
Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 233 ‒

Improving Multiagent Actor-Critic
Architectures, with Opponent Approximation
and Dropout for Control

Gabor Paczolay, Istvan Harmati
Department of Control Engineering, Budapest University of Technology and
Economics, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
paczolay@iit.bme.hu; harmati@iit.bme.hu

Abstract: In the domain of reinforcement learning, solution proposals to multiagent problems
are evolving. We propose a new algorithm, MADDPGX, to handle the problem of higher
uncertainty created by other agents’ actions by an enemy actor approximator, and we
investigate the most efficient techniques of estimations. This approximation works using a
neural network, which has the input of the state and the output as the action (probably
preferred by the enemy agent). We also experimented with dropout, a tool commonly used
for neural networks, but has not been used efficiently for reinforcement learning until now.
We have also found that in multiagent actor-critic scenarios, it can improve overall
performance. Generally, our contribution is the use of action approximation of adversaries
and the dropout usage in actor-critic systems, with a conclusion that the newly proposed
methods will perform better in zero-sum multi-agent robot system scenarios. The experiments
were conducted in a multiagent predator-prey environment.

Keywords: reinforcement learning; multiagent learning; dropout; MADDPG; MADDPGX

1 Introduction

Reinforcement learning is a fast emerging field in the domain of artificial
intelligence. Due to the increase of the computing powers, it is becoming a reality
to solve more complex control problems efficiently, which would otherwise require
a very fragile and precise mathematical model. However, having multiple agents in
the environment makes it much harder to solve the task as each agent introduces a
high uncertainty related to their specific policy, because as each agent performs
their own action, the learning algorithms generally rely on that specific choice, and
it is harder to deal with the fact that those agents will later perform another action
in the same situation due to their learning having advanced. This problem is
addressed by the sub-domain of multiagent reinforcement learning, which considers
the multitude of the agents and either tries to pay attention to the opponents’ actions

mailto:paczolay@iit.bme.hu

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 234 ‒

(this branch is called as a competitive multi-agent scenario) or tries to figure out an
action ensemble which leads to the most reward (this is called as a cooperative
multi-agent scenario). Our proposed algorithm, that is presented in this paper was
tested on both the cooperative and the competitive elements of the environment that
we use, and as it will later be clear due to the results, it behaves the best when it is
used on the competitive domain due to the lower uncertainties in this scenario.

Whenever we, humans, try to figure out the best action that would contradict our
opponent’s hostile behavior, we can ask ourselves: "What would my opponent do
in this situation?" Then, we take this estimation and form our next action, based on
it, deciding the action which yields us the best returns. This method is what we use
in our proposed algorithm: We estimate the opponents’ state-action assignment (in
actor-critic algorithms, it is the actor) and train our actor such that it takes this
estimation as part of its input. The critic is also trained based on the assumptions
made by the approximating model.

Later in this paper we examine the effects of applying dropout in the field of
reinforcement learning. It is actively used in general deep learning due to its effect
of decreasing the possibility of overfitting, but up until now, its usage was opposed
for reinforcement learning, especially because higher variance is not required in
single-agent reinforcement learning. The dropout effects were not tested in the
domain of multiagent reinforcement learning, we address this problem in our paper.
Our results show that dropout has its certain place in this field as well, and we try
to give as precise information on its possible applications.

Littman [12] was the first to use Minimax-Q, a zero-sum multiagent reinforcement
learning algorithm and he applied it to a simple robotics soccer game environment,
later Hu and Wellmann [11] brought the Nash-Q algorithm to the world and they
utilized in a small grid-world environment to show the algorithm’s achievements.
Bowling [4] sped up the training process while ensuring convergence by varying
the learning rate. Later, he applied his proposal, the Win or Learn Fast methodology
to an algorithm based on an actor-critic system to have better multiagent
performance [5].

Reinforcement learning’s huge leap forward happened when convergence of deep
neural networks was improved and one could use them in these scenarios. Mnih et
al. [15] invented the Deep Q-Network (DQN) algorithm and its invention was made
to play Atari games with success by multiple frame feeds and using experience
replay for better chance for convergence. Then, researchers combined deep
reinforcement learning and multi-agent systems, its most simple form is called
independent multi-agent reinforcement learning. Foerster et al. [8] experimented
with stabilizing experience replay, a buffer of states, actions, rewards and next states
to improve convergence, for independent Q-learning (IQL) by utilizing so-called
fingerprints. Researchers have also made multiple advancements in the field of
centralized learning and decentralized execution as well, for example, when
Foerster et al. [7] created Counterfactual Multi-Agent Policy Gradients, where the

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 235 ‒

problem of multi-agent credit assignment was solved by training agent policies by
comparing its actions to other actions it could have taken. Sunehag et al. [21] used
Value Decomposition Networks with a common reward and Q function
decomposition. Lowe et al. [14] made improvements to the Deep Deterministic
Policy Gradient algorithm by a changing the critic to contain all actions of all of the
agents, this change, thus the algorithm would be able to learn multi-agent
environments with better efficiency. Shihui et al. [19] made advancements to the
previously described MADDPG algorithm by altering it to achieve better
performance in environments with zero-sum payoff by using a method based on the
Minimax-Q learning algorithm. Davies [6] applied a Model Opponent Learning
algorithm to the previously mentioned MADDPG method. Casgrain et al. [3]
modified Mnih’s Deep Q-network algorithm by using methods based on Nash
equilibria, which made it able to solve multi-agent environments.

To inspect the performance of their algorithms, researchers have also made several
benchmarks, even for multiagent environments. Vinyals et al. [24] took the game
of Starcraft II and made it to be a learning environment for multi-agent scenarios.
Samvelyan et al. [18] also utilized Starcraft as a multiagent benchmark
environment, but in this case, the aim was micromanagement, controlling each unit
separately. Liu et al. [13] created a multiagent, continuous simulated physics-based
soccer environment. Bard et al. [2] made huge advancements of multi-agent
learning with the Hanabi game benchmark, where the agents have to cooperate with
each other in partially observable scenarios.

