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Abstract: This paper focuses on malware analysis and detection using machine learning 

methods. The aim of the authors was to perform static and dynamic analysis of programs 

designed for Windows and then to present the results of the analysis as a dataset.  

We analysed and implemented different classification methods, such as decision trees, 

random forests, support vectors and naive Bayes methods. We verified their ability to 

distinguish malicious and harmless samples and evaluated their success rate using 

classification accuracy metrics. Then, we compared the results obtained by prediction over 

the dataset generated by static and dynamic analysis. Classification was more successful 

on the data gained using the dynamic analysis method. The best malware detection 

algorithms have been found to be decision tree-based algorithms, in particular the random 

forest algorithm, which achieves excellent malware detection accuracy of up to 95.95% 

with a standard deviation of only 0.58%. 
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1 Introduction 

As the number of every day users using computers/IT systems increases, so does 

the desire of attackers to obtain and exploit sensitive user information through 

malware. The number of threats and their severity is constantly increasing, and 

while in some cases, the damage caused by malware may be imperceptible to the 

user, in other cases it can lead to severe losses. 

As malware evolves over time, the creators of security solutions, aimed to protect 

systems from malware are seeking and developing new ways to detect it.  

The traditional method of malware detection using signature recognition is 

becoming less and less effective as attackers often use various obfuscation 
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techniques to modify malware code to evade this detection method and this 

method allows only the detection of known malware with known symptoms. Even 

a minor delay in the response of security solution providers upon the arrival of a 

new type of malware can cause irreparable damage, which motivates researchers 

to find more sophisticated ways to detect malicious samples, especially new 

malicious samples that have not been analysed before. 

The drawbacks of traditional malware detection methods are sought to be 

addressed by machine learning techniques, capable of detecting malware with a 

high degree of accuracy. Machine learning allows a program to learn from 

available samples and then to react to new samples, using the learned information. 

The efficiency of using machine learning to detect malware is boosted by the 

availability of labeled malicious samples freely available not only to security 

experts, but now also to the research community. Another factor of this is also the 

rapid growth of ever cheaper computing power, which allows researchers to speed 

up machine learning training and to use large quantities of samples. 

And that is why in our research we take the path of detecting malicious software 

through machine learning methods. In the first place in chapter no. 2, we analyse 

the expertise of researchers who deal with this issue. Next, we describe the 

sequence of steps of our research. In chapter no. 3 we point out security and its 

security work with malicious software. Chapter no. 4 describes how we prepared 

test samples, which were to perform the analysis, which we discuss in Chapter no. 

5. In chapter no. 6 we will create a method of creating a data set and in chapter no. 

7 we point out the classification methods of machine learning, which were trained, 

tested and subsequently evaluated on the basis of success. In chapter no. 8 we 

evaluate and interpret the results of individual machine learning models. In the 

chapter no. 9 we compare our best results with the results of researchers from 

chapter no. 2. 

2  Related Works 

The problem of malware detection using machine learning is not new and has 

been addressed in many other works. Two key phases have emerged in using 

machine learning for malware detection: feature extraction from the input data; 

and selection the most relevant ones that best represent the set of samples and 

classification. Extracting the features of potentially malicious samples can be done 

by analysis – static or dynamic [1]. The goal of the analysis is to understand the 

capabilities of the particular piece of malware, the system parts and files it can 

attack, its structure, etc. Static analysis is performed without running the analysed 

sample, as an examination of the structure and code of the analysed sample using 

various tools [2]. Dynamic analysis focuses on the behaviour of the analysed 

sample at runtime, observing the interactions with the system and its impact on the 
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system. Both types of analysis have their advantages and limitations and 

complement each other. After feature extraction, each sample is represented as a 

feature vector, used by a classification algorithm to train a machine learning 

model. 

2.1 Experimental Results 

This section provides an overview of several studies in malware detection and also 

describes some shortcomings of each approach. 

Bai et al. [3] focused on malware detection in a dataset of 19113 executables – 

8592 harmless and 10521 malicious samples. As features, they used the 

information obtained by static analysis of the headers of the executable files.  

They claimed to have found a total of 197 features, allowing them to distinguish 

harmless samples from harmful ones; they also used filtering and wrapper 

methods to select the most appropriate features. In their study, they evaluated the 

use of classification algorithms – J48 (decision trees) and random forests.  

