper of [11] it was shown what type of generalizations of the standard
Cox-Ross-Rubinstein and Black-Sholes formulas can be obtained using the de-
terministic (actually game-theoretic) approach to option pricing and what class
of homogeneous nonexpansive maps appear in these formulas, considering first
a simplest model of financial market with only two securities in discrete time,
then its generalization to the case of several common stocks, and then the con-
tinuous limit. One of the objective was to show that the infinite dimensional
generalization of the theory of homogeneous nonexpansive maps (which does
not exists at the moment) would have direct applications to the analysis of
derivative securities pricing. On the other hand, this approach, which uses nei-
ther martingales nor stochastic equations, makes the whole apparatus of the
standard game theory appropriate for the study of option pricing.

7 Navier-Stokes and Stokes equations

Pseudo liner superposition principle was applied also on important equations
of fluid mechanics [27]. We consider an incompressible homogeneous viscous
flow: that means that div u = 0, for the density ρ = 1, ν is the coefficient
of viscosity, for the forces f = 0. The equations of motion of this flow are the
Navier-Stokes equations, see [6]:

ρ
Du
Dt

= − grad p + ν∆u

div u = 0

u = 0 on ∂D

where ∆u is the Laplacian of the velocity u, defined in this way: ∆u = (∂xx +
∂yy)u = (∂xxu + ∂yyv), as u(x, t) = (u(x, y, t), v(x, y, t)).

We consider two-dimensional incompressible flow in the upper half plane
y > 0; so the projections of the Navier-Stokes equations on axes x and y are
the following:

∂tu + u∂xu + v∂yu + ∂xp + ν(∂xxu + ∂yyu) = 0 (9)

∂tv + u∂xv + v∂yv + ∂yp + ν(∂xxv + ∂yyv) = 0 (10)



∂xu + ∂yv = 0 (11)

u = v = 0 on ∂D. (12)

We have proved in [27] the following two theorems.

Theorem 7.1 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (9) - (12) and
a1, a2 two real numbers. Then the pseudo-linear combination

(a1 ¯ s1,p)⊕ (a2 ¯ s2,p) = min(max(a1, s1,p),max(a2, s2,p))

is again a solution of (9) - (12).

Theorem 7.2 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (9) - (12)
which satisfy

∂yui = ∂yvi i = 1, 2.

Then the pseudo-linear combination (a1¯s1,p)⊕(a2¯s2,p), for two real numbers
a1, a2 where ¯ is given by

λ¯s = λ¯(u, v, p) = (λ + u, λ + v, λ + p),

is again a solution of (9) - (12).

The Stokes equations approximate equations for incompressible flow ([5]):

∂tu + grad p + ν∆u = 0 (13)

div u = 0 (14)

We have proved in [27] the following theorem.

Theorem 7.3 Let si(t) = (ui(t), vi(t), pi(t)), i = 1, 2 be solutions of (13) and
(14). Then the pseudo-linear combination (a1 ¯ s1) ⊕ (a2 ¯ s2), for two real
numbers a1, a2 where ⊕ is given by (s1 ⊕ s2)

= (g−1(g(u1) + g(u2), g−1(g(v1) + (g(v2), g−1(g(p1) + g(p2)),

and
a¯ s = ((g−1(g(a) · g(u), g−1(g(a) · g(v), (g−1(g(a) · g(p))

= (a + u, a + v, a + p)

with g defined by g(a) = e− c a, c > 0 and g−1(b) = − 1
c log b, is again solution

of (13) - (14).



8 Pseudo-linear superposition principle for Per-
ona and Malik equation

Partial differential equations are applied for image processing ([1, 3, 28]). In
that method a restored image can be seen as a version of the initial image at
a special scale. An image u is embedded in an evolution process, denoted by
u (t, ·). The original image is taken at time t = 0, u (0, ·) = u0 (·) . The original
image is then transformed, and this process can be written in the form
∂u
∂t (t, x) + F

(
x, u(t, x),∇u (t, x) ,∇2u (t, x)

)
= 0 in Ω. Some possibilities for

F to restore an image are considered in [1]. PDE-methods for restoration is in
general form:

{
∂u
∂t (t, x) + F

(
x, u(t, x),∇u (t, x) ,∇2u (t, x)

)
= 0 in (0, T )× Ω,

∂u
∂N (t, x) = 0 on (0, T )× ∂Ω, u (0, x) = u0 (x) ,

(15)

where u (t, x) is the restored version of the initial degraded image u0 (x). The
idea is to construct a family of functions {u (t, x)}t>0 representing successive
versions of u0 (x). As t increases u (t, x) changes into a more and more simplified
image. We would like to attain two goals. The first is that u (t, x) should
represent a smooth version of u0 (x), where the noise has been removed. The
second, is to be able to preserve some features such as edges, corners, which
may be viewed as singularitis. The basic PDE in image restoration is the heat
equation: {

∂u
∂t (t, x)−∆u (t, x) = 0, t ≥ 0, x ∈ R2,

u (0, x) = u0 (x) .
(16)