Other kinds of control and learning algorithms may also be considered, too. Babqi
et al. [1] compared MPC and PI control for power electronic devices. Hakan et al.
[9] created a test platform for vertical drones. Preitl et al. [17] utilized quadratic
programming in fuzzy systems. Precup et al. [16] used generic 2DOF linear and
fuzzy controllers for integral processes. Hemza et al. [10] utilized fixed point
iteration in single variable second order systems, while Zamfirache et al. [25] used
an actor-critic RL solution for servo systems. Our method is more robust than the
methods listed in the paragraph.

Our work also builds upon the MADDPG algorithm and takes a similar route to the
Model Opponent Learning algorithm, but relies more upon the action
approximation of the actors using a neural network where the inputs are the states
and the outputs are the agent’s most probable preferred actions. This is our main
contribution in this paper, and it can improve the performance of agents in
competitive environments. Also, we dive deeper into the possible architectures and
algorithm realizations of the action approximation. In addition, we approach the
usage of dropout in ways that were not used before with as precise information on
its usage as we can. This contribution utilizes a method previously, solely, used in
other domains of deep learning and proves to be useful in deep reinforcement
learning as well.

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 236 ‒

Our new methodologies have their certain positions in engineering applications as
well. The opponent approximator method is usable for zero-sum multi-agent robot
systems, such as collision avoidance in aircraft control, where the other planes can
be considered as “enemies”, and the objective is to minimize the time of arrival. It
is also in Unmanned Aerial Vehicles of other types, for guarding an area against
intruders. Our dropout contribution is also utile under these conditions, but it can
also be useful in any multi-agent scenarios, control problems included. The new
ideas of this paper are the MADDPGX algorithm and the dropout utilization.

In this work, first we take a look at the theoretical background. Later, we show the
used benchmarks for our tests, then we explain our experiments and the results
obtained by them. At the end, we conclude our work and give suggestions for future
research possibilities.

2 Theoretical Background

2.1 Markov Decision Processes

Markov Decision Process is a discrete-time process for decision making modeling.
Figure 2 shows the basics of this mathematical framework. It has the following
elements: states of the whole environment, selectable actions by the agent, transition
probabilities between the states with respect to the actions and rewards given to the
agents. [1]. Every timestep the process has the same method: starting at a specific
state (𝑠𝑠), it has an available action space. From that, the agent selects and action (𝑎𝑎),
and based on the state-action pair, it will receive a reward (𝑟𝑟), then it arrives in a
new state (𝑠𝑠′). A stochastic process is called Markovian if:

𝑃𝑃(𝒂𝒂𝒕𝒕 = 𝒂𝒂|𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕−𝟏𝟏, . . . , 𝒔𝒔𝟎𝟎,𝒂𝒂𝟎𝟎) = 𝑃𝑃(𝒂𝒂𝒕𝒕 = 𝒂𝒂|𝒔𝒔𝒕𝒕) (1)

 which can be described such as state transitions depend only on the last state and
the currently selected action. Due to this, only these two are important in the
decision of the following state.

The policy, a state-action assignment, is very important in Markov Decision
Processes. Agents are trying to seek for an optimal one which can maximize the
return, the sum of discounted expected rewards. Discount in this case means that
agents prefer an immediate reward against one in the future, thus, a coefficient
determines how better a reward is with respect to the same amount of reward in the
next state. To find a general solution for the policy, one has to seek for a fixed point
of the Bellman equation via iterative search. The Bellman equation has the
following form:

𝑣𝑣(𝒔𝒔,𝜋𝜋∗) = 𝑚𝑚𝑚𝑚𝑥𝑥𝑎𝑎(𝑟𝑟(𝒔𝒔,𝒂𝒂) + 𝛾𝛾 ∑𝑠𝑠′ 𝒑𝒑(𝒔𝒔′|𝒔𝒔,𝒂𝒂)𝑣𝑣(𝒔𝒔′,𝜋𝜋∗)) (2)

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 237 ‒

where 𝑟𝑟(𝑠𝑠, 𝑎𝑎) is the reward gained from selecting action 𝑎𝑎 in state 𝑠𝑠, 𝛾𝛾 is the
coefficient deciding how much more important are rewards of the present in
comparison with the future rewards, and 𝒑𝒑(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) is the transition probability
function. It is concluded from this equation that if the agent is familiar with the
dynamics of the environment, it can find the optimal values.

Figure 1

Markov Decision Process

2.2 Reinforcement Learning

Reinforcement learning is a subproblem of Markov Decision Process whenever the
either rewards or the state transition probabilities are not known. In this case, one
has to seek to create a proper model of the environment by trying specific actions
and learning from the rewards and the errors.

There are two main kinds of reinforcement learning: value-based and policy-based
reinforcement learning.

In the scenario of value-based reinforcement learning, agents are rendering values
to the states or to the actions that are selectable from specific states.
The aforementioned values coincide with the expected reward whenever the agent
selects a certain action in a specific state.

The most generally utilized kind of value-based reinforcement learning is called Q-
learning. It is an algorithm based on action-values, so these values are rendered to
all of the state-action pairs of the environment. These values, called Q-values,
correspond to the value equal to the amount of reward one could get by taking a
certain action in a certain state. The equation for the update of the Q-values is the
following:

𝑄𝑄(𝒔𝒔′,𝒂𝒂) ← (1 − 𝛼𝛼) ⋅ 𝑄𝑄(𝒔𝒔,𝒂𝒂) + 𝛼𝛼 ⋅ (𝑟𝑟 + 𝛾𝛾 ⋅ max
𝒂𝒂′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)) (3)

where 𝛼𝛼 corresponds to the learning rate and 𝛾𝛾 corresponds to the discount for the
reward [17]. is an off-policy TD (temporal difference) control algorithm. The policy

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 238 ‒

is to choose the action that would currently maximize the Q-function in the present
state.