To improve the performance of the J48 algorithm, they used combinations of 

multiple trained models in bagging and boosting techniques. The aforementioned 

authors performed a total of 3 experiments, differing in the way the data was 

classified and the choice of features. They concluded that this approach could 

detect unknown malware with a high accuracy, while maintaining a low false 

positive rate. The detection accuracies achieved in the experiments ranged from 

94.6% to 99.1%. As they concluded, the random forests algorithm and the bagging 

and boosting techniques significantly increased the classification accuracy, 

compared to the case when they used the J48 algorithm without using these 

techniques. 

The comparison of various classification algorithms was also discussed by Kumar 

et al. in [4]. They compared decision trees, random forests, K-nearest neighbors, 

logistic regression, linear discriminant analysis and naive Bayes algorithms on a 

dataset of 5210 (2488 harmless and 2722 harmful) samples. As features (68), they 

used the information obtained from the headers of the analysed executable files. 

The aforementioned authors achieved the best overall accuracy (98.78%) using the 

Random Forests algorithm. The worst detection success rate (56.04%) was found 

when using the Naive Bayes algorithm. An interesting feature of the work was the 

use of the so-called integrated feature set, which was used to increase the overall 

accuracy of the classification algorithms. 

In [5], Moser et al. point out the problems of static analysis in malware detection. 

They demonstrate obfuscation techniques and point out that static analysis alone 

may no longer be sufficient for malware detection. In their paper, they conclude 

that dynamic analysis should be a necessary complement to static analysis, as it is 

significantly less vulnerable to obfuscating code transformations. 
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In [6], Firdausi et al. used the K-nearest neighbours, Naive Bayes, Support Vector 

Machine, J48, and Multilayer Perceptron algorithms on the features obtained by 

dynamic analysis using Anubis, a freely available dynamic analysis tool.  

The dataset consisted of executable samples, including a total of 220 unique 

malware samples. In several different experiments, they achieved the best 

accuracy (96.8%) using the decision tree-based J48 algorithm. On the contrary, 

they achieved the worst results (only 62.8%) using the Naive Bayes algorithm.  

As the authors conclude, malware detection using machine learning combined 

with dynamic analysis is a fairly effective method. 

Shijo & Salim [7] also focused on this approach and took advantage of the 

benefits of static and dynamic analysis. They used a combination of both types of 

analysis to detect malicious samples using machine learning on a dataset of 1487 

(997 malicious and 490 benign) samples. Static features were strings extracted 

from executables. They performed dynamic analysis using the Cuckoo Sandbox 

tool in a secure, virtual environment, outputting a report on the execution 

behaviour of each sample, listing API calls and registry changes. The authors used 

2 algorithms in their work, namely the support vector method and the random 

forest algorithm. As the authors of the aforementioned paper reported, they 

obtained best results using the support vector method, namely a detection 

accuracy of 95.88% for static analysis, 97.1% for dynamic analysis and 98.7% by 

combining the two. Thus, the achieved results showed that the combination of 

static and dynamic analysis increased the detection accuracy compared to the use 

of static and dynamic analysis alone. However, a disadvantage of the study was 

the smaller number of samples used for training. 

2.2 Evaluation of the Experiments 

The related works and existing solutions make it clear that using machine learning 

to detect malicious samples is advantageous and brings a number of benefits over 

the traditional malware detection approaches. Using a combination of static and 

dynamic analysis to extract symptoms from individual samples seems to be the 

most advantageous, as using only one of the methods is no longer sufficient. 

Research shows that when selecting an appropriate machine learning algorithm, 

using decision trees to detect malware seems to be a suitable approach – due to the 

accuracy of detecting malicious samples using decision-tree-based algorithms. 

Detection accuracy can also be increased by combining multiple trained models, 

as it is evident in the case of using the Random Forests algorithm. Knowing this, 

one may design a system capable of classifying a sample as harmful or harmless 

with high accuracy, based on performing static and dynamic analysis of the 

particular sample. 
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Based on the data obtained from previous research experiments, we performed 

further research. This focused on the combination of static and dynamic analysis 

and on the combination of several trained malware detection models. 

3  Secure Test Environment 

An important element of static and dynamic software analysis is the environment, 

in which the analysis itself takes place. The goal is to create an environment 

providing no obstacles to the particular piece of malware, allowing its observation 

in its full beauty. However, it is necessary to prevent malware from breaking out 

from this environment and causing real damage. 

3.1 The Virtual System 

For our research, we chose to use Oracle VirtualBox 6.1 virtualization software.  

It should be noted that keeping virtualization software up-to-date is key, as many 

types of malwares attempt to detect execution in a virtual environment and exploit 

its security flaws to infect the host system. 

