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Abstract: This paper presents a novel prediction of fault location during copper wire 
manufacturing using a hybrid Nonlinear Autoregression Neural Network (NARNN) and 
Markov chain model. A four (4) year daily primary data spanning from 2018 to 2022 
consisting of 261502 data points obtained from a cable manufacturing company in Ghana 
was used for the prediction. A comparison between the suggested model and decision tree 
algorithm was done. To assess the predictive effectiveness of the two models, performance 
indicators including Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE), 
and Mean Absolute Percentage Error (MAPE) were used. As determined by their 
evaluation criteria, the findings revealed that the suggested hybrid model had superior data 
fitting and accurate prediction capabilities. 
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1 Introduction 

Electrical cables are made all over the world due to their widespread use. 
Basically, electrical cables are current-conducting wires either copper or 
aluminum that have been twisted, braided, or bonded into a single assembly with 
or without insulation. They are employed specifically for the transmission of 
electrical or telecommunication signals. Electrical cables are necessary because 
they serve as the foundation for the functionality of all electrical equipment.  
To produce cables that are of good quality, a number of production processes must 
be used. One of these essential manufacturing processes is the drawing stage, 
which entails drawing a copper or aluminum rod through a series of progressively 
smaller synthetic diamond or tungsten carbide dies. Drawing reduces the rod to a 
wire with the required diameter that has great surface quality and enhanced 
mechanical qualities like strength and hardness [1]-[3]. 
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A typical copper rod is drawn in four steps. These include unwinding, drawing, 
annealing and rewinding. The thick copper rod is unwound at the payoff drive to 
the diesing chamber during the unwinding phase. The ultimate wire diameter is 
produced in the diesing chamber by forcing the thick copper wire through a 
sequence of progressively smaller dies. Lubricant, like oil, is circulated in the 
diesing chamber to lower friction and wire wear. The drawn copper wire is put 
through a specific heat treatment in the annealing chamber to soften it and 
increase its malleability. A dancer system is also mounted between the payoff and 
take-up drives so as to sense and regulate the wire tension to the desired limit.  
The drawn wire is evenly coiled onto a bobbin at the take-up with the aid of the 
traverse. A counter installed on the moving web next to the dancer provides data 
on the length of wire wound onto the bobbin. Figure 1 depicts the process of 
copper wire drawing [4]. 
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Figure 1 

Copper wire drawing process schematic diagram 

where, d1 is the wire's initial diameter before drawing, d2 is actual wire's diameter 
upon drawing, V0=V1 is line speed of pay-off or capstan, V2 is line speed of take 
up, T0=T1 is torque of payoff or capstan, T2 is torque of take up, ω2 is angular 
speed of take-up drive 

After the wires are drawn, they are bundled to form a cable, which is then 
extruded with insulating polymers such as Cross-Linked Polyethylene, 
Polyethylene, and Polyvinyl Chloride. Extrusion is an important stage in the 
production line since it inhibits copper losses in cables and protects the conductor 
from physical harm and environmental hazards. After extrusion, the final product 
is ready for market consumption after passing quality control tests [3], [5]. Among 
the most crucial things to take into consideration in the cable manufacturing sector 
is the final resistance or diameter of the wire, which should not differ substantially 
from the standard after production. That is, the wire's tension should remain 
consistent during the drawing stage of the cable production process so that the 
wire's diameter or cross-sectional area remains unchanged. Failure to ensure this 
can lead to fire outbreaks that could kill innocent lives and destroy millions of 
properties as a result of heat generation when substandard wires or cables are used 
[6]. According to research, tension variation during the wire drawing process is 
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primarily caused by faults in the drawing machines' components. In most cases, 
this causes machines to abruptly stop, resulting in wire breaks caused by 
stretching the wire beyond its tensile strength [7], [8]. 