In policy-based reinforcement learning, the actions are a parametric function of the
state. Of this type, the most common technique is policy gradient [18], when the
policy is given by the parameters 𝜃𝜃, and the agent tries to reach the maximum
expected reward for a specific trajectory 𝑟𝑟(𝜏𝜏). This gives us that the cost function
based on the parameters is this equation:

𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜋𝜋𝜃𝜃[𝑟𝑟(𝜏𝜏)] (4)

The tuning of the parameters is performed with respect to the gradient of the cost
function:

𝜽𝜽𝑘𝑘+1] = 𝜽𝜽𝑡𝑡 + 𝛼𝛼Δ𝐽𝐽(𝜽𝜽𝒕𝒕) (5)

Policy-based methods have their own advantages and disadvantages. They are able
to map environments with great or continuous action spaces efficiently. Value-
based methods cannot map huge action spaces due to the increasing value-table size.
Policy-based methods are also efficient for scenarios with randomness. On the other
hand, they are more prone to get stuck in a local maximum instead of finding the
optimal policy.

2.3 Multi-Agent Systems, Markov Games

To fully understand the Markov games, one has to talk about the stochastic
framework of matrix games. In that, first each agent takes an action, then they get
their current reward. This reward is based on all of the agents’ action. These
scenarios can be described in a matrix form, where one agent selects the row based
on its action, and the other selects the column, and the intersection contains the
reward for each agent. These games can only contain a single state.

A multi-state augmentation of matrix games is called Markov game, or with another
wording, Stochastic game. Another approach can be that Markov games are a multi-
agent extension of Markov Decision Processes. In these games, all of the states
contain a specific matrix called payoff matrix, which has the same form as the
matrix in Matrix games. Thus, the reward is decided by the mutual action of the
agents, and this can be also said about the next state. A game is said to be Markovian
if it adheres to the following:

𝑃𝑃(𝑎𝑎𝑖𝑖𝑡𝑡 = 𝒂𝒂𝒊𝒊|𝒔𝒔𝒕𝒕,𝒂𝒂𝒊𝒊𝒕𝒕−𝟏𝟏, . . . , 𝒔𝒔𝟎𝟎,𝒂𝒂𝒊𝒊𝟎𝟎) = 𝑃𝑃(𝒂𝒂𝒊𝒊𝒕𝒕 = 𝒂𝒂𝒊𝒊|𝒔𝒔𝒕𝒕) (6)

which means that the upcoming state is solely dependent on the previous state and
the present actions selected by all of the agents.

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 239 ‒

2.4 Deep Reinforcement Learning

Deep reinforcement leaning is a subclass of reinforcement learning which is aided
by a neural network.

An artificial neural network is a subset of machine learning. In this case, the
function approximation is performed by a network of (even huge amounts of)
artificial neurons. Artificial neurons resemble biological neurons, and their behavior
is determined by the following equation:

𝑦𝑦 = 𝐴𝐴𝐴𝐴𝐴𝐴(∑ 𝒘𝒘𝒘𝒘 + 𝑏𝑏) (7)

In this equation, 𝑥𝑥 corresponds to the input vector. 𝑤𝑤 is the weight vector, which is
taken with a by-element product of the previously mentioned input vector. 𝑏𝑏 is
called bias, as it is a variable constant added to the other inputs. This can also be
described as a regular weight connected to the input of the constant 1. 𝐴𝐴𝐴𝐴𝐴𝐴()
corresponds to the activation function, which ensures that the system becomes
nonlinear by introducing nonlinearity, thus letting otherwise linear systems predict
nonlinear relations. The tuning of the parameters, 𝑤𝑤 and 𝑏𝑏, are performed by
backpropagation, where the partial derivative errors with respect to the inputs are
calculated starting from the final error, and then this error is propagated backwards
through previous layers up until the input vector.

One must talk about the difference between traditional reinforcement learning and
deep reinforcement learning. The latter has a considerable number of advantages,
such as abandoning the state table by approximating the states with neural networks,
which is more robust than general linear approximators. This allows us to map
scenarios with huge or even continuous state spaces without worrying about the
memory need of the whole state space. On the other hand, deep reinforcement
learning converges in less situations, thus a multitude of improvements have been
made to ensure convergence of the learning in more scenarios.

2.5 Actor-Critic

An amalgamation of value-based and policy-based reinforcement learning is called
an actor-critic algorithm. This algorithm contains two distinct neural networks:
The first is called Critic, which resembles value-based reinforcement learning, by
approximating a value function, and the second is called the Actor, which, as in
policy-based reinforcement learning, renders an action to the present state.
The latter network is tuned, based on the direction suggested by the Critic. The actor
follows an approximate policy gradient as:

∇𝜃𝜃𝐽𝐽(𝜃𝜃) ≈ 𝔼𝔼𝜋𝜋𝜃𝜃[∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑠𝑠, 𝑎𝑎)𝑄𝑄𝑤𝑤(𝒔𝒔,𝒂𝒂)]
Δ𝜃𝜃 = 𝛼𝛼∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑠𝑠, 𝑎𝑎)𝑄𝑄𝑤𝑤(𝒔𝒔,𝒂𝒂) (8)

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 240 ‒

The latter equation is the more critical from a practical point of view, as it gives us
the direction of the parameter updates. In that equation, 𝛼𝛼 corresponds to the
learning rate, a scalar which determines the amount of parameter change. The other
parts show that the direction is given by the gradient of the log-policy times the
value function.

The policy gradient approximation reduces efficiency in one part due to the bias
introduced, and this bias can make our learning fail. The value function
approximation has to be chosen with great care to avoid this bias.

In comparison with regular deep reinforcement algorithms, actor-critic algorithms
achieve better performance. By the utilization of the critic network, the system can
avoid being stuck in a local extremum, and by the usage of the actor network, better
convergence can be achieved in addition to mapping systems with huge or even
continuous action spaces.

2.6 MADDPG Algorithm

MADDPG, Multiagent Deep Deterministic Policy Gradients is a multiagent
extension to the DDPG (Deep Deterministic Policy Gradients) algorithm, which is
an actor-critic algorithm for continuous action spaces.

First of all, both MADDPG and DDPG use an experience replay buffer to recall
previous state-action-reward-next state tuples. It stores and recalls the tuples
(𝑥𝑥𝑗𝑗, 𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑥𝑥′𝑗𝑗) . By its utilization, the system will utilize previous experience more
efficiently as it will learn the experience multiple times, as well as it will converge
with a higher success rate due to access not only to the latest experiences.