As the guest virtual operating system, we chose Windows 7. At the time, this 

version of the operating system was widely used and widely deployed. As a result, 

a large amount of malware targeting this system appeared. Compared to Windows 

10, Windows 7 can be modified to execute malicious code more easily, as 

Windows 10 incorporates a number of automated security features that are 

laborious to disable and keep disabled. 

We installed Dependency Walker (a static analysis tool) and Cuckoo Sandbox  

(a dynamic analysis tool, necessary for the execution and to uncover the intent of 

the particular piece of malware) into the virtual environment. The installation of 

third-party software also helped to reduce the sterility of the operating system.  

The latter could cause the malware to detect the execution of the virtual 

environment and lead to a failure of the analysis. 

In order to pretend that the environment is that of a device used daily, for some 

time, we used the virtual operating system to perform common activities such as 

browsing web pages, downloading documents from the Internet, playing 

audiovisual media, etc. This regular use of the system led to the creation of 

temporary files and registry entries, which also help to mask the fact that it is a 

virtual system. 

To increase the likelihood of successful malware execution, we used older 

versions of the respective programs. 
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A very important step in the preparation of the virtual test environment was the 

modification of the security settings of the Windows operating system.  

The modifications consisted of disabling the following: 

1) Windows Defender, a security program that would actively prevent 

malware execution, 

2) the Windows Update service, which could install security patches and 

passively prevent malware from being executed; and 

3) Windows Firewall, a security program that would monitor the flow of 

data between networks. 

A snapshot of the system was taken after the system configuration was completed. 

This provides continuous access to the desired virtual operating system 

configuration, which can be restored any time, preventing lengthy reconfiguration. 

Creating a system snapshot is a very important step in performing dynamic 

analysis. Restoring it allows to negate any impact of the analysed code on the 

system. It also ensures the same starting conditions for the analysis of each 

sample. The system snapshot is an important element, also used by the Cuckoo 

Sandbox tool when automating the analysis. 

3.2 The Host System 

As the host operating system of the workstation, we used Ubuntu 18.04. This 

Linux-based system was chosen because Cuckoo Sandbox works best on Linux-

based systems. Version 18.04 was necessary because it is the last version of the 

Ubuntu operating system that both natively supports and includes the Python 2.7 

programming environment. Python 2.7 is required to properly install Cuckoo 

Sandbox software and its supporting programs, as currently, newer versions (3.x) 

are not supported by the Cuckoo Sandbox project. The employed version of 

Cuckoo Sandbox was version 2.0.7. 

For added security when working with malware, virtuaenv, a Python virtual 

environment has been established on the host system, without administrative 

(sudo) privileges. With this, every time Cuckoo Sandbox needed to perform an 

operation requiring such a privilege, the user had to confirm the operation. 

4  Preparation of Test Samples 

For the purposes hereof, malware samples were obtained from virusshare.com, an 

online malware sample repository [9]. This provides real malware samples for 

people such as security researchers, forensic analysts, etc. It is maintained by the 

users themselves, contributing verified malware samples to it. 
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We downloaded the VirusShare\_00164.zip package. We chose to use it for its 

relatively small size (11.88 GB), compared to other packages. Moreover, the more 

significant reason for its selection was the date it was added – 15 September 2015. 

This paper focuses on the analysis of malware infecting Windows devices, as this 

system is the target for the largest amount of available malware. 

For this reason, 15 September 2015 is potentially the most appropriate date, as: 

 the most widely used version of the Windows operating system in 2015 

was Windows 7, with a 62.31% share [10] of all Windows versions. 

 Windows 10 was released on 29 July 2015. Thus, back then, a large 

amount of malware was uploaded to VirusShare.com by the users of 

Windows 7, the target system for this work. 

The healthy samples used in this work are executable programs such as web 

browsers, audio and video players, UI customization tools, etc. These were 

obtained from portablefreeware.com [11] and portableapps.com [12], hosting a 

large number of downloadable executables. 

The downloaded malware sample package in the zip archive contains 65536 

malware samples. For the purposes hereof, 3000 executable samples with the .exe 

extension were selected. Healthy samples are represented by 838 executable 

programs. Thus, there were approximately 3.6 malware samples for each healthy 

sample. 

A total of 3838 samples were analysed – see Table 1. These were analysed to 

create the dataset needed for the machine learning process. 

Table 1 

Number of Samples Prepared for Analysis 

sample class sample count 

malware 3000 

healthy 838 

malware + healthy 3838 

5 Analysis Execution 

After successfully preparing the test samples, we produced the final dataset, which 

we then used to perform static and dynamic analysis. 

