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Abstract: In this paper, EKF Based A-SLAM concept is discussed in detail by presenting 

the formulas and MATLAB Simulink model, along with results. The UAV kinematic model 

and state-observation models for the EKF Based A-SLAM are developed to analyze the 

consistency. The covariance value caused by the EKF structure is analyzed. This value was 

calculated by filtering with error between the UAV’s actual and estimated positions. It is 

concluded that the calculated covariance value diminishes despite error and does not 

decrease as a result of the inconsistency of the EKF Based A-SLAM structure. The 

necessary conditions for the consistency of the EKF Based A-SLAM structure are described 

and the consistency of the EKF Based A-SLAM is consequently investigated by considering 

these conditions for the first time by using simulation results. The analysis during this 

landmark observation exhibits that a jagged UAV’s trajectory indicates an inconsistency 

caused by the EKF Based A-SLAM structure with the provocation of error accumulation. 

Finally, the major reasons of the filter inconsistency can be listed as unobservable 

subspace and Jacobian matrices used for linearization. As a future work, the methods that 

can be used to provide consistency of the EKF Based A-SLAM are proposed for better UAV 

navigation performance. 
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1 Introduction 

Unmanned Aerial Vehicles (UAVs) have a quite distinguished role for decision 

makers and operational agents due to their extensive usage and large variety of 

applications, such as reconnaissance and surveillance in the military and civilian 

areas. The main usage purpose of UAVs is autonomous navigation that provides 

flexible functionality particularly on a stand-alone flight in autonomous 

operations. It is crucial to determine the UAVs precise position for better 

navigation. Global Navigation Satellite System (GNSS), which is actually 

http://tureng.com/search/reconnaissance
http://tureng.com/search/surveillance
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preferred to geolocation tools in the world, is also the most adequate tools for the 

UAV position determination process. However, it can be hard to have successful 

results for this process in GNSS denied environments. Thus, there exist a great 

deal of work in the literature about this problem. In GNSS denied environments, 

when the map knowledge also does not exist, the problem of simultaneous 

position determination and production of map information can be solved by 

Extended Kalman Filter (EKF) Based Airborne Simultaneous Localization And 

Mapping (A-SLAM), which is the consistency analysis issue in this paper. 

The SLAM problem is a hot topic for both industrial and military robotic research. 

The SLAM problem was introduced by R. Smith and P. Cheesman [1], then was 

detailed by G. Dissanayake, H. F. Durrant-Whyte and T. Bailey [2], and finally 

was presented as a whole concept by T. Bailey and H. F. Durrant-Whyte [3, 4]. 

While the researchers were interested in the SLAM problem for territorial, aerial, 

and marine vehicles, they examined a way to decrease the error that is caused by 

filter structure. In these studies, the structure of the Kalman filter-based SLAM 

effects of partial observability [5-7], stability [8] and the consistency problem [9, 

10] were examined to present recommendations for solutions to the problem. 

Airborne SLAM applications are continued simultaneously [11-14]. It was very 

important to know the current location in the works on autonomous navigation in 

aircraft [15, 16] and the creation of an accurate map. The optimal level of 

mapping method was also examined in L. M. Paz and J. Neira [17]. 

In the literature, filter consistency can be studied as a separate title. In the case that 

the estimated covariance of the filter is greater than or equal to the actual 

covariance that is the covariance difference between actual and estimated 

positions of UAVs, the filter is called consistent. The filter consistency is very 

important in terms of performance. When the filter is inconsistent, error 

accumulation increases, and consequently the vehicle location is determined with 

some error. The filter consistency is still an attractive research topic and 

researchers have made numerous attempts to improve consistency. The 

consistency conditions of the Kalman filter, named the state estimator, were 

revealed by Y. Bar-Shalom, X. Rong Li and T. Kirubarajan [18]. T. Vidal-Calleja, 

J. Andrade-Cetto and A. Sanfeliu demonstrated the marginal stability status of the 

Kalman filter [8], and J. A. Castellenos, J. Neira and J. D. Tardos analyzed the 

consistency of the suboptimal filter and examined limits to the SLAM consistency 

[10]. It is shown by T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot that 

in the case of two core symptoms, the EKF-based SLAM filter is inconsistent [9]. 