Similarly, in the event of a fault, determining the exact location of the fault in wire 
drawing machines is always a bigger challenge for the experts who work on these 
machines, as it usually takes much longer to locate the faults in order to restore 
them. Most cable manufacturing industries face significant challenges as a result 
of this phenomenon, which causes increased downtime, production losses, energy 
waste, and scrap production [9]. Several factors contribute to wire tension and 
breakage during the drawing process. Low drawing or annealing solution 
concentration, entanglement in the basket, bad or copper dust in dies, annealing 
bearing failure, improper drive and tensioner setting, oxidation of wire due to bad 
steam flow in the annealer, power outage, torque or speed variation due to changes 
in roll diameter between the payoff drive and the take-up drive among other 
factors. These faults are mostly located in the drawing chamber, annealing 
chamber, capstan, recirculatory system, dancer, payoff, take-up, AC drive and 
traverse. Therefore, developing a model that can predict the location of faults 
during the copper wire drawing process is necessary in order to avert these 
challenges. 

Several models for fault prediction have been reported in the literature. These 
models are categorized as statistical, physical, and artificial intelligence models 
[10]. Physical models suffer from multiple iterations before achieving the desired 
results. Furthermore, these models demand a significant amount of reliable data 
[11]. Seasonal Autoregressive Integrated Moving Average (SARIMA), Auto-
Regressive Moving Average (ARMA), Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) and Auto-Regressive Integrated Moving Average 
(ARIMA) are the most frequently employed statistical models [12]. It has been 
demonstrated that these models can predict if the time series data exhibit a linear 
relation. Their strength is based on historical data. However, because statistical 
models have several transitory periods and large variability, they are unable to 
produce reliable predictions for time series with nonlinearities, such as the wire 
break location prediction in the drawing machines [13]. 

Artificial Intelligence (AI) models such as Support Vector Machine (SVM), 
Logistic Regression (LR), Adaptive Neuro Fuzzy Inference System (ANFIS), 
Artificial Neural Networks (ANNs), Decision Trees, Fuzzy Logic, and k-Means 
are well recognized for their capacity to resolve a nonlinear time series with 
greater precision and have produced favorable outcomes in the creation of 
extremely precise fault diagnostic systems [14-19]. Among the AI techniques, 
ANN is one of the most popular and several studies have shown that it 
outperforms other techniques [20], [21]. The advantages of ANN are enormous 
because it is fault-tolerant, can learn sophisticated nonlinear relationships, and has 
powerful classification attributes. Besides, due to the non-parametric nature of 
ANN prediction, having process knowledge of the production of the time series is 
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not necessary. Furthermore, once trained, ANNs are capable of making accurate 
predictions [22]. Nonetheless, ANN lack coherence, leading to their 
inappropriateness for deployment in instances under which it is essential to 
determine which elements did contribute to a technical fault [21], [22]. 

There are various subcategories of ANN. These include Radial Basis Function 
Neural Network (RBFNN), Backpropagation Neural Network (BPNN), Recurrent 
Neural Network (RNN), Generalized Regression Neural Network (GRNN), and 
Nonlinear Autoregressive Neural Network (NARNN). Because the prediction of 
wire break location in the cable manufacturing process involves fluctuating 
parameters that are highly nonlinear and complex, research has shown that 
NARNN has the capability to predict the dynamics of this complex system with 
high precision and quick convergence [23], [24]. NARNN has been utilized 
successfully in a variety of applications for fault prediction. Some of which 
include transformer oil dissolved gas concentration [12], fault prediction in 
software [25], rolling element bearing deterioration prediction [26], prediction of 
infiltration of underground water by hydraulic fluid leaks [27], engine fault 
detection and failure prediction in the manufacturing process [28], [29], passenger 
flow forecasting [30], meteorological time series forecasting [31], [32], Heating 
Ventilation and Air Conditioning (HVAC) predictions [23], [33] geomagnetic 
fluctuations prediction [34], prediction of COVID-19 cases [35] among other 
complex dynamical systems. 