Let’s take a closer look at the training of the actor and critic networks. The critic is
updated by minimizing the loss as here:

ℒ(𝜃𝜃𝑖𝑖) = 1
𝑆𝑆
∑𝑗𝑗 (𝑦𝑦𝑗𝑗 − 𝑄𝑄𝑖𝑖

𝜇𝜇(𝑥𝑥𝑗𝑗, 𝑎𝑎1
𝑗𝑗 , . . . , 𝑎𝑎𝑁𝑁

𝑗𝑗))2
 (9)

Where,

𝑦𝑦𝑗𝑗 = 𝑟𝑟𝑖𝑖
𝑗𝑗 + 𝛾𝛾𝑄𝑄𝑖𝑖

𝜇𝜇(𝑥𝑥′𝑗𝑗 , 𝑎𝑎1′, . . . 𝑎𝑎𝑁𝑁′)|𝑎𝑎𝑘𝑘′=𝜇𝜇𝑘𝑘′(𝑜𝑜𝑘𝑘
𝑗𝑗) (10)

This latter equation shows that for the next actions, we use the target actors to
compute them. Meanwhile, the actor is updated using the following sampled policy
gradient:

∇𝜃𝜃𝑖𝑖𝐽𝐽 ≈
1
𝑆𝑆
∑𝑗𝑗 ∇𝜃𝜃𝑖𝑖𝜇𝜇𝑖𝑖(𝑜𝑜𝑖𝑖

𝑗𝑗)∇𝑎𝑎𝑖𝑖𝑄𝑄𝑖𝑖
𝜇𝜇(𝑥𝑥𝑗𝑗 ,𝑎𝑎1

𝑗𝑗 , . . . , 𝑎𝑎𝑖𝑖 , . . . , 𝑎𝑎𝑁𝑁
𝑗𝑗)|𝑎𝑎𝑖𝑖=𝜇𝜇𝑖𝑖(𝑜𝑜𝑖𝑖

𝑗𝑗) (11)

In this equation, we see that we take the gradient with respect to the Actor’s
parameters with the help of a central critic.

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 241 ‒

2.7 Dropout

Dropout is mostly used to reduce overfitting in deep neural networks. Overfitting is
a case when the function approximator (in this case, the neural network) renders the
parameters to the training data well, but misses generalization, thus the
approximator cannot be utilized for any useful task (apart from the occasions where
input values are a subset of the training values). [19] [21] If it is applied to a neural
network (or rather, to a layer), then the network’s (or layer’s) neurons are only
present with a 𝑝𝑝 probability during the training process. In other words, at each
training stage, individual neurons are either eliminated from the net with a
probability 1 − 𝑝𝑝 or kept with a probability 𝑝𝑝, such that only a reduced network is
left. In the testing/inference process, however, all neurons are present. This training
method makes the training process noisy, forcing nodes to probabilistically take on
more or less responsibility for the inputs. As the network is not used fully during
the training process, instead, a subset of the layers is used, a wider network is
required for layers with dropout that for ones without, for the same level of
representation. The most used, and usually the most efficient probability rate for the
dropout is 0.5.

3 Experiments

As a benchmark, we used the Multiagent Particle Environments (MPE) library. It is
a multiagent environment ensemble with several environments, which are either
communication-based or are about circle-shaped agents moving in a continuous 2D
world, trying to accomplish specific tasks. It is written in Python, and its interface
resembles (and is built upon) the quasi-standard interface of OpenAI’s Gym
environments, which makes connecting agents easier. The differences between its
interface and Gym’s are due to the fact that Gym does not support multiagent
environments up until the writing of the paper, thus the multitude of observations
and actions are listed in a unique but easily comprehensible way. From this
environment ensemble of MPE, we used the "simple-tag" environment. This is a
predator-prey (or pursuit-evasion) environment with 3 predators and one prey, and
the latter is faster (and also has better acceleration). There are also obstacles on the
plane that cannot be crossed. The agent movement behavior is described as follows:

𝐹𝐹𝑖𝑖 = 𝑚𝑚𝑖𝑖 ⋅ 𝑎𝑎𝑖𝑖 ∗ 𝑢𝑢 + 𝑧𝑧
 (12)

where 𝑚𝑚𝑖𝑖 is the agent mass, 𝑎𝑎𝑖𝑖 is the agent acceleration (if it exists in the scenario,
otherwise it is strictly 1), 𝑢𝑢 is the agent action and 𝑧𝑧 is the noise (if exists). Then,
from the forces, a velocity is calculated:

𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝐹𝐹𝑖𝑖⋅(1−𝑑𝑑)
𝑚𝑚𝑖𝑖

⋅ 𝑑𝑑𝑑𝑑
 (13)

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 242 ‒

where 𝑑𝑑 is the damping. The here unnecessary product and division by the mass is
applied due to the possible addition of environmental forces in other scenarios.
Finally, the position is calculated such as:

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑖𝑖 ⋅ 𝑑𝑑𝑑𝑑 (14)

The predators have to catch the prey agent, and they get a positive reward for
catching the agent, while being caught, the prey gets a negative reward. For evading
the problem of sparse rewards, which means that the received rewards are present
only on a small subset of the environment steps, reward shaping was turned on. In
this case, the prey gets bigger rewards for being as distant from the predators as
possible, and the predators get negative reward based on the minimum distance to
the prey agent (thus the reward is relatively bigger if one agent is closer to the prey).
The exact reward function for the prey is as follows:

𝑟𝑟 = 𝑐𝑐 ⋅ (−10) + 0.1�∑ (𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2
 (15)

where 𝑟𝑟 is the reward, 𝑐𝑐 is the collision boolean, and 𝑥𝑥 are the positions. The reward
function for the predator is the following:

𝑟𝑟 = 𝑐𝑐 ⋅ 10 − 0.1 ⋅ 𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�∑ (𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2
 (16)

In our environment settings, as there is only one prey, the minimizing part
disappears and the latter parts of both equations become the same. The only
difference between the two-reward function is the 𝑐𝑐 part: while for the preys it
means a boolean (0 or 1), for the predators it counts all collision between the
predators and the prey, thus reaching the prey with multiple agents yields more
reward.