We consider that u0 (x) is primarily defined on the square [0, 1]2. We extend it
by symmetry to C = [−1, 1]2, and then on all R2, by periodicity. This way of
extending u0 (x) is classical in image processing. If u0 (x) is extended in this
way and satisfies in addition

∫
C
|u0 (x)| dx < +∞, we will say that u0 ∈ L1

# (C)
(see [1]). Solving (16) is equivalent to carrying out a Gaussian linear filtering,
which was widely used in signal processing. If u0 ∈ L1

# (C), then the explicit
solution of (16) is given by

u(t, x) =
∫

R2
G√2t (x− y)u0 (y) dy =

(
G√2t ∗ u0

)
(x) ,

where Gσ (x) denotes the two-dimensional Gaussian kernel

Gσ (x) =
1

2πσ
e−

|x|2
2σ2

The heat equation has been (and is) successfully applied in image processing
but it has some drawback. It is too smoothing and because of that edges can be
lost or severely blurred. In [1] authors consider models that are generalizations

of the heat equation. The domain image will be a bounded open set Ω of R2.



The following equation is initially proposed by Perona and Malik [28]:




∂u
∂t = div

(
c
(
|∇u|2

)
∇u

)
in (0, T )× Ω,

∂u
∂N = 0 on (0, T )× ∂Ω,
u (0, x) = u0 (x) in Ω

(17)

where c : [0,∞) → (0,∞) . If we choose c ≡ 1, then it is reduced on the heat
equation. If we assume that c (s) is a decreasing function satisfying c (0) = 1
and lims→∞ c (s) = 0, then inside the regions where the magnitude of the
gradient of u is weak, equation (17) acts like the heat equation and the edges
are preserved. For each point x where |∇u| 6= 0 we can define the vectors
N = ∇u

|∇u| and T with T · N = 0, |T | = 1. For the first and second partial
derivatives of u we use the usual notation ux1 , ux2 , ux1x1,... We denote by
uNN and uTT the second derivatives of u in the T -direction and N -direction,
respectively:

uTT = T t∇2uT =
1

|∇u|2
(
u2

xuyy + u2
yuxx − 2uxuyuxy

)
,

uNN = N t∇2uN =
1

|∇u|2 (u2
xuxx + u2

yuyy + 2uxuyuxy).

The first equation in (17) can be written as

∂u

∂t
(t, x) = c

(
|∇u (t, x)|2

)
uTT + b

(
|∇u (t, x)|2

)
uNN , (18)

where b(s) = c(s) + 2sc′(s). Therefore, (18) is a sum of a diffusion in the
T -direction and a diffusion in the N -direction. The function c and b act as
weighting coefficients. Since N is normal to the edges, it would be preferable
to smooth more in the tangential direction T than in the normal direction.
Because of that we impose

lim
s→∞

b(s)
c(s)

= 0 or lim
s→∞

sc′(s)
c(s)

= −1
2

(19)

If c(s) > 0 with power growth, then (19) implies that c(s) ≈ 1/
√

s as s → ∞.
The equation (17) is parabolic if b(s) > 0. The assumptions imposed on c (s)
are 




c : [0,∞) → (0,∞) decreasing,
c(0) = 1, c(s) ≈ 1√

s
as s →∞,

b(s) = c(s) + 2sc′(s) > 0.

(20)

Often used function c(s) satisfying (20) is c(s) = 1√
1+s

. Because of the behavior
c(s) ≈ 1/

√
s as s →∞, it is not possible to apply general results from parabolic

equations theory. Framework to study this equation is nonlinear semigroup
theory (see [1, 2, 4]).

We have proved in [25] that the pseudo-linear superposition principle holds
for Perona and Malik equation.



Theorem 8.1 If u1 = u1 (t, x) and u2 = u2 (t, x) are solutions of the equation

∂u

∂t
− div

(
c
(
|∇u|2

)
∇u

)
= 0, (21)

then u1 ⊕ u2 is also a solution of (21) on the set

D = {(t, x) |t ∈ (0, T ) , x ∈ R2, u1 (t, x) 6= u2 (t, x)},

with respect to the operation ⊕ = min .

The obtained results will serve for further investigation of the weak solutions
of the equation (21) in the sense of Maslov [10, 12, 22, 23] and Gondran [7, 8],
as well as their important applications.

9 Conclusion

The pseudo-linear superposition principle, as it was shown, allows us to transfer
the methods of linear equations to many important nonlinear partial differential
equations. Some further developments related more general pseudo-operations
with applications on nonlinear partial differential equations were obtain in [22,
23, 26].
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144012, grant of MTA of HTMT, French-Serbian project ”Pavle Savić”, and by
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[2] H. Breyis, Opérateurs Maximaux Monotones et Semi-Groupes de Con-
tractions dans les Espaces de Hilbert, North-Holland Publishing Comp,
Amsterdam-London, 1973.

[3] F. Catte, P.L. Lions, J.M. Morel, T. Coll, Image selective smoothing and
edge detection by nonlinear diffusion, SIAM Journal of Numerical Analysis,
29(1):182-193, 1992.



[4] T. Cazenave, A. Haraux, Introduction aux Problemes d’Evolution Semi-
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