5.1 Comparison of Static and Dynamic Analysis 

Unlike static analysis, dynamic analysis does not require malware source code, as 

it can be performed on any application [13] [14]. Unlike static analysis, dynamic 
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analysis can track the actual malware functionality [15], since certain parts of the 

code, such as an imported library, do not mean active execution of particular 

library functions. 

However, static analysis has several advantages over dynamic analysis (where the 

examined sample is executed), the most significant of which being speed, security 

and low requirements [16]. 

The fact that static analysis does not monitor the behaviour of the programs, 

comes with certain disadvantages, which are, on the other hand, the advantages of 

dynamic analysis [17] [18]: 

 it is impossible to observe the real behaviour of the particular program; 

 it is hard to detect functions actually used; 

 it is hard to classify programs with hardly accessible code; 

 it is impossible to identify unknown malware. 

5.2 Static Analysis 

To generate the outputs of the static analysis, we used Microsoft’s Dependency 

Walker tool to analyse executable files. It displays all the modules of the 

monitored file in a hierarchical tree structure. It is freely available for 32 and 64-

bit Windows systems. 

Using Dependency Walker, we analysed the file headers and functions. Then, we 

saved the obtained information in a text file. Given that over 3000 samples had to 

be analysed, doing this manually was not an option. Therefore, we used the 

Robotask tool to run Dependency Walker and then send instructions to it. It looped 

through all the samples in the folder and sent the following instructions: 

 CTRL+O  – open dialog box to open the file; 

 absolute path  – the path to the file to be analysed; 

 ENTER  – confirm the selected file. 

Then, after the analysis, Robotask sent further instructions:  

 CTRL + S  – save the retrieved files; 

 absolute path  – where to save the data;  

 3 x TAB  – select the format of the file to be saved – we chose 

„Text with list of imported/exported functions” 

 ENTER  – confirm saving; 

The obtained text files contained a huge amount of sample data. For the purposes 

hereof, it sufficed to focus on the essential details to distinguish a malicious 

sample from a clean sample. The publicly available Windows API puts enormous 
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power in the hands of malware creators [19], and this is what our research focuses 

on. In [20], the authors describe the features most commonly used by malware. 

5.3 Dynamic Analysis 

The first step of dynamic analysis was to configure the Cuckoo Sandbox 

environment. The option to create a memory dump was disabled after the sample 

analysis was completed. Creating memory dumps of the virtual operating system 

for each analysed sample would quickly fill the storage space of the workstation 

used to perform the analysis. Moreover, this analysis information is not relevant to 

the purposes hereof. 

The analysis mode was set to headless, so the analysis would be performed in the 

background, without allowing on-screen observation of the behaviour of the 

virtual system. This saved system resources. Moreover, with such a large amount 

of analysis it would have been impossible to monitor the graphical output of the 

virtual system. For the same reason, we also disabled the virtual system tool 

producing screenshots upon any change on the screen during the analysis. 

We enabled the possibility to simulate mouse movements in the virtual system 

during the analysis, to create a more credible impression of the real system 

running the malicious code. 

After finishing the configuration of the Cuckoo Sandbox tool, we could actually 

execute the analysis. The analysis can be initialized either using a command line 

interface or through a graphical web interface using the localhost server on port 

8080. Since the web interface was more user-friendly, we chose this for batch 

execution of the analyses. 

The following items can be configured before running the analysis: 

 Network routing  how the sample to be analysed will access the Internet. 

 Package  the file type according to which the appropriate analysis 

procedure will be selected.  

 Priority  the priority of the analysis of the sample. 

 Timeout  an important parameter of the analysis – this determines 

how long the analysis will run (in seconds). 

6 Creating the Dataset 

The dataset is a set of data used to train, test or otherwise work with algorithms. 

However, it has to have the appropriate form to allow any further operation. 



J. Palša et al. Using Machine Learning Algorithms to Detect Malware  
 by Applying Static and Dynamic Analysis Methods 

 – 186 – 

6.1 Processing the Outputs of Static Analysis 

After analysing all datasets, it was necessary to consolidate the results into the 

final dataset form. As the dataset we used the occurrences of importing the 112 

selected functions. 