The episodes are terminated after 25 steps, this number seemed to be well balanced
regarding the training being meaningful and the episode length not being too long
for the training process and other calculations. With this length we also evaded that
the episodes would stall, with the prey agent getting stuck caught by predators for
long times, modifying the rewards by a big amount. A sample picture of the
environment can be seen on Figure 3, where the red circles are the predators, the
green one is the prey, and the bigger black circles are the obstacles that cannot be
traversed. The goal of the environment for the predator is to minimize the time in
which it arrives the closest to the prey, and for the prey the goal is to maximize the
distance between itself and the predators.

First, we tried to improve the training by approximating other agents’ behavior. In
this case, the agent observations are augmented by the most probable action that
some other agents (the enemies or all other agents) would take. The most probable
action for each opponent is approximated by a neural network, which takes the
observation as input and outputs a value (the action) with a dimension equal to its
action space. The training of this neural network consists of applying the agents’
selected action to the present observation.

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 243 ‒

Figure 3

Predator-Prey environment of the Multiagent Particle Environments library

This training can happen online, at each timestep, or from the experience replay in
conjunction with the training of the actors and critics. As the actor now requires the
most probable actions as well, these have to be computed for the training process.
The critic training was not modified from the MADDPG training for this algorithm.

Algorithm 1 shows the MADDPGX algorithm. As it can be seen, it is mostly based
on the MADDPG algorithm, with some differences. The most important difference
is that the selected actions are not calculated as 𝑎𝑎 = 𝜇𝜇𝑖𝑖(𝑥𝑥) but 𝑎𝑎 = 𝜇𝜇𝑖𝑖(𝑥𝑥,𝑚𝑚), where
𝑚𝑚 is the ensemble of the approximated actions and is calculated for all 𝑖𝑖 as 𝑚𝑚𝑖𝑖 =
𝑁𝑁𝑒𝑒𝑖𝑖(𝑥𝑥). The other difference between our algorithm and the original is also related
to the former, it is that the actor is updated with the calculation of the previous
𝑁𝑁𝑒𝑒𝑖𝑖(𝑥𝑥) values. Inbetween, the 𝑁𝑁𝑒𝑒𝑖𝑖 networks are also updated such that they would
approximate the enemy actions based on the corresponding states. The training of
the neural networks happens independently. The control law is given just as in
MADDPG, but with the opponents added:

∇𝜃𝜃𝑖𝑖𝐽𝐽 ≈
1
𝑆𝑆
∑𝑗𝑗 ∇𝜃𝜃𝑖𝑖𝜇𝜇𝑖𝑖(𝑜𝑜𝑖𝑖

𝑗𝑗,𝑁𝑁𝑒𝑒𝑖𝑖(𝑜𝑜𝑖𝑖
𝑗𝑗))∇𝑎𝑎𝑖𝑖𝑄𝑄𝑖𝑖

𝜇𝜇(𝑥𝑥𝑗𝑗 , 𝑎𝑎1
𝑗𝑗 , . . . , 𝑎𝑎𝑖𝑖 , . . . , 𝑎𝑎𝑁𝑁

𝑗𝑗)|𝑎𝑎𝑖𝑖=𝜇𝜇𝑖𝑖(𝑜𝑜𝑖𝑖
𝑗𝑗,,𝑁𝑁𝑒𝑒𝑖𝑖(𝑜𝑜𝑖𝑖

𝑗𝑗)) (31)

The computational complexity of our algorithm is:

𝑂𝑂(4𝑛𝑛4)

Where, n is the number of neurons in the network. The stability of the controller is
the same as the stability of MADDPG, so it can be described as stable but not in all
situations. The system converges, but the optimality is not guaranteed for MARL
situations, as in all other similar scenarios.

The algorithm was created with Python and PyTorch, and the experiments were run
on a Google Colab instance (due to the varying speed of the instances, the average
running times could not be usefully extracted for the experiments, thus this
information is rather omitted). The networks consisted of three layers: two hidden
layers and one output layer. The hidden layers’ dimension was 64 neurons. This
level of network complexity seemed to be enough for learning the environments for

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 244 ‒

all of the algorithms. The activation function of the inner neurons was ReLU
(Rectified Linear Unit), while for the output, a tanh activation function was applied.
As noted, the actors’ dimension was equal to the observation space dimension plus
the tracked agents’ action space dimension, and the output dimension was equal to
the agent’s action space dimension. The action approximators’ input dimension is
equal to the tracked agent’s observation space and its output is the tracked agent’s
action space. The critics were the same as in the MADDPG algorithm, with the
input dimension being equal to the sum of all agents’ action and observation space
dimension, and the output is 1 (the Q value). An Adam optimizer was used as all of
the neural network optimizers. The critic loss was a mean squared error loss and the
actor loss was the same as in the base MADDPG algorithm, with the exception that
for the actor loss, the approximations are needed to be made. The action
approximator loss was dependent on the type of the action space: for discrete action
spaces, cross-entropy loss was used, while for continuous action spaces, a mean
squared error was used. In both cases, the losses consider the difference between
the approximated and the taken action. Throughout all experiments, the learning
rate as 0.01, the batch size was 1024 and 𝜏𝜏 (the target network coefficient) was 0.01.
𝛾𝛾 was set to be 0.95.These values are selected to provide a good balance between
convergence and learning speed.

In a later experiment, we checked how applying dropout would affect the
performance of the agents. As it applies more variance, the basic idea to check it
was the expectation of finding more rewarding Nash equilibria. We experimented
with the application of dropout on the actor and the critic network separately, and
have seen which one is capable of improving the performance score. For the
experiments, the dropout layers of 0.5 probability were applied after the first and
second fully connected layers of the networks.

