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Abstract: Parallel robots have an increasing use in industrial and medical applications. 
Many of these applications require the execution of contact tasks. However, parallel robots 
possess drive singularities, which act as invisible barriers inside their workspace. In this 
paper, we develop an integrated force and motion trajectory planning method for removing 
drive singularities of parallel robots which perform contact tasks. The method is based on 
satisfaction of a consistency condition at the singularity, which is stated in terms of the 
generalized velocities, accelerations and contact forces, provided that the derivative of the 
associated determinant with respect to time does not simultaneously vanish. It is shown 
that, in the presence of singularity crossing, either the motion or the force trajectory can be 
arbitrarily chosen while the other is planned to satisfy the necessary conditions. 

Keywords: parallel robot; contact task; motion trajectory; force trajectory; drive 
singularity; singularity removal 

1 Introduction 

In order to increase profitability and market share, firms seek ways to improve 
efficiency and competitiveness in their manufacturing processes. The use of 
robotics emerges as one of the most effective tools for achieving these goals [1, 2], 
especially at an accelerated pace in the era of Industry 4.0 [3-6]. Another area 
where the utilization of robots is of vital importance is medicine [7, 8]. Robotic-
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assisted systems enable to perform high-precision surgical operations with 
minimal invasion [9, 10]. 

Conventional robotic arms have a serial kinematic architecture. However, parallel 
robots offer better accuracy and precision, increased rigidity, larger load capacity, 
lower inertias, and higher accelerations and speeds compared to the serial ones 
[11-14]. Owing to these advantages they have received attention as motion 
simulators [11, 15]. In addition, they have been widely applied to various 
industrial purposes, including, but not limited to, pick-and-place tasks [16], 
welding applications [17], spray-painting [18], and machining operations [12, 19]. 
They have been also increasingly used as medical and surgical robots [20]. 

One of the most serious handicaps of parallel robots is the limitation in the 
usability of their workspace due to the “type II singularity” loci within it [21].  
The actuator forces tend to infinity in magnitude near singularities of this type. 
Due to this fact, they are alternatively called “drive singularities” [22, 23]. 

Since their avoidance during path planning would confine the robot to only a 
small portion of the workspace, there has been a growing interest in developing 
different methods for dealing with drive singularities. The approaches in this 
regard fall into two main categories. The first of these is to use actuation 
redundancy, which is well known in the literature to decrease or eliminate 
singularities [24]. The second one focuses on nonredundant parallel robots with an 
aim to obtain bounded inverse dynamics solutions near singularities. 

This relatively new second approach enables parallel robots to pass in a 
controllable fashion through drive singular configurations and hence to use their 
entire workspace at no extra cost. The motion trajectory must be planned to 
sustain the consistency of the equations of motion at the singular configuration to 
be passed through [23, 25, 26]. The necessary “consistency conditions” were 
derived by Ider [23], and Briot and Arakelian [26] with different physical 
interpretations. As another recent effort in this regard, Ozgoren [27] obtained a 
similar condition by using the virtual work method. 

However, as shown by Özdemir [28-30] there exist also “high-order” or “hyper-” 
drive singularities where boundedness of the inverse dynamics solution cannot be 
guaranteed only via the said consistency considerations. Özdemir [28] proved that 
time derivatives of the vanishing determinant should also be taken into account for 
removal of drive singularities. In accordance with this desingularization principle, 
Özdemir and İder [31] developed a motion trajectory planning method for 
flexible-joint parallel robots. 

Although there are a number of unconstrained motion tasks such as pick-and-place 
and spray-painting operations [32-34], numerous advanced applications require 
the end-effector to move along a prescribed trajectory on a constraint surface 
while exerting a specified contact force profile onto that constraint surface. Some 
typical examples of these constrained motion tasks are machining processes (e.g., 
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cutting, grinding, deburring), assembly operations and surgical procedures [32-
37]. Indeed, it is essential to control the contact forces for executing such 
interaction tasks. Thus, in the last decade there has been a considerable research 
focus on force/position control of parallel robots [38-43]. 

However, in the previous studies on parallel robots performing contact tasks, 
singularity crossing problem is not considered. In order to fill this gap in the 
literature, the aim of the present paper is to develop an integrated force and motion 
trajectory planning method for enabling parallel robots to perform contact tasks in 
the presence of drive singularities. A condition is formulated for ensuring the 
consistency of the motion and force trajectories at the singularity. In accordance 
with the literature [28-30], the occurrence of high-order singularities is also 
prevented. Hence, boundedness of the actuator torques and forces near the 
singularity time of the contact task is guaranteed. We believe that the current study 
will facilitate the prevalence of parallel robots in industrial and medical 
applications. 