Then, we saved the dataset in comma-separated values (csv) format. For this 

purpose, we wrote a Python script to sequentially scan through the obtained text 

files containing information about the samples, to find the aforementioned 

features. We were only interested in those occurrences where the function was 

actually used, i.e. we only searched for imported functions. The search results 

were written to another text file. At the beginning of this file, there was a header 

with the “TARGET” entries (i.e. whether the sample was malicious or not), the 

“filename” (name of the sample) and then the names of all selected functions. 

Two different versions were created. The first contained the number of 

occurrences of each of the selected functions, while the second contained only 

binary information about whether the function was used at least once. One line 

was created for each sample, with the following format: clean file – 0, malicious 

file – 1, filename, then the number of calls and/or binary information for each 

selected function. This data was separated by commas, as it is common for .cvs 

files, well-known by the libraries used in machine learning. 

After performing the static analysis and converting the results to csv format, the 

dataset was ready for use. In its final form, it had 3584 records. Its layout is shown 

in Table 2. 

Table 2 

Structure of the Dataset after Static Analysis 

sample class sample count 

malware 2747 

healthy 837 

malware + healthy 3584 

6.2 Processing the Outputs of Dynamic Analysis 

After successful analysis of the malware sample by the Cuckoo Sandbox 

automation software, an analysis report is generated. This provides a summary of 

the results of all the processes that were performed on the sample. To create a 

dataset to train and test the machine learning model, all obtained reports have to 

be processed. To process the data and create the dataset, we used the Python 

programming language, specifically version 2.7. 

The standard data package obtained after analysing the sample is a directory with 

many subdirectories. However, we were only interested in the reports 
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subdirectory, containing the resulting analysis report (called report, stored in json 

format). 

In order to work with the analysis reports as efficiently and quickly as possible, a 

script was created – this goes through all the files and deletes the ones that are not 

named report.json. The unnecessary files include various temporary files created 

by Cuckoo Sandbox. This reduces the number of files scanned during the later 

operations and increases the speed of those operations. 

After cleaning-up the working directory containing the analysis reports, we could 

start processing the reports themselves. The processing consisted of the following 

steps: 

1) List the names of all functions called from the Windows API library.  

The function names will form the attributes of the respective samples.  

A separate script was created to retrieve all unique function names from 

all messages. 

2) Create the dataset structure. The number of analysed samples indicates 

the number of rows in the dataset. The header consists of attributes 

whose count is equal to the number of unique system calls obtained in the 

previous step. 

3) Rescan all reports. The first pass was necessary to determine the number 

of samples and their total number of attributes to create the dataset 

structure. The second pass is handled by a similar script, though this time 

the script adds each function call found in the message to the appropriate 

column labelled with the name of that function for each single sample 

found in the dataset. 

4) Add a binary identifier as the first attribute of the sample to indicate 

whether it is malicious or benign. Malware samples had the malware 

attribute set to 1, while healthy samples had this attribute set to 0. 

5) Save the dataset to a file in comma-separated-values (csv) format. 

The structure of the dataset gained by processing the reports is shown in Table 3. 

Table 3 

Structure of the Dataset after Dynamic Analysis 

sample class sample count 

malware 2937 

healthy 828 

malware + healthy 3765 
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7  Machine Learning Classification Methods 

In this work, four supervised machine learning classification methods ([21], [22], 

[23], [24]) have been investigated: 

1) the Decision Tree method, 

2) the Random Forest method, 

3) the Support Vector method, and 

4) the Naive Bayes method. 

For each classification method, a classifier was selected from the Scikit-Learn 

library [25], this was then trained and tested. The data were normalized by scaling 

using the StandardScaler() function. For the support vector method classifier, 

unlike the other classification methods used, up to 3 models were created, 

depending on the type of kernel used. 

A custom function with nested for () loops was used to tune the hyperparameters, 

where all combinations of hyperparameter values were tested. Instead of cross-

validation, a custom implementation was created. In this, all combinations of 

hyperparameters were tested 30 times, but at each of the 30 iterations, the dataset 

was re-segmented into training and test datasets in order to obtain diverse input 

data. This ensured that the success of the classifier in prediction was verified by 

using a particular combination of its hyperparameters. 

8  Evaluation and Interpretation of Results 

The evaluation phase of the prediction model is where the ability of the applied 

algorithm to correctly classify a sample from the test dataset is verified. Unlike in 

the learning phase (where, in addition to the training data, the algorithm uses also 

the attributes of classes of these data), in this phase, when working with the test 

data it has no information about what group the sample belongs to. In this work, 

all classifiers were trained on 75% of the input dataset and tested on the remaining 

25%. The algorithm assigns a class attribute to the test data – according to its best 

knowledge – and then its performance is evaluated by the evaluation metric used. 