To the author's best knowledge, the hybrid NARNN-Markov chain model has 
never been used to predict fault location in wiring drawing machines and no 
literature has ever reported on the prediction of wire breaks and fault location in 
drawing machines during copper wire drawing in the cable manufacturing 
industries. As a result, this paper proposed a novel approach to accurately classify 
and locate the probability of wire breaks in the copper wire drawing process by 
combining NARNN with a Markov chain model. To determine the model's 
effectiveness in fault location, a comparative analysis was performed using the 
decision tree algorithm. The findings clearly show the proposed models' 
effectiveness in predicting fault locations. Therefore, it is anticipated that this 
research can be the basis for the deployment of corrective maintenance in the 
cable manufacturing industry. Thus, the operators can anticipate potential fault 
locations and implement recommended preventive measures. 

1.1 Nonlinear Autoregressive Neural Network 

The Nonlinear Autoregression Neural Network (NARNN) blends neural network 
techniques' capacity for matching nonlinear function with that of autoregressive 
methods for unearthing probable time series sources [12], [32]. The architecture is 
developed and provided with training in an open loop, with the intended target 
variables making up the feedback loop to ensure higher training accuracy.  
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The configuration is changed to a closed loop after learning, and the estimated 
outputs are utilized as new signals acting as feedback to the network.  
The NARNN is a nonlinear, discrete, autoregressive model used in forecasting 
time series data expressed as [26], [27]: 

( ) ( ( 1),  ( 2) ... ( )) ( )y t h y t y t y t d tε= − − + + − +                         (1) 

where y(t) is prediction’s outcome at a discontinuous step time t of the time series 
y, the series' past data is denoted by d, ε(t) symbolizes the series y's deviation at 
time step t and h connotes a hypothetical nonlinear quantity that the feedforward 
part of a neural network can predict while being trained. 

The aim for training a neural network is to estimate the functional h(.) by 
maximizing the bias and weights of the network. As a result, the NARNN model 
is well-defined by Eq. (2) [26], [27]. 

0
1 1

( ) ( ) ( )
k a

j ij oj
j i

y t a a y t i tφ β β ε
= =

 = + − + + 
 

∑ ∑                                 (2) 

where a depicts the entry number, k denotes the hidden layer's quantity containing 
activation function φ , variable ijβ  determines how strongly the input layer i and 
the hidden layer j are connected. The values for the output and hidden layer, 
respectively, are oa and ojβ , aj is the connecting weight linking the output and the 
hidden layer. 

The boosting of the NARNN model's architecture necessitates the identification of 
the quantity of hidden layers, time delays, and activation function, as well as a 
suitable learning technique. The desirable amount of time delay and hidden layers 
is determined by experiment. On the basis of Dandy and Maier, the activation 
function is selected. Finally, due to their accuracy and high convergence speed, 
Bayesian regularization algorithms and the Levenberg-Marquardt are utilized to 
train the model [26], [27]. Generally, the input data quality, universality and size, 
as well as proper model development and assessment, are critical to the successful 
application of NARNN models [28], [29]. 

1.2 Decision Tree Method 

A kind of supervised learning is the decision tree approach. It is one of the most 
widely used classification techniques due to its high accuracy and low 
computational cost. Its flexibility, nonparametric nature, and capacity to deal with 
nonlinear relationships between features and classes make it suitable for fault 
classification [36]. The decision-rules model's tree structure formation is based on 
if/else instructions. In theory, an iterative binary partition approach is used for the 
desired output to supervise the training sets. To divide the sample space, 
successive queries with yes/no options are posed. The locations in which the items 
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are examined are referred to as nodes. The test findings are subsequently relayed 
to a branch. 