2 Mathematical Modelling of a Parallel Robot 
Performing a Contact Task 

Consider an n  degree-of-freedom rigid-link rigid-joint parallel robot with n  
actuators. For modelling purposes, let this robot be transformed into an m n  
degree-of-freedom tree-like open system by cutting some passive joints.  
We denote the vector of the tree-like system’s joint variables by 

 T1 2 m  θ  . By reconnecting the cut joints, the loop-closure equations 

can be written as 

  0, 1, 2, , if i m n  θ   (1) 

Differentiating equations (1) with respect to time t  and rearranging into matrix 
form, we get 

Aθ 0  (2) 

where the elements of the  m n m   matrix  A A θ  are given by 

, 1, 2, , , 1, 2, , i
ij

j

f
A i m n j m




   


   (3) 

Assuming that the environment is stationary and rigid, the constraints due to the 
contact of the end-effector with the environment can be expressed as 

  0, 1, 2, , ug u k θ   (4) 
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where k  is the number of contact constraints such that k n . These contact 
constraints can be written at velocity level as 

Bθ 0  (5) 

where the elements of the k m  matrix  B B θ  are 

, 1, 2, , , 1, 2, , u
uj

j

g
B u k j m




  


   (6) 

It is worth mentioning that the contact constraints considered here are equality 
constraints. This is because the robot is assumed not to lose its contact with the 
constraint surface during the whole task [44]. 

Selecting θ  as the vector of generalized coordinates, neglecting the impact and 
friction effects, and using the Lagrangian method, the equations of constrained 
motion of the parallel robot can be obtained in the following form: 

T T   Mθ N T A λ B μ  (7) 

where  M M θ  is the m m  generalized mass matrix,  ,N N θ θ  the m -

dimensional vector of generalized Coriolis, centrifugal and gravity forces, and T  
the m -dimensional vector of nonconservative generalized forces applied by the 

actuators. In these equations,  T1 2 m n   λ   is the vector of the 

Lagrange multipliers associated with the loop-closure constraints, whereas 

 T1 2 k  μ   is the vector of the Lagrange multipliers due to the 

contact constraints. 

Let  T1 2 nx x xx   be the vector of independent motion variables of the 

end-effector when it is in free motion. However, only n k  of them can be 
arbitrarily prescribed along the contact surface. In other words, the number of 

motion degrees of freedom reduces to n k . Denote by  T1 2 n ky y y y   

the vector of independent variables of contact motion, which are related to the 
joint variables by 

  , 1, 2, , v vy h v n k  θ   (8) 

By taking the time derivative of equations (8) and putting into matrix form, we 
obtain 

y Cθ  (9) 

where the elements of the  n k m   matrix  C C θ  are given by 

, 1, 2, , , 1, 2, , v
vj

j

h
C v n k j m




   


   (10) 
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3 Conditions for Singularity Robust Driving During a 
Contact Task 

The vector θ  can be assumed to be constructed such that its first n  elements are 
the actuated joint variables. Notice that this assumption yields no loss of 
generality since it deals only with ordering of the vector elements. Under this 
assumption, the vector T  is of the form 

 
  
 

τ
T

0
 (11) 

where w  denotes the generalized actuator force that is associated with the 

generalized coordinate w  ( 1, 2, , w n  ) and  T1 2 n  τ . The above 

form of T  suggests the following partitioning of the matrices M , A , B  and the 
vector N : 

 

a

u
n m

m n m



 

 
  
  

M
M

M
 (12) 

     
a u
m n n m n m n    

   A A A  (13) 

 
a u
k n k m n  

   B B B  (14) 

 

a
1

u
1

n

m n



 

 
  
  

N
N

N
 (15) 

where the sizes of the submatrices and subvectors are shown as subscripts. Then, 
using equations (11)-(15), one can rewrite equation (7) in the following form: 

   T Ta a a a   τ M θ N A λ B μ  (16) 

   T Tu u u u  A λ M θ N B μ  (17) 

In order to determine the joint motions required for a given motion trajectory 

 ty  along the constraint surface, equations (2), (5) and (9) can be merged into 

the following equation: 

Dθ z  (18) 

where  D D θ  is an m m  matrix constructed as 
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 
   
  

A

D B

C

 (19) 

and  tz z  is an m -dimensional vector defined as 

 
  
 

0
z

y
 (20) 

As long as D  is nonsingular, equation (18) constitutes a system of m  first-order 
differential equations that can be rewritten as 

1θ D z  (21) 

By time-differentiating equation (18) and rearranging, one can also get 

 1  θ D Dθ z    (22) 

Thus, once the system of equation (21) is solved for the generalized coordinates 

 tθ  and the generalized velocities  tθ  by a suitable numerical integration 

method, the generalized accelerations  tθ  can be computed from equation (22). 