Many evaluation metrics will use true positive (TP), false positive (FP), true 

negative (TN) and false negative (FN) values in their calculations. These values 

are expressed in a confusion matrix. 

The confusion matrix, as shown in Table 4, divides the data into four groups 

according to their actual and predicted class: 

 true positive – correctly classified positive samples, i.e. samples correctly 

classified as malware, 
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 false positives – misclassified negative samples, i.e. harmless samples 

classified as malware, 

 true negative – correctly classified negative samples, i.e. samples 

correctly classified as harmless, 

 false negative – misclassified positive samples, i.e. malware samples 

predicted to be harmless. 

Table 4 

Confusion Matrix 

  PREDICTED CLASS 

  positive negative 

T
R

U
E

 

C
L

A
S

S
 

positive true positive true negative 

negative false positive false negative 

It is very important to choose an appropriate evaluation metric because not every 

metric is suitable for all cases. It depends on whether we desire to achieve a high 

overall success rate for the delivered data or whether the focus is on a particular 

class. For the purposes hereof, we used the following evaluation metrics [26]: 

 classification accuracy and 

 sensitivity. 

Classification accuracy 

The metric of classification accuracy as shown in Equation 1, indicates the 

proportion of correctly classified samples to all samples. In measuring 

classification accuracy, the size of the classes is not taken into account and hence 

no weights are assigned to the classes. 

 
(1) 

Sensitivity 

Sensitivity as shown in Equation 2 is the ratio of correctly classified positive 

samples to the total number of positive samples. It represents the percentage of 

correctly identified malware files. 

 
(2) 

8.1 Decision Tree 

Table 4 shows the results obtained using the decision tree algorithm. Using static 

analysis, the decision tree method achieved the highest classification accuracy 

values of almost 90%. When using dynamic analysis, the values exceeded 94%. 
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Table 4 

Success Rate of the Decision Tree Model 

Static analysis Dynamic analysis 

Parameters Accuracy (%) Sensitivity (%) Parameters Accuracy (%) Sensitivity (%) 

DT_S_1 89,74 ± 0,98 95,76 ± 1,08 DT_D_1 94,53 ± 0,74 96,37 ± 0,73 

DT_S_2 89,70 ± 0,99 95,75 ± 1,03 DT_D_2 94,38 ± 0,65 96,27 ± 0,69 

DT_S_3 89,63 ± 1,11 95,73 ± 1,22 DT_D_3 94,30 ± 0,80 96,10 ± 0,93 

DT_S_4 89,61 ± 0,98 95,06 ± 0,77 DT_D_4 94,22 ± 0,78 96,22 ± 0,79 

DT_S_5 89,59 ± 1,18 95,10 ± 1,07 DT_D_5 94,18 ± 0,73 96,23 ± 0,71 

8.2 Random Forest Method 

Table 5 shows the prediction success rate of the Random Forest method. The latter 

achieved the highest classification accuracy values for both static and dynamic 

analysis, reaching values exceeding 91% for static analysis and almost 96% for 

dynamic analysis. This proves that the composite random forest method is more 

efficient than the decision tree method alone. 

Table 5 

Success Rate of the Random Forest Model 

Static analysis Dynamic analysis 

Parameters Accuracy (%) Sensitivity (%) Parameters Accuracy (%) Sensitivity (%) 

RF_S_1 91,32 ± 0,92 96,94 ± 0,60 RF_D_1 95,95 ± 0,58 98,08 ± 0,49 

RF_S_2 91,26 ± 0,88 96,91 ± 0,54 RF_D_2 95,93 ± 0,62 98,06 ± 0,51 

RF_S_3 91,25 ± 0,90 97,00 ± 0,61 RF_D_3 95,91 ± 0,70 98,12 ± 0,53 

RF_S_4 91,24 ± 0,85 96,84 ± 0,61 RF_D_4 95,90 ± 0,68 98,10 ± 0,53 

RF_S_5 91,23 ± 0,88 96,80 ± 0,63 RF_D_5 95,88 ± 0,72 98,10 ± 0,56 

8.3 Support Vector Method with a Linear Kernel 

The Support Vector method achieved the highest classification accuracy 

amounting to 87.94% when using static analysis and 95.95% when using dynamic 

analysis, as shown in Table 6. In dynamic analysis using the Support Vector 

method, the linear kernel yielded the highest value of classification accuracy of all 

kernels. 