A decision tree has three different kinds of nodes. These include the internal 
nodes, leaf nodes, and root nodes. The test's result is based on each node's purity. 
After achieving the optimum value of purity, the node is terminated. The optimum 
value is established if a node only produces one kind of output. When classifying 
new samples, the decision tree and an item quantity will be examined. The chain 
of attribution from the root node to the leaf node maintains group forecast for the 
tested samples. The basic procedure in creating a decision tree is to identify the 
attribute that will be evaluated on a node, and an ancillary node to that node. 
Splitting refers to the entire process of identifying test and branch. 

The process of splitting reduces the dataset's impurity that corresponds to class at 
a subsequent point. The task necessitates the computation of information gain, 
which is divided into entropy and the entropy splitting index. An indicator of 
entropy or impurity i(t) at a given node t, represents the entropy index as shown in 
Eq. (3) [37]. 

1( ) ( | ) log ( | )k
j jji t p w t p w t

=
= −∑                                   (3) 

where ( | )jp w t denotes the pattern's proportion assigned to a kind at node t. 

The optimal splitting basic values R
jx  for the variable jx  are used to segregate a 

node that has not terminated into right child nodes tR and left child node tL. PR 
and PL make up the equivalent fractions of the new entities. Eq. (4) optimizes the 
difference by providing the most efficient entropy splitting index. 

( ) ( ) ( ) ( )p R L L Ri t i t P i t P i t∆ = − −                                          (4) 

1.3 Markov chain Model 

One variety of stochastic process is the Markov chain, which is widely used to 
analyze dynamic systems. The process is random, in which any future data exists 
in the current state. Furthermore, the probability and state transition matrix are 
important elements in implementing the Markov chain model. Unlike similar 
predictive techniques, the Markov chain model is simple to implement and neither 
does it necessitate a profound comprehension of changes in system dynamics. As 
a result, it is comparably simple to comprehend the data [38]. The Markov chain 
approach consists of five stages [38], [39]. The stages are: 

Stage 1) Process state definition for the Markov chain. 

Stage 2) Develop the state transition probability, P and state transition matrix, N. 
The Markov chain's state transition matrix, N, denotes the measured number of 
times of switching between states, as demonstrated in Eq. (5). 
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nij indicates the amount of sequential transitions between states i and j 

Suppose P represents a transition matrix that expresses all of the Markov chain 
model's transition probabilities for each state. P can therefore written as; 
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                                          (6) 

Then, 

1{ | }t t ijP X j X i p+ = = =                                              (7) 

The probability of one step is described by Eq. (7). A homogenous Markov chain 
refers to transition probabilities that change independently with time t. 

Therefore, 

 1 1 0{ | } { | }t t ijP X j X i P X j X i p+ = = = = = =                   (8) 

Non-negative entries in each row summing up to unity are required by the matrix 
P. Hence, 

1
0 1 and 1,  

t

ij ij
j

p p i I
=

≤ ≤ = ∈∑                                         (9) 

State i to state j in k-steps probability of state transition is defined by Eq. (10). 

            ( )= { | },   0, 0,   i,ij n k np k P X j X i k n j I+ = = > ≥ ∈                             (10) 

Eq. (11) describes the transition matrix P. 

 1( ) n nP n P P P−= × =                                         (11) 

Stage 3) Ergodic Markov chain validation. 

The constrained distribution's occurrence in an ergodic Markov chain must be 
confirmed by categorizing the P's state. The three parts are the irreducible Markov 
chain, the periodicity Markov chain, and the recurrent and transitory states. 

Step 4) Probability values of Markov process 

For probability values of Markov process, it is possible to calculate the mean 
return time and stationary probability distribution. For an ergodic Markov chain, 
the maximum allocation for a stationary probability distribution exists and is 
represented as: 
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Step 5) Model validation and Forecasting 

To compute the forecasts, the base probability and state transition probability can 
be employed through Eq. (14). 

1
( ) ( )

n

j i ij
i

P S P S P
=

= ∑                                                   (14) 

where ijP  depicts state transition probability and ( )iP S the base probability. 