Initialize Models: 𝜇𝜇𝑖𝑖, 𝐶𝐶𝑖𝑖, 𝑁𝑁𝑒𝑒𝑖𝑖
for episode = 1 to 𝑀𝑀 do

Initialize a random process 𝒩𝒩 for action exploration
Receive initial state 𝐱𝐱
for 𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ do

For each agent 𝑖𝑖, take the subset of opponent agents 𝑒𝑒𝑖𝑖
calculate 𝑚𝑚𝑖𝑖 = 𝑁𝑁𝑒𝑒𝑖𝑖(𝑜𝑜𝑖𝑖)

𝑚𝑚𝑖𝑖 is the most probable action of the enemies
𝑁𝑁𝑒𝑒𝑖𝑖(𝑜𝑜𝑖𝑖) is the actor approximator with the observation as input and most probable action as
output

for each agent 𝑖𝑖, select action 𝑎𝑎𝑖𝑖 = 𝜇𝜇𝜃𝜃𝑖𝑖(𝑜𝑜𝑖𝑖,𝑚𝑚𝑖𝑖) +𝒩𝒩𝑡𝑡 w.r.t. the current policy and exploration
Execute actions 𝑎𝑎 = (𝑎𝑎1, … , 𝑎𝑎𝑁𝑁) and observe reward 𝑟𝑟 and new state 𝐱𝐱′
Store (𝐱𝐱,𝑎𝑎, 𝑟𝑟, 𝐱𝐱′) in replay buffer 𝒟𝒟
𝐱𝐱 ← 𝐱𝐱′
for agent 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁 do

Sample a random minibatch of 𝑆𝑆 samples (𝐱𝐱𝑗𝑗 ,𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗 ,𝐱𝐱′𝑗𝑗) from 𝒟𝒟
 Set 𝑦𝑦𝑗𝑗 = 𝑟𝑟𝑖𝑖

𝑗𝑗 + 𝛾𝛾 𝑄𝑄𝑖𝑖
𝜇𝜇′(𝐱𝐱′𝑗𝑗 ,𝑎𝑎1′, … , 𝑎𝑎𝑁𝑁′)|𝑎𝑎𝑘𝑘′=𝜇𝜇′𝑘𝑘(𝑜𝑜𝑘𝑘

𝑗𝑗)
Update 𝑁𝑁𝑒𝑒𝑖𝑖 networks:
Loss is MSE for continuous actions, Cross-Entropy for discrete
For all 𝑒𝑒𝑖𝑖, training input is 𝑥𝑥𝑗𝑗, training output is 𝑎𝑎𝑗𝑗

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 245 ‒

Update critic by minimizing the loss ℒ(𝜃𝜃𝑖𝑖) = 1
𝑆𝑆
∑𝑗𝑗 �𝑦𝑦𝑗𝑗 − 𝑄𝑄𝑖𝑖

𝜇𝜇(𝐱𝐱𝑗𝑗 ,𝑎𝑎1
𝑗𝑗 , … , 𝑎𝑎𝑁𝑁

𝑗𝑗)�
2

Update actor using the sampled policy gradient:

∇𝜃𝜃𝑖𝑖𝐽𝐽 ≈
1
𝑆𝑆
�
𝑗𝑗

∇𝜃𝜃𝑖𝑖𝜇𝜇𝑖𝑖(𝑜𝑜𝑖𝑖
𝑗𝑗 ,𝑁𝑁𝑒𝑒𝑖𝑖(𝑜𝑜𝑖𝑖

𝑗𝑗))∇𝑎𝑎𝑖𝑖𝑄𝑄𝑖𝑖
𝜇𝜇(𝑥𝑥𝑗𝑗 ,𝑎𝑎1

𝑗𝑗 , . . . , 𝑎𝑎𝑖𝑖 , . . . ,𝑎𝑎𝑁𝑁
𝑗𝑗)|𝑎𝑎𝑖𝑖=𝜇𝜇𝑖𝑖(𝑜𝑜𝑖𝑖𝑗𝑗,,𝑁𝑁𝑒𝑒𝑖𝑖(𝑜𝑜𝑖𝑖

𝑗𝑗))

end for
Update target network parameters for each agent 𝑖𝑖:
𝜃𝜃𝑖𝑖′ ← 𝜏𝜏𝜃𝜃𝑖𝑖 + (1 − 𝜏𝜏)𝜃𝜃𝑖𝑖′

end for
end for

Algorithm 1
MADDPGX

Figures 4 and 5 show some examples of the environment working. In all of them,
we can see the fleeing agent (blue) is trying to maneuver away from the red agents.
The examples were taken after the 23000th episode to give the agents enough time
to learn the environment.

Figure 4

Figure 5

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 246 ‒

In all of the three examples, we see that both the predator and the prey agents have
successfully learned the environment, as the predators are chasing the prey, and the
prey is trying to flee from the predators. Figure 5 shows that two predators are trying
to surround the prey, and a third one is chasing it directly. After the latter being
close, the prey finds a way to free from the agents. Figure 6 shows that now two
agents are chasing the prey directly, and the prey had to change its direction towards
its starting point to evade the agents. In the third example, Figure 7, the prey and
the two predator agents are "fighting", but then the prey agent successfully escapes.

4 Results

All experiments were run for 25000 episodes, this seemed to be enough for learning
the environment and the opponent and the results did not change significantly by
further increasing the episode number. Then, we extracted the mean rewards for all
agents and episodes. For the easier digestion of the huge dataset (or in other words,
to extract useful data out of the mean episode rewards), we introduced two baselines
to be compared: One is the number of episodes where the prey agent’s mean reward
was above zero, and the other is the number of episodes where the prey agent’s
mean reward is higher than the sum of the other three agents’ mean reward. These
baselines were chosen arbitrarily, but they still represent the performance of the
algorithms adequately.

Table 0 shows how many times the prey agent got a mean reward above zero of the
25000 episodes. Table 1 shows the number of occurrences when the prey mean
reward was higher than the reward sum of the three predators.

First, let’s check how the action approximation performs compared to the
MADDPG vs MADDPG contests. Out of 8 different situations, 3 ended with
univocal dominance for our algorithm, 4 was contested (in a sense that either the
predator or the prey side was better with our algorithm, but the other side was worse
after that) and one ended with definitely worse results than the original algorithms.
This result clearly shows that our addition to the MADDPG algorithm improved the
performance of the agents.