Table 6 

Success Rate of the Support Vector Model Using a Linear Kernel 

Static analysis Dynamic analysis 

Parameters Accuracy (%) Sensitivity (%) Parameters Accuracy (%) Sensitivity (%) 

SVCL_S_1 87,94 ± 1,02 95,75 ± 0,86 SVCL _D_1 92,38 ± 0,83 97,82 ± 0,62 

SVCL_S_2 87,92 ± 0,84 95,44 ± 0,87 SVCL _D_2 92,37 ± 0,84 97,83 ± 0,63 

SVCL_S_3 87,01 ± 1,19 96,76 ± 0,70 SVCL _D_3 92,36 ± 0,82 97,81 ± 0,62 

SVCL_S_4 84,10 ± 1,10 88,42 ± 1,32 SVCL _D_4 92,25 ± 0,77 97,52 ± 0,63 

SVCL_S_5 83,93 ± 1,09 88,22 ± 1,49 SVCL _D_5 92,25 ± 0,75 97,49 ± 0,62 
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8.4 Support Vector Method with a Radial Kernel 

The values obtained using the Support Vector method and a radial kernel are 

shown in Table 7. The highest classification accuracy was 87.94% in case of static 

analysis and 92.38% in case of dynamic analysis. 

Table 7 

Success Rate of the Support Vector Model Using a Radial (rbf) Kernel 

Static analysis Dynamic analysis 

Parameters Accuracy (%) Sensitivity (%) Parameters Accuracy (%) Sensitivity (%) 

SVCR_S_1 88,11 ± 0,61 96,69 ± 0,65 SVCR_D_1 91,93 ± 0,84 98,68 ± 0,50 

SVCR_S_2 87,84 ± 0,67 96,61 ± 0,67 SVCR_D_2 91,84 ± 0,90 98,46 ± 0,65 

SVCR_S_3 87,76 ± 0,73 96,53 ± 0,73 SVCR_D_3 91,71 ± 0,73 98,61 ± 0,57 

SVCR_S_4 87,68 ± 0,78 96,94 ± 0,63 SVCR_D_4 91,66 ± 0,82 98,90 ± 0,55 

SVCR_S_5 87,60 ± 0,75 96,39 ± 0,74 SVCR_D_5 91,65 ± 0,82 98,88 ± 0,51 

8.5 Support Vector Method with a Polynomial Kernel 

As far as static analysis is concerned, the highest achieved classification accuracy 

of the polynomial function kernel of the support vector method amounted to 

88.48%. When using dynamic analysis, this value changed to 92.17%. The results 

are shown in Table 8. 

Table 8 

Success Rate of the Support Vector Model Using a Polynomial Kernel 

Static analysis Dynamic analysis 

Parameters Accuracy (%) Sensitivity (%) Parameters Accuracy (%) Sensitivity (%) 

SVCP_S_1 88,48 ± 0,78 95,46 ± 0,66 SVCP_D_1 92,17 ± 0,79 97,60 ± 0,69 

SVCP_S_2 88,38 ± 0,75 95,31 ± 0,70 SVCP_D_2 92,17 ± 0,80 97,59 ± 0,70 

SVCP_S_3 88,33 ± 0,80 95,40 ± 0,81 SVCP_D_3 92,16 ± 0,84 97,33 ± 0,77 

SVCP_S_4 88,31 ± 0,93 95,39 ± 0,77 SVCP_D_4 92,15 ± 0,83 97,32 ± 0,76 

SVCP_S_5 88,23 ± 0,81 95,16 ± 0,69 SVCP_D_5 92,14 ± 0,76 97,60 ± 0,70 

8.6 Naive Bayes Method 

The naive Bayes method produced the most drastically different results, 

comparing static and dynamic analysis. However, neither method was able to 

correctly predict the occurrence of malware samples, as it is evident in Table 9. 

Also, in case of both analysis types, this method achieved the largest standard 

deviation values when using the naive Bayes classifier. 

Table 9 

Success Rate of the Naive Bayes Method Model 

Static analysis Dynamic analysis 

Parameters Accuracy (%) Sensitivity (%) Parameters Accuracy (%) Sensitivity (%) 

NB_S_1 42,27 ± 1,28 26,61 ± 1,66 NB_D_1 59,53 ± 1,76 48,58 ± 2,42 

NB_S_2 42,22 ± 1,26 26,55 ± 1,63 NB_D_2 59,12 ± 1,51 48,00 ± 2,10 

NB_S_3 42,20 ± 1,28 26,51 ± 1,67 NB_D_3 58,43 ± 1,99 47,27 ± 2,67 

NB_S_4 42,08 ± 1,26 26,33 ± 1,64 NB_D_4 54,45 ± 2,38 42,40 ± 3,14 

NB_S_5 42,05 ± 1,26 26,29 ± 1,64 NB_D_5 48,58 ± 2,00 34,63 ± 2,57 
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8.7 Summary 

Table 10 compares the highest values achieved for each algorithm. Using both 

types of analysis (static analysis-Figure 1, dynamic analysis-Figure 2), the random 

forests method, the decision tree method and the support vector method achieved 

good results. 

