
Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 121 –

Domain Specific Language Approach on

Model-driven Development of Web Services

Viet-Cuong Nguyen, Xhevi Qafmolla, Karel Richta

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague

Karlovo namesti 13, 121 35 Prague, Czech Republic

nguyevie@fel.cvut.cz, qafmoxhe@fel.cvut.cz, richta@fel.cvut.cz

Abstract: As modern distributed and cloud architecture keep gaining their popularity, web

services have become the programmatic backbones of more and more systems. Developing

web services requires gathering information from different aspects. Model-driven

engineering promises to ease the burden of development and promote reuse of web services

by focusing more on a higher level of abstraction. Current approach of modeling web

services using UML is not well-suited since UML is created for multiple disciplines and is

not specific for web service development. With current growing scale of distributed

systems, the challenge is not only in development but also integration and maintenance of

web services. Introducing a domain specific language (DSL) for modeling of web services

promises to become a novel approach and could be the solution to the current problem with

web service modeling and development. This article outlines the analysis as well as the

current state of the problem domain and introduces an approach to model-driven

development of web services by implementing a domain specific language called SWSM

(Simple Web Service Modeling). This approach aims to solve problems that UML could not

effectively resolve and promote efficiency with a non-complex language facility for

modeling and code generation of web services. Our best practices and observation during

the design of SWSM are also presented.

Keywords: web service; model-driven development; DSL; SWSM

1 Introduction

Cloud computing and distributed systems continue to gain more mainstream

adoption as more companies move into the cloud. With mobile gradually taking

over the desktop experience, cloud computing continues to accelerate and have

more significance [17]. Model-driven Engineering methodologies have been

applied (as a solution) for better reaction to market trends and aims to increase

efficiency as well as bring more agility to the development life-cycle of cloud and

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 122 –

distributed systems. However, since there are many different applicable domains

in web applications and distributed systems, it is unattainable to finalize a method

or approach that would fit in every situation. This article is an effort towards the

solution for this issue by analyzing the concepts involved in key aspects of web

service design and introduces an approach to the development of web services by

using model-driven techniques with domain specific language. As a result, a DSL

for modeling of web services named SWSM (Simple Web Service Modeling) was

developed and introduced. To demonstrate this approach, a case study of web

service development from modeling to code generation is also illustrated with the

associated techniques.

This article is structured as follows: In the next section, we review some

knowledge of Model-driven Development (MDD) and domain specific language

as background information. The subsequent section discusses the current state of

web services development using model-driven techniques. We also highlight the

features of the DSL that we aim achieve when designing a new DSL for modeling

of web services. In the next section, we introduce SWSM (our designed DSL) for

modeling and development of web services and how to apply it at a specific point

during design phase. In the last section, we present some conclusions on web

service development using SWSM and also related works of our research in the

field of Model-driven Engineering.

2 Background

2.1 Model-driven Engineering

Model-driven engineering (MDE) is a software development methodology, which

focuses on creating and exploiting domain models. Models can be perceived as

abstract representations of the knowledge and activities that govern a particular

application domain. Models are developed though-out various phases of the

development life cycle with extensive communication among product managers,

designers, developers and users of the application domain. MDE aims to increase

productivity by maximizing compatibility between systems, simplifying the

process of design and promoting communication between individuals and teams

working on the system [16].

The Object Management Group’s (OMG) initiatives on MDE contain the Model-

driven Architecture (MDA) specification. MDA allows definition of machine-

readable applications and data models that enable long-term flexibility with

regards to implementation, integration, maintenance, testing and simulation [14]

[15]. There are two main modeling classes in MDA:

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 123 –

 Platform Independent Models (PIMs): these are models of the structure or

functionality, which are independent of the specific technological

platform used to implement it.

 Platform Specific Models (PSMs): these are models of a software or

business system, which are bound to a specific technological platform.