Now, let’s check the different versions of the action approximator algorithm. For
these experiments, the results can be seen in Table 4 and 5, where the former
expresses the number of episodes where the prey’s reward was greater than zero,
and in the latter table, the predator sum is compared, just as in Table 1. It can be
seen that from all the 6 comparisons, at 4 times the one where the approximator is
updated online, right after the reception of the opponents’ selected actions,
supersedes the performance of the agent where the action approximator is updated
from the experience replay, together with the learning of the actor and the critic in
the general MADDPG algorithm. It can also be seen that for some reason, when the

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 247 ‒

action approximator is used not only for enemies, but for friendly agents as well,
the performance of the system severely drops. Thus, our algorithm is better to be
used only for modeling the enemies, not for modeling all other agents and trying to
find a friendly Nash equilibrium using the approximators. This can be a result of
divergence due to the higher variance of the system caused by the approximators,
as it is much harder to find an equilibrium when all of the models are approximating
each other.

The effect of the dropout can also be examined. First, let’s look at the case when
dropout is added to the Actor network, its results can be seen in Table 0 and 1. Of
all the 16 comparisons, according to Table 0, in 14 cases the network with dropout
superseded the one without it, meanwhile according to Table 1, 13 cases were better
with dropout than without it. This shows that applying dropout to the actor network
can generally yield better performance in multi-agent scenarios.

Table 1
Number of episodes where the prey’s mean reward was above zero. The first line shows in which

agent(s) our algorithms were used, and which subtype was implemented. Pred means predator, and A
means Actor.

No. Pred
Dropout A

Pred Normal Prey Prey
Dropout A

1 31 43 70 11502 12854
2 11 11 20 2426 3352
3 5590 21685 49 26 27
4 15690 17882 21 27 23
5 18052 20519 20575 20 33
6 38 44 2314 22 40
7 86 17 436 45 51
8 28 39 1646 7039 9959

Table 2
Number of episodes where the prey’s mean reward was above the sum of the predators’ mean reward.
The first line shows in which agent(s) our algorithms were used, and which subtype was implemented.

Pred means predator, and A means Actor.

No. Pred Dropout A Pred Normal Prey Prey Dropout A
1 2276 2792 3405 12729 14463
2 1652 1651 1675 4128 4415
3 8307 22458 2903 1871 1820
4 17582 19461 1928 1545 1039
5 19024 21368 20827 1356 2298
6 2198 2567 4444 1894 2580
7 2939 1569 5003 2298 2299
8 2196 2603 2861 10600 11082

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 248 ‒

We applied dropout to the critic network as well, and the results can be seen in
Tables 2 and 3. Of the 16 cases, only in 7 cases this method happened to be better
than the system without it. Also, when the network with critic dropout was better,
usually the score did not improve much. However, in one case (No. 3 while our
algorithm is on the predator side) the score improved significantly, so there can be
some cases when applying dropout to the critic can be beneficial. The utility of the
dropout possibilities in the critic network could be further examined.

The results show that our contributions are an improvement upon the previously
available methods.

Table 3
Number of episodes where the prey’s mean reward was above zero. The first line shows in which

agent(s) our algorithms were used, and which subtype was implemented. Pred means predator, and C
means Critic.

No. Pred
Dropout C

Pred Normal Prey Prey
Dropout C

1 4088 43 70 11502 60
2 32 11 20 2426 14
3 46 21685 49 26 35
4 20065 17882 21 27 43
5 21036 20519 20575 20 34
6 38 44 2314 22 39
7 18920 17 436 45 47
8 4285 39 1646 7039 32

Table 4
Number of episodes where the prey’s mean reward was above the sum of the predators’ reward. The

first line shows in which agent(s) our algorithms were used, and which subtype was implemented. Pred
means predator, and C means Critic

No. Pred
Dropout C

Pred Normal Prey Prey Dropout C

1 7639 2792 3405 12729 1602
2 2661 1651 1675 4128 1142
3 2267 22458 2903 1871 1918
4 21040 19461 1928 1545 1971
5 21812 21368 20827 1356 2221
6 2542 2567 4444 1894 2406
7 19913 1569 5003 2298 2344
8 7684 2603 2861 10600 1380

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 249 ‒

Table 5
Number of episodes where the prey’s mean reward was above zero. The first line shows in which
agent(s) our algorithms were used, and which subtype was implemented. Pred means predator, V

means that the version where the update is done in each step is implemented, and all means that the
approximation for cooperative agents is also implemented

No. Pred V All Pred V Pred Normal Prey Prey V
1 17936 46 43 70 11502 19441
2 18858 11 32 20 2426 38
3 18799 21685 49 26 27

Table 6
Number of episodes where the prey’s mean reward was above the sum of the predators’ mean reward.
The first line shows in which agent(s) our algorithms were used, and which subtype was implemented.
Pred means predator, V means that the version where the update is done in each step is implemented,

and all means that the approximation for cooperative agents is also implemented.

No. Pred V All Pred V Pred Normal Prey Prey V
1 19606 2614 2792 3405 12729 20741
2 20594 1652 2661 1675 4128 2775
3 19878 22458 2903 1871 1907

Conclusions and Future Work

According to our results, our proposals have clear benefits compared to the systems
without it. Approximation of the actors of other agents visibly improves the
performance, however, it is only beneficial in the system when it is used for
competitive elements of the environments. Instead, it is rather advised to be omitted
when using it for cooperative elements, or in other words, it is better to only
approximate the enemies’ behavior rather than using it for the approximation of the
friendly agents’ actors. Dropout also has clear benefits, but only when it is used for
the actor, for the critic it is only really beneficial in some rare cases.

Regarding the actor approximation, the proposed idea is favorable to other
algorithms due to the fact that with an insignificant loss on data efficiency, one can
receive much better performance on the long run. As a comparison of the proposed
systems and other types of control algorithms, actor-critic reinforcement learning
algorithms are more versatile and robust than hand-made and other data-driven
solutions.