Based on the assumption of independence, the Markov chain's authenticity is 
examined using the Chi-square test during the model validation process as shown 
in Eq. (15) [40]. 

2 ( )
calculated

Observed ExpectedX
Expected

−
= ∑                            (15) 

If 2
calculatedX is higher than 2

tabulatedX on the 0.05 crucial zones, the null hypothesis is 
refuted. 

1.4 Error Metrics 

The training and testing errors were used to assess the fitness and performance of 
prediction of the NARNN and decision tree models. The errors were evaluated 
using three indices: Mean Absolute Deviation (MAD), Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE) [41], [42]. 

1.4.1 Root Mean Square Error 

The test of the dispersion of predicted errors over real data sets is the Root Mean 
Square Error (RMSE). In other words, the RMSE elucidates how close an 
estimated model's forecasted values are to the actual data points. The formula is 
given as: 

2

1

ˆn t t
forecast i

Y Y
RMSE

n=

 −
=   

 
∑                                (16) 

where t̂Y  indicates the prediction, tY  the real data sets, and n  the size of the 
sample. 
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1.4.2 Mean Absolute Percentage Error 

The Mean Absolute Percentage Error (MAPE) is a percentage size measurement 
of a forecast's error. It is used to evaluate forecast accuracy and is expressed as: 

ˆ1 100%
t t

forecast
t

Y Y
MAPE

n Y

 −
 = ×  
 
∑                 (17) 

1.4.3 Mean Absolute Deviation 

Mean Absolute Deviation (MAD) is the most fundamental indicator of prediction 
performance. MAD describes how large an error from the estimation is anticipated 
on mean as described by Eq. (18). 

 1 ˆ
t tMAD Y Y

n
 = − 
 
∑                                                (18) 

The following is a discussion of the remaining sections: Section 2 explains the 
research approach, including data collection and preparation, the utilization of 
hybrid NARNN and Markov Chain model on the data and assessing the model’s 
efficiency using statistical metrics. Explanation of the findings are given in 
Section 3. Section 4 concludes with some quick observations and suggestions. 

2 Methods Used 

2.1 Data Collection 

A four-year period of daily primary data spanning 2018 to 2022 consisting of wire 
diameter (mm), length (m), number of spools, total length (km), number of wire 
breaks, and wire break rate as the independent variables and location of wire 
breaks as the dependent variable with a total data point of 261502 for each of the 
variables was used for the study. This data was taken at the wire drawing 
machines in a cable manufacturing industry in Ghana. The data was merged, 
cleaned, and organized for the analysis process. 

2.2 Hybrid NARNN and Markov Chain Construction 

The implementation process for the NARNN model is shown methodically in the 
flowchart in Figure 2. To start, during the data pre-processing stage, the 
simulation's data was partitioned into training (80%) and testing (20%) datasets. 
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The NARNN weights and bias were subsequently initialized with random 
numbers. Every iteration of their values was adjusted using Levenberg–Marquardt 
Back-Propagation (LMBP). The goal was to attain a target error with the fewest 
possible iterations. The last phase involves assessing the NARNN's performance 
and predicting capacity using the test data. 

To predict the fault location on the basis of the output of NARNN, the 
performance is evaluated based on their probabilities. Figure 3 depicts the 
prediction stage of the located faults during the wire drawing stage of the cable 
manufacturing process. The variables y(t-1), y(t-2), y(t-3) and y(t-4) represents the 
input variables for instance the total wire length, number of spools, number of 
wire breaks and wire break rate. The location of wire breaks such as the drawing 
chamber, annealing chamber, dancer, and capstan, among others, is represented by 
the predicted output y(t). 

start

Data Pre-processing

Training data y(t)

NARNN Weights and 
bias initialization 

LMBP training 

Testing data y’(t)

Trained NARNN

Performance evaluation and validation of 
prediction model

stop   

y(t-1)

y(t-2)

y(t-3)

y(t-4)

y(t)