Substituting the calculated θ , θ  and θ  together with the given force trajectory 

 tμ  into equation (17) and solving for  tλ  gives the following equation, 

provided that uA  is nonsingular: 

   T Tu u u u      
λ A M θ N B μ  (23) 

Finally, the required actuator forces can be computed from equation (16). 

During the implementation of the above procedure, inverse kinematic singularities 
occur when the determinant of the D  matrix becomes zero. However, such 
singularities are in general on the boundaries of the workspace [21]. Therefore, 
they are not a major concern and are left out of the scope of this study. 

Drive singularities arise when the determinant of the uA  matrix vanishes. As it is 
apparent from equation (23), the Lagrange multipliers associated with the loop-
closure constraints grow without bounds in the neighborhood of such singularities. 
Let us assume that uA  is rank deficient by one at the drive singular configuration 
to be passed through. This assumption is quite realistic since higher rank 

deficiencies would be rather rare in practice [23, 25]. By writing   Tu 
A  in terms 

of the adjoint matrix and determinant of  TuA , equation (23) can be reexpressed 

as 
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       T Tu u u u

Tu

1
adj

det

     
λ A M θ N B μ

A

  (24) 

or, recalling that     Tu udet detA A  and      TTu uadj adjA A , 

      T Tu u u u

u

1
adj

det
     

λ A M θ N B μ
A

  (25) 

By inspecting equation (25), the condition that should be satisfied for the dynamic 
equations of the robot to be consistent at a drive singularity can be stated as 

    T Tu u u uadj      
A M θ N B μ 0  (26) 

If this consistency condition holds and the first-order time derivative of the 

determinant  udet A  does not vanish at the singularity time st  (i.e., the 

singularity is not of high order), then it follows from l’Hôpital’s Rule that 

 
s

lim it t
t


 is finite for all 1, 2, , i m n  , which further implies that the 

required actuator forces will remain bounded as the singularity is approached. 
However, the inverse dynamics solution is still indeterminate at time st  since 

satisfaction of the condition given by equation (26) for maintaining the 
consistency of the robot’s dynamic equations yields 0 0  in equation (25) for all 

 si t . This indeterminacy can be removed by setting 

   
s

s lim , 1, 2, , i it t
t t i m n 


    (27) 

where the limits  
s

lim it t
t


 are evaluated via l’Hôpital’s Rule. 

If the consistency condition given by equation (26) is not satisfied, then at least 
one of the limits  

s

lim it t
t


 is not finite, which yields an unbounded growth of the 

inverse dynamics solution in the vicinity of the singularity. Besides, it is useful to 
note that among the m n  individual equations of the matrix equation (26), only 
one is linearly independent. This is due to the fact [45] that the adjoint matrix of a 
matrix that is rank deficient by one has rank one. 



M. Özdemir et al. Integrated Force/Motion Trajectory Design of Parallel Robots  
 for Singularity Robustness During Contact Tasks 

 – 48 –

4 Case Study 

In this section, the application of the developed method is exemplified by 
considering the planar 5R parallel robot, which is shown in Figure 1. Link 0 is the 
fixed link. Each moving link p  ( 1, 2, 3, 4p  ) has mass pm , mass center at pG , 

and centroidal moment of inertia 
pGI . The link lengths are denoted by 

0 1 2L R R , 1 1 3L R R , 2 2 4L R R , 3 3 5L R R  and 4 4 5L R R . The locations 

of the mass centers are given by 1 1 1r R G , 1 3 1 1R R G   , 2 2 2r R G , 

2 4 2 2R R G   , 3 3 3r R G , 3 5 3 3R R G   , 4 4 4r R G  and 4 5 4 4R R G   .  

The origin of the fixed rectangular coordinate system xy  is at joint 1R .  

The gravitational acceleration g  acts in the negative y -direction. The robot has 

two degrees of freedom and is actuated by two motors that are located at joints 1R  

and 2R . The endpoint P  is given by 3b R P  and 5 3R R P   . 