There are still some challenges to explore in the future that we leave for upcoming
researches. Further testing of dropout in the world of multi-agent reinforcement
learning still awaits us to do. It is surely worth more effort to check whether the
dropout on the critic is unusable for all of the possible situations, or as our results
stated, which are the situations where the critic dropout is also utile. In addition,
further testing of the dropout rates can be interesting. Also, the efficiency of the
algorithm can be examined when the enemies’ observations are not available, even

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 250 ‒

in a Partially Observable Markov Decision Process. This could be done, for
example, with the help of Long Short-Term Memory (LSTM) systems, where the
neural network preserves a state between timesteps, thus it is able to have a memory.
Also, a variable learning rate could be utilized for further improvement of the
learning systems, such as Bowling’s Win or Learn Fast (WoLF) [3] method. Its
usage for deep reinforcement learning could be investigated.

Acknowledgements

The research reported in this paper is part of project no. BME-NVA-02,
implemented with the support provided by the Ministry of Innovation and
Technology of Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021 funding scheme. Support by the European
Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial
Intelligence National Laboratory.

References

[1] A. J. Babqi, B. Alamri: A comprehensive comparison between finite control
set model predictive control and classical proportional-integral control for
grid-tied power electronics devices. Acta Polytechnica Hungarica, Volume
18, Issue 7, 07-2021

[2] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E.
Parisotto, V. Dumoulin, S. Moitra, E. Hughes, I. Dunning, S. Mourad, H.
Larochelle, M. G. Bellemare, M. Bowling: The hanabi challenge: A new
frontier for ai research, Artificial Intelligence, 2019

[3] P. Casgrain, B. Ning, S. Jaimungal: Deep q-learning for nash equilibria:
Nash-dqn, arXiv preprint arXiv:1904.10554, 2019

[4] M. Bowling and M. Veloso: Multiagent learning using a variable learning
rate, Artificial Intelligence, (136):215-250, 2002

[5] M. H. Bowling, M. M. Veloso: Simultaneous adversarial multi-robot
learning, In IJCAI, pp. 699-704, 2003

[6] I. Davies, Z. Tian, J. Wang: Learning to model opponent learning, arXiv
preprint arXiv:2006.03923, 2020

[7] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson:
Counterfactual multi-agent policy gradients, Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1), 2017

[8] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli, S.
Whiteson: Stabilising experience replay for deep multi-agent reinforcement
learning, International conference on machine learning, pp. 1146-1155, 2017

[9] Ü. Hakan, Ö. Irfan, Y. Uğur, K. Metin: Test Platform and Graphical User
Interface Design for Vertical Take-Off and Landing Drones. Romanian
Journal of Information Science and Technology, 25, pp. 350-367, 2022

Acta Polytechnica Hungarica Vol. 21, No. 4, 2024

‒ 251 ‒

[10] R. Hemza, J. Tar:. Multiple Components Fixed Point Iteration in the
Adaptive Control of Single Variable 2nd Order Systems. Acta Polytechnica
Hungarica, Volume 18, pp. 69-86, 09-2021

[11] J. Hu, M. Wellman. Nash q-learning for general-sum stochastic games.
Journal of Machine Learning Research, 4:1039-1069, 01 2003

[12] M. L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the Eleventh International Conference on
Machine Learning, pp. 157-163, 1994

[13] S. Liu, G. Lever, J. Merel, S. Tunyasuvunakool, N. Heess, T. Graepel:
Emergent coordination through competition, arXiv preprint
arXiv:1902.07151, 2019

[14] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch: Multi-agent
actor-critic for mixed cooperative-competitive environments, In I. Guyon, U.
V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing Systems 30, pp.
6379-6390, Curran Associates, Inc., 2017

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
M. Riedmiller: Playing atari with deep reinforcement learning, arXiv
preprint arXiv:1312.5602, 2013

[16] R-E Precup, S. Preitl, E. M. Petriu, J. K. Tar, M. L. Tomescu, C. Pozna:
Generic two-degree-of-freedom linear and fuzzy controllers for integral
processes, Journal of the Franklin Institute, Volume 346, Issue 10, pp. 980-
1003, 2009

[17] Z. Preitl,. R. E. Precup, J. Tar, M. Takács: Use of Multi-parametric Quadratic
Programming in Fuzzy Control Systems. Acta Polytechnica Hungarica,
Volume 3, 2006

[18] M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Farquhar, N. Nardelli,
T. G. J. Rudner, C. Hung, P. H. S. Torr, J. Foerster, S. Whiteson: The starcraft
multi-agent challenge, arXiv preprint arXiv:1902.04043, 2019

[19] Shihui, Y. Wu, X. Cui, H. Dong, Fang, Fei, S. Russell: Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient, In
Proceedings of the AAAI Conference on Artificial Intelligence, Volume 33,
pp. 4213-4220, 2019

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov:
Dropout: a simple way to prevent neural networks from overfitting, The
journal of machine learning research, 15(1):1929-1958, 2014

[21] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M.
Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, T. Graepel: Value-
decomposition networks for cooperative multi-agent learning, arXiv preprint
arXiv:1706.05296, 2017

G. Paczolay et al. Improving Multiagent A-C Models Architectures, with
 Opponent Approximation and Dropout for Control

‒ 252 ‒

[22] R. S. Sutton, D. McAllester, Singh: Policy gradient methods for
reinforcement learning with function approximation, In Proceedings of the
12th International Conference on Neural Information Processing Systems,
page 1057-1063, Cambridge, MA, USA, 1999. MIT Press

[23] R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction,
Volume 9, 1998

[24] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Kättler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney,
S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. Lillicrap,
K. Calderone, P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, R.
Tsing: Starcraft ii: A new challenge for reinforcement learning, arXiv
preprint arXiv:1708.04782, 2017

[25] I. A. Zamfirache, R.-E. Precup, R. C. Roman, E. M. Petriu: Neural Network-
based control using Actor-Critic Reinforcement Learning and Grey Wolf
Optimizer with experimental servo system validation, Expert Systems with
Applications, Volume 225, 2023

	1 Introduction
	2 Theoretical Background
	2.1 Markov Decision Processes
	2.2 Reinforcement Learning
	2.3 Multi-Agent Systems, Markov Games
	2.4 Deep Reinforcement Learning
	2.5 Actor-Critic
	2.6 MADDPG Algorithm
	2.7 Dropout

	3 Experiments
	4 Results