 
Figure 2                                                                Figure 3 

Flowchart of NARNN Model                          Fault Location Model of the NARNN 

After the NARNN had classified the various faults, the Markov chain model was 
used to predict the probabilities of the faults occurring within a given location and 
the probability of faults occurring in other locations based on their pivot points. 
Firstly, the number of faults occurring within a given location was converted into 
a transitional matrix. Afterwards, a discrete-time Markov chain was created.  
The results of the Markov chain prediction were then displaced in the form of a 
chain displaying their transitional probabilities at various locations. 

2.3 Construction of the Decision Tree Algorithm 

The construction of the decision tree algorithm was achieved using Minitab 
Statistical Software version 21.1.0 after the dataset was loaded into the software.  
A decision tree plot and other statistical parameters were then recorded. 
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2.4 Simulations 

The NARNN-Markov chain model and decision tree algorithm were checked for 
relevance, robustness, and inaccuracies using simulations of the dependent and 
independent variables. Owing to the NARNN's lack of interpretability of the fault 
location, the Markov chain was used to predict the probability of fault locations. 

3 Results and Discussion 

3.1 Exploratory Analysis 

A summary of the variables taken into consideration in this research is shown in 
the Table 1. The average values of the variables considered in the descriptive 
statistics are given by 13583, 7.6646, 99.32, 0.7834, and 14.02 for length, number 
of spools, total length, number of wire breaks, and break rate, respectively.  
The Standard Error of the Mean (SE Mean) was also 192, 0.0819, 2.61, 0.0252, 
and 0.850 for length, number of spools, total length, number of wire breaks, and 
break rate. The smaller the standard error, the lower the risk. Likewise, the 
kurtosis was also reported as 126.66, 0.35, 694.37, 6.43, and 171.88 respectively 
for length, number of spools, total length, number of wire breaks, and break rate. 
From a statistical point of view, the variance is not constant, hence the data is 
heteroskedastic based on the kurtosis of the variables length, total length, number 
of wire breaks, and break rate being greater than 3. 

Table 1 
Exploratory Data Analysis 

Variable Mean Standard Error of 
Mean 

Kurtosis 

Length 13583 192 126.66 
Number of spools 7.6646 0.0819 0.35 
Total length 99.32 2.61 694.37 
Number of wire breaks 0.7834 0.0252 6.42 
Break rate 14.02 0.850 171.88 

3.2 Statistics of Faults at Various Locations 

The statistics of wire breaks at various drawing machine locations between 2018 
and 2022 are displayed in Figure 4. From the collected data, it can be seen that the 
drawing chamber had the highest number of wire breaks of 763. This was closely 
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followed by the capstan with 339 wire breaks. The next significant wire break was 
observed in the annealing chamber, with 276 wire breaks in this location.  
The number of unspecified wire break locations was reported as 475. Among all 
this break locations, the traverse was observed to be the list with a value of 1.  
The data unambiguously demonstrates that, as is typically found in most cable 
manufacturing companies, the drawing chamber, capstan, annealing chamber, poor 
basket coiling as a result of entanglement, and the dancer are the major locations 
where there is frequently occurring wire breakage. The crucial steps in the wire 
drawing process take place at these locations. The most common faults in the 
various locations occur due to wire tension as a result of low drawing or annealing 
solution concentration, entanglement in the basket, inadequate solution flow on 
dies, bad dies, wire locking in machines, rough surfaces on rollers, annealing 
bearing failure, improper setting of the drives and tensioner, copper dust in dies, 
rough surface of contact band, oxidation of wire due to bad steam flow in the 
annealer, power outages, torque or speed variation due to changes in roll diameter 
between the payoff drive and the take-up drive, and changing line speed in the 
drawing stage of the cable, among other factors. Hence, the need to predict the 
location where faults are likely to occur to help experts easily identify faults when 
they occur. 