On the other hand, the naive Bayesian methods could not cope with the particular 

problem. The most efficient model herein was the random forests model in 

dynamic analysis, where it achieved a classification accuracy value of 95.95% 

with a standard deviation of only 0.58%. 

Table 10 

Comparison of the Best Predictions of the Algorithms Used 

Static analysis Dynamic analysis 

Algorithm Accuracy (%) Sensitivity (%) Algorithm Accuracy (%) Sensitivity (%) 

RF 91,32 ± 0,92 96,94 ± 0,60 RF 95,95 ± 0,58 98,08 ± 0,49 

DT 89,74 ± 0,98 95,76 ± 1,08 DT 94,53 ± 0,74 96,37 ± 0,73 

SVC_P 88,48 ± 0,78 95,46 ± 0,66 SVC_L 92,38 ± 0,83 97,82 ± 0,62 

SVC_R 88,11 ± 0,61 96,69 ± 0,65 SVC_P 92,17 ± 0,79 97,60 ± 0,69 

SVC_L 87,94 ± 1,02 95,75 ± 0,86 SVC_R 91,93 ± 0,84 98,68 ± 0,50 

NB 42,27 ± 1,28 26,61 ± 1,66 NB 59,53 ± 1,76 48,58 ± 2,42 

 

 

Figure 1 

The Highest Values Achieved for Each Algorithm in Static Analysis 
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Figure 2 

The Highest Values Achieved for Each Algorithm in Dynamic Analysis 

9  Comparison of Studies 

A comparison of the results of the best algorithms mentioned in the analysed 

papers and the present study are shown in Table 11. The best malware detection 

algorithms were found to be decision-tree-based algorithms, especially the random 

forest algorithm, which achieves excellent malware detection accuracy by 

aggregating the results of multiple decision tree classifiers for a more accurate 

result. The algorithm performed well on the features obtained by both static and 

dynamic analysis, but also in hybrid analysis, where it achieved only 1% less 

accuracy and sensitivity than the best algorithm, the Support Vector method.  

The differences in the results of the different papers may be due to the different 

features and also to their count, as the best accuracies were achieved in the papers 

sporting fewer features. This was achieved by using methods to select the most 

relevant flags and removing irrelevant flags that may be useless for the model. 

The size of the dataset and the different types of malwares in the malicious 

samples could also have an impact on the results. 
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Table 11 

Comparison of the Best Algorithms from the Analysed Papers 

Paper Analysis Data Algorithm Accuracy 

(%) 

Sensitivity 

(%) 

Bai et al.  static analysis 
harmless –  8592 Random 

forests 
99,9 99,1 

harmful –  10521 

Kumar et 

al. 
static analysis 

harmless –  2488 Random 

forests 
98,78 99,0 

harmful –  2722 

this study static analysis 
harmless –  837 Random 

forests 
91,32 96,94 

harmful –  2747 

this study dynamic analysis 
harmless –  828 Random 

forests 
95,95 98,08 

harmful –  2937 

Firdausi 

et al. 
dynamic analysis 

harmless –  250 
J48 96,8 95,9 

harmful –  220 

Shijo & 

Salim 
hybrid analysis 

harmless –  490 Support 

vector 

method 

98,71 98,7 
harmful –  997 

Data comparison from the Table 11 represented in graph Figure 3. 

 

Figure 3 

Comparison of the Best Algorithms from the Analysed Papers in Graph Form 

Conclusion 

Of all machine learning classification methods used, random forests achieved the 

best results in both types of analyses. 

In addition to random forests, decision trees and support vector methods also 

achieved solid results. 

The Naive Bayes methods did not prove to be able to correctly detect malware 

samples, compared to the other machine learning methods used.
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In general, all algorithms achieved higher values of both classification accuracy 

and sensitivity when using the dataset created by dynamic analysis of the samples. 

However, by combining static and dynamic analysis and also by combining 

multiple trained models, the accuracy of malware detection improved. 
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