1R  

 0,0  

3R

2R  

 0 ,0L  

4R

5R
P

1

2  

3  

4  

1G

2G

3G

4G

1 2

4
3

x  

g  

y

 

Figure 1 
The considered robot 

By virtually cutting the closed-loop at joint 5R  and choosing the generalized 

coordinates vector as  T1 2 3 4   θ , the generalized mass matrix and the 

vector of generalized nonlinear inertial and gravity forces of the resulting open-
loop system can be obtained as 

11 13

22 24

31 33

42 44

0 0

0 0

0 0

0 0

M M

M M

M M

M M

 
 
 
 
 
 

M  (28) 
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1

2

3

4

N

N

N

N

 
 
 
 
 
 

N  (29) 

where 

1

2 2
11 1 1 3 1GM m r I m L    (30) 

 13 31 3 3 1 1 3 3cosM M m r L        (31) 

2

2 2
22 2 2 4 2GM m r I m L    (32) 

 24 42 4 4 2 2 4 4cosM M m r L        (33) 

3

2
33 3 3 GM m r I   (34) 

4

2
44 4 4 GM m r I   (35) 

   2
1 3 3 1 3 1 3 3 1 1 1 1 3 1 1sin cos cosN m r L m gr m gL             (36) 

   2
2 4 4 2 4 2 4 4 2 2 2 2 4 2 2sin cos cosN m r L m gr m gL             (37) 

   2
3 3 3 1 1 1 3 3 3 3 3 3sin cosN m r L m gr            (38) 

   2
4 4 4 2 2 2 4 4 4 4 4 4sin cosN m r L m gr            (39) 

Then, by reconnecting joint 5R , the loop-closure equations can be written as 

 1 1 1 3 3 0 2 2 4 4cos cos cos cos 0f L L L L L        θ  (40) 

 2 1 1 3 3 2 2 4 4sin sin sin sin 0f L L L L       θ  (41) 

Thus, the Jacobian matrix of the loop-closure constraint equations is 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

sin sin sin sin

cos cos cos cos

L L L L

L L L L

   
   

  
    

A  (42) 

As illustrated in Figure 2, let the constrained-motion task of the robot be moving 
the endpoint P  according to a prescribed trajectory  Px t  on the frictionless 

plane surface given by *y y  while simultaneously applying a specified normal 

contact force  t  onto it. The surface is rigid and fixed in space. The robot will 

be in contact with the surface only at point P  throughout the entire duration, ft , 

of the task. 
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1R  
3R

2R

4R

5R

P y

x

 

Figure 2 

The given contact task 

The motion trajectory can be expressed as 

     0 f 0Px t x x x s t    (43) 

where 0x  and fx  are the initial and final values of the x -coordinate of point P  

on the constraint surface, and  s t  is a timing function, which is chosen to be the 

following quintic polynomial in order to have zero initial and final velocities and 
accelerations: 

 
5 4 3

f f f

6 15 10
t t t

s t
t t t

     
       

     
 (44) 

Let the force trajectory  t  be trapezoidal. The desired constant value of the 

contact force in the plateau phase is * . The force will be linearly increased from 

zero to this value in the first t  time units of motion and will be decreased 
linearly back to zero in the last t  time units. Thus, 

 

*

*
f

*f
f f

, 0

,

,

t
t t

t

t t t t t

t t
t t t t

t



 



    
    



    

 (45) 

The surface contact constraint can be expressed in the task space as 

  *
1 , 0P P Pg x y y y    (46) 

or in the joint space as 

   *
1 1 1 3sin sin 0g y L b      θ  (47) 
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Thus, the vector of generalized constraint forces acting on the robot due to its 
contact with the surface at point P  is 

T
c F B  (48) 

where 

 1 1 3cos 0 cos 0L b       B  (49) 

The motion variable Px  can be related to the joint variables as 

   1 1 1 3cos cosPx h L b     θ  (50) 

Then, it follows from equations (10) that 

 1 1 3sin 0 sin 0L b       C  (51) 

After constructing the matrix D  given by equation (19), the condition for the 
occurrence of an inverse kinematic singularity can be expressed as follows: 

     1 2 4 1 3 4 2det sin sin 0L L L b         D  (52) 

With 2n  , 4m   and 1k  , the M , A  and B  matrices and the N  vector are 
partitioned according to equations (12)-(15) as given below: 

11 13a

22 24

0 0

0 0

M M

M M

 
  
 

M  (53) 