However, the inconsistency problem for an aerial vehicle has not been identified 

yet. SLAM filters that are designed for aerial vehicles must include the kinematic 

model. In this case, the filter consistency problem becomes more complex. In this 

work, a SLAM filter designed for aircraft and the consistency problem have been 

analyzed for the aircraft kinematics model. In the literature, the SLAM problem 

for an aircraft is known as an A-SLAM. The inconsistency in the EFK-based A-

SLAM filters is expressed clearly with the proposed analysis methods. 
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The aircraft kinematic model is shown in detail in Section 2. The structure of the 

EKF based A-SLAM is described in Section 3. In the subsections, non-linear 

prediction and the observation model are demonstrated, the procedures in 

estimation and correction steps are described and the Jacobian matrices used for 

linearization are established. The problem of consistency and its symptoms are 

described in Section 4. Simulations for several scenarios are performed and, 

according to the simulation results, the consistency structure of the EKF based A-

SLAM are examined in Section 5. The obtained simulation results were evaluated 

in Section 6 and finally, the solution methods proposed in future works with 

emerging inconsistency problems are discussed. 

2 The UAV Kinematical Model 

The transformation of the body frame motions of an aerial vehicle to the 

navigation frame plays an important role since the global mapping of the 

environment requires aerial vehicle equation of motion to the global frame. Euler 

angle transformations can be used for this purpose. The aerial vehicle body frame 

accelerations of the directional navigation and angular rates are transferred to the 

navigation frame, and the position of the aerial vehicle is calculated in navigation 

frame. The general equation generated during this process is expressed as the 

kinematic equation of the aerial vehicle. The matrix expression obtained by the 

transfer of directional acceleration to navigation frame of aerial vehicles is 
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The transformation matrix of angular rates from body frame to navigating frame is 
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These two matrix equations are referred to as the kinematic model of the aerial 

vehicle. The vector [u,v,w] is the directional acceleration in the body frame and 

[p,q,r] is the angular rates of the body frame. 
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3 EKF-based Airborne SLAM 

An EKF-based filter was used for the A-SLAM in this section. First, the non-

linear model of prediction and observation is given and then the estimate and 

update of the steps of the EKF are described. 

3.1 The Non-Linear Prediction and Observation Model 

The aerial vehicle state vector and map vector come from the state vector used in 

non-linear system model. The aerial vehicle state vector is composed of the 

position (x, y, z), velocity (Vx, Vy, Vz) and the Euler angles (roll, pitch and yaw). 

The map vector is made up of the position of each landmark (xL, yL, zL). The 

length of this vector is 3*n (n: number of landmark). 
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EKF is a filter structure in a non-linear system that estimates the next step from 

the previous state and the observation value. As in the Kalman filter, it has 

estimation and correction steps. The state space model expression that will be used 

in filters is 

))(),(),(()1( kvkukxfkx        (4) 

In the state space model, the state vector at step of k+1 depends on the state vector 

and input data of step k. 

The landmark position can be found as the range, bearing, and elevation as in the 

observation model. The transformation of that value from sensor frame to 

navigation frame is performed by the transformation matrix. The observation 

model depends on the position information of the aerial vehicle at step k. It is 

stated as 

))(),(()1( kkxhkz         (5) 

where v(k) and w(k) are zero mean white noise. Their covariance is 

 TkvkvQ )().(  and  TkkR )().(   

The noise covariance can be written as 

  0)( kvE  

  )()()( kQkvkvE T          (6) 

and 

  0)( kwE  
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  )()()( kRkwkwE T          (7) 

In equation (4) the state space model in explicit for can be written as 
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Here it will be seen that the state space model is composed of the position, 

directional velocity and Euler angle. The state space model is obtained from the 

kinematic equation of the aerial vehicle. 

3.2 EKF Estimation Step 

The A-SLAM needs the stochastic estimation, which is a guess of the UAV 

position parameter at step k from the previous state with Gaussian noise. The 

structure is constructed by the kinematic system model as compatible with the 

EKF structure. As in the EKF-based A-SLAM it is elementarily composed of 

estimation and update steps. For the model linearization process, the Jocobian 

matrices are used. In the EKF-based A-SLAM, the state estimation at step k, due 

to input variables and the state at step-k, can be written as 

))(),(()1(ˆ kukkxfkkx         (9) 

The observation estimation is 

))1(ˆ()1( kkxhkkz                     (10) 

The estimated covariance calculated by is 

T
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3.3 EKF Update State 

The estimation update step is performed next to the EKF estimation step. The 

updated state estimation expression is 

)1(.)1(ˆ)11(  kWkkxkkx                  (12) 

where W is the Kalman gain and )1( k  is innovation. The updated covariance 

is 

TWkSWkkPkkP ).1(.)1()11(                  (13) 

The calculation of the innovation and its covariance (covariance error) is done by 

)1()1()1( kkzkzk                   (14) 
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RHkkPHkS
T

xx  )1()1(                 (15) 