 
Figure 4 

Number of breaks per location 

3.3 Trend Analysis 

To determine the nature of the data set, a trend analysis was conducted. The linear, 
exponential and quadratic models was considered. However, the quadratic model 
was the best among them as shown in Figures 5, 6, 7. Again, a measure of 
accuracy of the model thus MAPE, MAD and MSD were used as the error metric 
to determine the model’s accuracy. It was discovered that for all the variables 
considered such as the wire break rate, number of wire breaks and total length the 
MAD had the least value of 18.47, 0.9311and 47.1 respectively and therefore the 
best value statistically. 
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                            Figure 5                                                                           Figure 6 
      Quadratic trend model for Total Length               Quadratic trend model for Number of Wire breaks 

 
Figure 7 

Quadratic trend model for break rate 

3.4 Optimal Decision Tree Results 

In all, there are four (4) nodes, namely nodes 1 through 4, and four different 
patterns to achieve an optimal solution as depicted in Figure 8. To achieve an 
optimal solution based on the mean and standard deviation from the nodes, it 
could be observed that the system started at node 1 and branched to node 2 and 
node 4, with a termination at node 4, with a mean and standard deviation of 
272.711 and 192.197, respectively. Compared to node 2 and terminal node 4, it 
can be concluded that node 2 had the optimal values with the least mean and 
standard deviation of 12.5334 and 36.2605 respectively compared to that of 
terminal node 4. At terminal node 2, there was another branch to determine an 
optimal value, namely terminal node 1 and node 3. Finally, at node 3, there was a 
branch with final termination at terminal nodes 2 and 3. From the analysis, it can 
be seen that at all the terminal points, terminal node 1 had the best optimal value 
of 0.546871 and 3.02142, respectively, for the mean and standard deviation. This 
implies that terminal node 1 is the best model to predict the exact location of the 
faults during the wire drawing process. 
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Figure 8 

Optimal decision tree diagram 

3.5 Hybrid NARNN and Markov Chain Predictive Model 

In determining the location of fault during the wire drawing process, the variables 
that were considered were total length, number of spools, and break rate, and the 
possible fault locations were the drawing chamber, capstan, payoff, annealing 
chamber, dancer, bad coiling basket, power outage, winder drive, AC motor trip, 
and entanglement, with the number of faults recorded in the various locations.  
Hence, in order to predict the fault occurring within a given location, the NARNN 
was used to effectively locate the fault condition, as shown in Figure 9.  
The NARNN diagram was used to determine the pattern of signal in faults per the 
location in a short time so as to indicate the specific location of faults. 

 
Figure 9 

NARNN Predicted Fault Location 
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To predict the faults from one location to the other based on their transitional 
probabilities, the Markov chain model was used as shown in Figure 10. This was 
to determine the probability at which a fault can occur in another location. 
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Figure 10 

Markov Chain Transitional Probability Diagram 

The transitional probability diagram has four pivots, A, B, C, and D, representing 
the fault locations: drawing chamber, payoff drive, take-up drive, and traverse. 
The transitional probabilities of fault location occurring at the various pivots are 
0.43, 0.25, 0.17, and 0.13, respectively. The transitional probability of a fault from 
the drawing chamber to the traverse is 0.34, which corresponds to the annealing 
chamber's transitional probability. Accordingly, there is a 34% likelihood of the 
fault being located at the annealing chamber from the drawing chamber to the 
traverse. Once more, the transitional probability of faults from the payoff drive to 
the take-up drive is 0.29, which matches to the dancer's transitional probability. 
As a result, there is a 29% possibility that the fault is located at the dancer from 
the payoff drive to the take-up drive. 