31 33u

42 44

0 0

0 0

M M

M M

 
  
 

M  (54) 

1 1 2 2a

1 1 2 2

sin sin

cos cos

L L

L L

 
 

 
   

A  (55) 

3 3 4 4u

3 3 4 4

sin sin

cos cos

L L

L L

 
 

 
   

A  (56) 

 a
1 1cos 0L  B  (57) 

 u
3cos 0b      B  (58) 

1a

2

N

N

 
  
 

N  (59) 

3u

4

N

N

 
  
 

N  (60) 
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Then the equation describing the drive singularity locus in the joint space can be 
obtained as 

   u
3 4 3 4det sin 0L L    A  (61) 

Readers can be referred to numerous studies [29, 46-48] for more details on the 
singularities and workspace of the planar 5R mechanism. 

The values of the model parameters are chosen as follows: 0 3 mL  , 

1 2 1.5 mL L  , 3 4 2 mL L  , 1 mb  ,   rad6    , 1 2 0.4 kgm m  , 

3 4 0.6 kgm m  , 1 2 0.75 mr r  , 3 1.5 mr  , 4 1 mr  , 1 2 0   , 

 3 4 d2 3 ra     , 
1 2

20.2 kg mG GI I   , 
3 4

20.3 kg mG GI I   .  

The gravitational acceleration is assumed to be 29.807 m/sg  . The constraint 

surface is taken as * 0.5 my  . The x -coordinates of the starting and ending 

positions of the endpoint P  along this surface are 0 0.5 mx    and 

f 0.42 mx   , respectively. The total duration of the task is selected to be 

f 2 st  . Thus, the timing function becomes 

  5 4 30.1875 0.9375 1.25s t t t t    (62) 

The motion trajectory obtained using equation (43) is shown in Figure 3.  
The values of the joint variables at the starting position of the endpoint are as 
follows: 1 169.4   , 2 237.5   , 3 343.0   , 4 151.5   . In the case studies 

presented below, the numerical integrations are based on the Dormand-Prince 
formula (see, e.g., [49] and the references cited therein) with a fixed step size of 
0.002 s. 
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Figure 3 

The desired motion trajectory 
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4.1 Case 1: A Case Where Motion and Force Trajectories Are 
Not Consistent with Each Other at the Singularity 

As the first case, let the force trajectory be generated with * 1 N   and 

0.2 st  , as shown in Figure 4. 
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Figure 4 
A force trajectory that is not consistent with the motion trajectory at the singularity 

The inverse kinematic solution is singularity free. The time variations of the joint 
angular displacements that correspond to the prescribed motion trajectory of the 
endpoint on the constraint surface are shown in Figure 5. 
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Figure 5 
Time histories of the joint variables necessary for the desired constrained motion of the end-effector 

However, although no inverse kinematic singularity is encountered, a drive 
singularity occurs when 0.45 mPx    (i.e., 0.65s  ). The values of the joint 

variables at this singular position are as follows: 1 164.2   , 2 237.4   , 

3 335.3   , 4 155.3   . Both Lagrange multipliers become unbounded near this 

position. As can be read from Figure 6, the singularity time is s s1.1  64t  .  
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The limits of the required motor torques as t  approaches this value are not finite, 
as can be seen in Figure 7. 
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Figure 6 
Time variation of the determinant whose vanishing implies the occurrence of a drive singularity 
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Figure 7 
Motor torques required for the motion and force trajectories that are not consistent with each other at 

the singularity 

4.2 Case 2: A Case Where Motion and Force Trajectories Are 
Consistent with Each Other at the Singularity 

In order to overcome the unboundedness of the inverse dynamics solution, the 
motion and force trajectories should be such that the consistency of the dynamic 
equations is maintained at the singular configuration to be passed through.  
The consistency condition that should be satisfied at the singular position of 
interest can be derived as follows: The transpose of the adjoint matrix of uA  is 

  T 4 4 3 3u

4 4 3 3

cos cos
adj

sin sin

L L

L L

 
 

  
    

A  (63) 
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Substituting equation (63) into equation (26) gives 

 

 
4 4 31 33 3 3

3 3 42 44 4

1 3

2 4

cos cos

cos 0

L M M N b

L M M N

    

 

    

  

 



 

 
 (64) 

 

 
4 4 31 33 3 3

3 3 42 44 4

1 3

2 4

sin cos

sin 0

L M M N b

L M M N

    

 

    

  

 



 

 
 (65) 