Finally the Kalman gain is 

)1(.).1( 1   kSHkkPW T

x
                 (16) 

The Jacobian matrix )(kfuav  used for the model linearization in A-SLAM that is 

composed of partial differentials of position, velocity and the Euler angle of the 

UAV kinematic model is 
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The Jacobian matrix )(kfw  is composed of the differential equation of the non-

linear process gain model input variables is 
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In the observation model, the landmark object information from the sensor is 

range, bearing and elevation. The presentation of object information in the 

Cartesian coordinates is 
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The transformation of the landmark object sensor frame position to the navigation 

frame is 
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The symbol α refers to the angle between the body and the observation sensor 

camera. The transfer matrix is 
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The Jacobian matrix )(kh  used for model linearization in the A-SLAM that is 

composed of partial differentials of position, velocity and the Euler angle of 

observation model is 
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In explicit form it is 
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4 The Inconsistency Problem and Symptoms 

The EKF structure is developed to apply in non-linear systems. Jocabian matrices 

are used to linearize the non-linear systems. Using Jacobian matrices causes new 

errors in the Kalman filter estimations. 

Since the EKF is also applicable in non-linear systems, it is used in the SLAM 

structure. The simultaneous reduction in the error and filter covariance as in the 

Kalman filter is expected result of the EKF based A-SLAM structure. 

Y. Bar-Shalom et al. [18] stated that a state estimator is consistent in the event that 

it satisfies the following requirements: 

 Estimation error mean is zero, 

 Real covariance is less than or equal to the covariance calculated by the filter. 
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The EKF SLAM filter consistency is analyzed by T. Bailey et al. [9], and it is 

stated that EFK SLAM is inconsistent in case of the observation of the following 

symptoms: 

 Excessive information gain (estimated error covariance is less than the real 

covariance), 

 Jagged in vehicle movement curve. 

5 Numerical Result 

The state equation given in section 3 and the A-SLAM structure is used in the 

simulation. The UAV trajectory and landmark is specified due to a certain 

scenario. The EKF-based A-SLAM simulation results are transferred to the 

graphics and, using the results filter consistency, analysis is performed. 

5.1 EKF-based A-SLAM 

In the simulation, a UAV at a constant velocity and constant altitude is flying at 

30m/sec over an area of 1400 m x 1400 m in a closed loop. The landmark 

detection with camera and position determination is performed. The UAV is 

supposed to start flying at [0, 0, 0]. The total simulation time is bounded at 240 

seconds. An IMU is used as a sensor. The eighth landmark object is depicted in 

the map. The UAV trajectory and landmarks are depicted in Fig. 1. 

The UAV directional velocity in Fig. 2 is given versus time. The UAV 

localization error is shown in Fig. 3, the directional velocity error in Fig. 4, the 

Euler angle error in Fig. 5, and the X axis position error and filter covariance in 

Fig. 6. 

 
Figure 1 

UAV and Landmark Localization. In this plot, the blue dashed line is the UAV trajectory, the red 

dotted line is the A-SLAM, the blue ellipse is the landmark localization, and the red ellipse is the 

uncertainty ellipsoid 
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Figure 2 

UAV Directional Velocities versus Time. (a) X axis velocity, (b) Y axis velocity, (c) Z axis velocity. In 

this plot, the blue dashed line is the UAV real velocity, and the red dotted line is the velocity calculated 

by A-SLAM 

 

Figure 2 

UAV Localization Error. (a) UAV X axis error, (b) UAV Y axis error, (c) UAV Z axis error. In this 

plot, the blue dashed line is the UAV position error, and the red dotted line is the 2 sigma confidence 

interval 

 

Figure 3 

UAV Velocity Error. (a) UAV X axis velocity error, (b) UAV Y axis velocity error, (c) UAV Z axis 

velocity error. In this plot, the blue dashed line is the UAV velocity error, and the red dotted line is the 

2 sigma confidence interval 
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Figure 4 

UAV Euler Angle Error. (a) UAV roll angle error, (b) UAV pitch angle error, (c) UAV yaw angle 

error. In this plot, the blue dashed line is the UAV angle error, and the red dotted line is the 2 sigma 

confidence interval 

 

Figure 5 

Position Error on X Axis and Filter Coveriance. In this plot, the blue dashed line is the filter X axis 

covariance, and the red dotted line is the X axis error 

5.2 First Symptom: Information Gain 

It is necessary that the filter covariance should decrease over time in a consistent 

filter structure, and the error must be smaller than the estimated covariance. In a 

similar manner, the consistency of the EKF based A-SLAM structure can be 

analyzed. 