Similarly, the transitional probability of faults from the drawing chamber to the 
payoff drive is 0.38, which represents the transitional probability of the capstan. 
This indicates that there is a 38% chance that the fault will be found at the capstan 
linking the drawing chamber to the payoff drive. Additionally, the transitional 
probability of faults from traverse to payoff drive is 0.17, which is the transitional 
probability of the recycling system. It translates to a 17% likelihood that the fault 
will be found at the recycling system between the traverse and the payoff. 
Furthermore, the diesing chamber's transitional probability, which is given by the 
transitional probability of faults from the take-up to the traverse, is 0.2. In other 
words, there is a 20% chance that the fault will be found in the diesing chamber 
from the take-up to traverse. 

These findings are consistent, with distinct transitional probabilities, across 
different fault locations. Hence, there is a high probability of faults being located 
at Pivot A, which is the drawing chamber with a high transitional probability. If a 
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fault is detected in the drawing chamber, it can also damage the annealing 
chamber, capstan, and dancer, which are essential components of the drawing 
machine. Therefore, extra attention should be paid to the drawing chamber during 
the production process to minimize faults from affecting other locations of the 
drawing machine. 

3.6 Predictive Performance Indicators of the Models 

Table 2 depicts the performance indicators of the decision tree algorithm and the 
NARNN. To measure the model’s accuracy for the training data using the decision 
tree, it was observed that the MAPE had the lowest value of 1.2191 and was hence 
the best model. This was followed by MAD with a value of 8.6312. The RMSE 
had the highest value of 24.4991, which clearly depicts that the RMSE cannot be 
considered the best indicator when evaluating the model’s accuracy. In the same 
way, the R-square value recorded using the decision tree was 65.66%, indicating 
that the model is adequate. The same trend was also observed in the testing. 

Again, the training results from the NARNN depict that the MAD had the lowest 
value of 0.01153, which shows that it is the best indicator for measuring the 
accuracy of the model. This was closely followed by RMSE with a value of 
0.4285496 with the worse indicator among the error metrices being MAPE with a 
value of 1.250. It was also observed that the testing data mimicked the training 
data, with MAD and RMSE as the best indicators, respectively.  In comparison 
with the decision tree, it can be deduced that the NARNN had the best model 
based on the error matrices considered in this study. 

Table 2 
Error Metric Indicators 

Error 
Metrics  

Decision Tree NARNN 
Training Testing Training Testing 

RMSE 24.4991  43.1110 0.4285496 0.5832 
MAD 8.6312  10.7418 0.01153 0.7134 
MAPE 1.2191  0.9811 1.2500 2.5312 
R-squared 65.66% 17.59%   

3.7 Predicted results of Research Data 

Figures 11, 12, 13, and 14 show the predicted graphs of the research variables 
such as total length, number of wire breaks, number of spools, and break rate for 
the years 2018 to 2024 based on the NARNN model. 
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                                     Figure 11                                                            Figure 12 

Predicted Results for Total Length                  Predicted Results for Number of Spools 

      
                                          Figure 13                                                          Figure 14 

      Predicted Results for Number of Wire Breaks         Predicted Results for Wire Break Rate 

In summary, the research findings indicate that the hybrid model produced a 
highly predictive result and smooth transitional probabilities between fault 
locations when compared to the classical techniques  reported in [12], [26], [35], 
[36]. 

Conclusions 

In summary, the prediction of wire break location during the cable drawing 
process has been achieved. It was observed that the hybrid NARNN and Markov 
chain model could effectively predict the break location with higher accuracy 
when compared to that of the decision tree. One key finding of this research is that 
no literature has reported on prediction of wire break location in the cable 
manufacturing industry, and the application of NARNN and the Markov chain 
model to wire break location prediction further enhances the novelty of this 
research. It is recommended that cable manufacturers adopt the proposed model 
for easy fault prediction during the wire drawing process so as to reduce 
downtime, minimize scrap production, and improve the efficiency and quality of 
manufactured cables. Subsequent research will center on utilizing machine 
learning techniques to predict fault locations in copper wire manufacturing. 
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