The following relation in radians exists between 3  and 4  at the encountered 

singular configuration: 4 3    . Thus, at that singularity, 4 3cos cos   , 

4 3sin sin   , the rank of   T
uadj A  is one, and equations (64) and (65) are 

linearly dependent and can be reduced to 

   4 31 1 33 3 3 3 3 42 2 44 4 4cos 0L M M N b L M M N               
     (66) 

The above consistency condition can be satisfied at the singularity via a proper 
planning of either the motion or the force trajectory. The velocity- and 
acceleration-level inverse kinematic solutions are calculated at the encountered 
singularity as 

   s s1 1.8461 Pt x t     (67) 

   s s2 0.2892 Pt x t     (68) 

   s s3 2.6766 Pt x t     (69) 

   s s4 1.3388 Pt x t    (70) 

     2

s s s1 4.4386 1.8461P Pt x t x t        (71) 

     2

s s s2 9.3659 0.2892P Pt x t x t        (72) 

     2

s s s3 4.3744 2.6766P Pt x t x t        (73) 

     2

s s s4 1.7241 1.3388P Pt x t x t        (74) 

In the above equations, the endpoint velocity is in m/s, endpoint acceleration is in 
m/s2, angular joint velocities are in rad/s, and angular joint accelerations are in 
rad/s2. Then, for the singular configuration of interest, we compute from equations 
(31) and (33)-(35) that   2

31 s 0.48 k m54 gM t  , 2
33 1.65 m kgM   , 
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  2
42 s 0.70 k m96 gM t  , 2

44 0.9 m kgM   , and from equations (38) and (39) 

that 

   s3

2

s 4.2931 0.8179PN t x t      (75) 

    2

4 s s0.0463 0.5452Pt x tN      (76) 

where 3N  and 4N  are obtained in Nꞏm for the endpoint velocity in m/s.  

By substituting these into equation (66), simplifying and multiplying both sides of 
the resulting equation by 1 , we get 

     2

s s s12.6244 17.2351 1.9914 2.7262 0P Px t x t t        (77) 

Equation (77) shows that consistent values of the endpoint velocity, the endpoint 
acceleration and the contact force at the singularity time lie on a quadric surface as 
seen in Figure 8. In this figure, Pv  and Pa  represent the endpoint velocity and 

acceleration, respectively. It may be useful to note that P Pv x   and P Pa x   since 

the endpoint moves along a constant y  path. 
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Figure 8 

Consistent values of the endpoint velocity, the endpoint acceleration and the contact force at the 

singular point of interest 

In this example, we prefer to plan the force trajectory for satisfying the 
consistency condition. Hence, the previously chosen desired motion trajectory 
becomes realizable, despite the presence of drive singularity. We first compute 
that  s 0.0710 m sPx t   and 2

s( ) 0.0478 m sPx t   . Then, substituting these 

values into equation (77), we get  s 1.11 Nt  . As our second case, we 

construct a new trapezoidal force trajectory with * 1.11 N   and 0.2 st  , as 

shown in Figure 9. With this new force trajectory, the dynamic equations are now 
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consistent at all times. Additionally,  udet A  has a nonzero first-order time 

derivative at the singularity time. Thus, the required motor torques remain 
bounded in the neighborhood of the singularity, as can be seen in Figure 10. It is 
useful to note that  

s
1lim 4.77 N

t t
t


  and  

s
2lim N1.93 

t t
t


 . 
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Figure 9 

A force trajectory that is consistent with the motion trajectory at the singularity 
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Figure 10 

Motor torques required for the motion and force trajectories that are consistent with each other at the 

singularity 

Conclusions 

This paper presents an integrated force and motion trajectory planning approach 
for removing drive singularities of parallel robots performing contact tasks. Such 
tasks constitute the majority of the industrial and medical robotic applications.  
A consistency condition is derived in terms of the generalized velocities, 
accelerations and contact forces. This condition should be considered while 
planning the motion and force trajectories. Also, in accordance with the literature 
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[28-30], the singularity is prevented from being of high order. Thus, the 
boundedness of the inverse dynamics solution around the singularity is ensured. 

The effectiveness of the proposed method is verified through a numerical case 
study where the planar 5R parallel robot is considered to perform a constrained 
motion task in the presence of drive singularities. It is shown that one of the 
motion and force trajectories can be arbitrarily chosen while the other is planned 
to satisfy the consistency condition at the singularity. The consistent values of the 
endpoint velocity, the endpoint acceleration and the contact force at the singularity 
are found to describe a quadric surface. 
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