This analysis can be done in two different ways: first by checking the error and 

covariance relation by using simulation results, and second, by making use of the 

normalize estimation error square value. 
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5.2.1 Filter Covariance – Error Relation 

According to the values used in the simulation scenario, the second moments of 

the UAV’s [x,y,z] position variables with the Airborne SLAM inspection of the 

estimated values of covariance are: 

As the second moment: 

1751,0)var(;6432,0)var(;1628,0)var()(  zyxkP .              (25) 

The estimated Coveriance: 

0063,00258,00051,0)(  zyx PPPkkP                 (26) 

Since )()( kPkkP  the filter is inconsistent. 

5.2.2 The Normalized Estimation Error Square 

If the actual statistical values are unknown but the true state x(k) is known, the 

normalised Estimation Error Squared (NEES) can be used. 

Let N-dimensional random numbers vector x be in Gaussian distribution, the 

mean be x  and covariance be P, then q= ).()'.( 1 xxPxx    can be written in chi-

square distributed quadratic form with N dimension of freedom. The Chi-square 

distribution can be defined as the ratio of the squares of two Gaussian distributed 

variables. 

The chi-square conformity test is a decision as to whether the difference between 

the expected and obtained value is within a specified limit or not. The process test 

not only variable distribution but also the whole filter system. 

In the EKF-based A-SLAM structure, if the UAV’s real position )(kx  is known, 

then the difference between the UAV’s real position )(kx  and calculated position, 

the term )( kkx  can be computed. The NEES or filter performance characteristic 

is: 

))()(.()())'.()(()( 1 kkxkxkkPkkxkxk                  (27) 

The NEES distribution is expected to be a chi square, or if the computed 

distribution is not chi-square, then the filter is not consistent. 

The chi-square distribution depends on the degrees of freedom of system. The 

expected bounds of distribution with degrees of freedom are determined using a 

table. The UAV’s position is specified by nine degrees of a freedom-position 

vector composed of the velocity and angle values. The NEES, with nine degrees 

of freedom and its reliability boundary, is given in Fig.6. The computed NEES in 

a filter should be within the reliability boundary for consistency. Since it is not, 

the proposed filter of the EKF based A-SLAM is inconsistent. 
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Figure 6 

EKF Based A-SLAM, 50 Monte Carlo Simulation, NEES 95% confidence interval. In this plot, the 

blue line is the NEES, the black line is the NEES mean, and the red dashed lines are the 95% 

confidence interval 

5.3 Second Symptom: Jagged UAV Trajectory 

The other results of the filter inconsistency are jumps in the UAV’s trajectory. 

That originates from the UAV’s correction when it detects a landmark. This 

symptom appears by the size of the update, and the UAV’s position tends to be 

much larger than the actual error. When the landmark is observed, the UAV’s 

trajectory is jagged, as shown in Fig. 7. 

Both symptoms indicate inconsistency with the A-SLAM consistency 

investigation. Despite the accumulation of errors, which are the difference 

between the UAV’s real position and the filter estimation, the A-SLAM 

covariance decreases, as shown in study. The reason for filter inconsistency is the 

limited observability of the A-SLAM or other observability problems. 

 

Figure 7 

Jagged UAV Trajectory. In this plot, the blue dashed line is the UAV trajectory, the red line is the A-

SLAM, and the red ellipse is the landmark localization 
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Conclusion and Future Work 

In this paper, a mathematical model and the simulation results for the EKF-based 

A-SLAM structure of UAVs are presented in order to investigate the consistency 

of the EKF-based A-SLAM. It is observed that the error stems from the Jacobian 

matrices used for linearization. Therefore, the uncertainty emerged from Jacobian 

matrices and the effects of the landmark uncertainty that causes error 

accumulation. The filter estimation covariance should be greater or equal to the 

error, and the consistent filter is supposed to calculate covariance in accordance 

with error. Since it is stated that the filter is not able to respond to error 

accumulation, this implies filter inconsistency. 

The inconsistency in the EKF-based A-SLAM structure was emphasized and 

background information for the solution of the problem was provided. It was also 

observed that main reason for filter inconsistency is the information gain arising 

from unobservable subspace. The imperfect or incorrect information coming from 

the unobservable subspace filter does not respond to error accumulation. 

In future works, methods such as extending observability, designing an 

observability constrained filter, or constructing a full observable filter structure 

can be applied to making the filter consistent. Furthermore, Jacobian matrices that 

are used in the A-SLAM, can be calculated by methods, except for differential 

methods.  
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