In the MDA, models are first-class artifacts which are later integrated into the

development process through the chain of transformations from PIMs through

PSMs to coded application. The mapping and transformation between PIMs and

PSMs are based on meta-model concepts. These concepts can be described by

technologies such as Unified Modeling Language (UML), Meta Object Facility

(MOF) or Common Warehouse Meta-model (CWM) [22, 16]. These languages

are considered as general-purpose modeling languages.

Currently, there are many challenges in implementing MDD due to the lack of

standardization and tools. There are specific desired aspects for each application

within its domain and this makes it difficult to design a tool that fits all.

2.2 Web Services

With the growing demands in recent years, distributed computing and cloud

processing systems are made possible by adopting a new paradigm of Service-

Oriented Computing (SOC). SOC integrates networks of connected business

applications from many different locations. In the SOC paradigm, web services

are currently considered one of the most dominant technologies. Web services are

software systems designed to support interoperable machine-to-machine

interaction over a network. The important components of web services know-how

include XML technology, Web Services Description Language (WSDL),

Universal Description, Discovery and Integration (UDDI) [21]. There are two

popular classes of web services: REST-compliant web services and Simple Object

Access Protocol (SOAP) web services [16]. Currently, the development of web

services in MDD involves using UML to specify services precisely and in a

technology-independent manner. However, UML is by far not the optimal way for

modeling of web services. The efficiency could be improved by using a specific

language to address the detailed nature of web services. Introducing a new DSL

can set up the stage for automatic generation of a part of the XML and code, such

as Java code, that implements the services. It also makes it easier to re-target the

service(s) to use different web technologies when required.

2.3 Domain Specific Language

In software development and domain engineering, a domain specific language is a

programming or specification language dedicated to a particular problem domain,

a particular problem representation technique, and/or a particular solution

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 124 –

technique. The concept is not new. Special-purpose programming languages and

all kinds of modeling or specification languages have always existed, but the term

has become more popular due to the rise of domain specific modeling [19].

Adoption of domain specific language can be a solution to several problems

encountered in various software development aspects. A DSL can reduce the costs

related to maintaining software [5].

In comparison to other techniques, DSL is considered as one of the main solutions

to software reuse [9]. On the other hand, using DSL also promotes program

readability and makes its understanding easier, because it is often written at a

good abstraction level. It enables users without experience in programming to

create the models or programs as long as they possess knowledge of the targeted

domain. Another advantage of a DSL for modeling is the ability to generate more

verification on the syntax and semantics than a general modeling language. This

can reduce errors (and burden) on the debugging process. DSL for modeling

however also has several drawbacks. There is a long learning curve for a new

language, even though as a specific language, it would be a lot easier to learn than

a general programming language. Another disadvantage is the lack of capable

human resources. Since a general language is adopted by more people and staff, it

could be much easier to find staff capable of solving the problem using their

language knowledge, rather than DSL.

2.4 Current Approaches in Web Services Development

Currently development of web services falls into two main categories associated

with the order in which models are developed: bottom-up and top-down. In

bottom-up development, the design process starts with a given prototype or

presentation of a class. Other web service artifacts are generated from the given

prototype. This means part of the implementation must be designed at the first

stage. This approach implies that changes made during the first stage will

propagate and require changes on all model artifacts. This can bring benefits only

when there is an existing system that has a similar business logic, which was

already implemented.

In top-down approach we first design the abstraction and description of a web

service. After that, we add detail implementation(s) and business logic to it. In

top-down process, modeling is a crucial part. A good design in this phase is very

important to the overall quality of the web service. The UML approach during this

phase has some drawbacks. UML is a tool for generic design, it is not conducive

for addressing all aspects of web service. Besides, creating XML/WSDL is a

complicated process with a lot of detail information. In contrast, modeling process

at the first place is intended to abstract away unnecessary details and makes it

easier to understand the system. Hence, there is a need to create a better

mechanism to solely support the design of web services. Adopting a dedicated

DSL for this purpose can turn into a promising approach in this situation.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 125 –

3 Challenges

Advances on programming languages still cannot cover all aspects of the fast-

growing complexity of web platforms. In a wide range of systems, especially

distributed ones, more and more middle-ware frameworks are developed in

languages such as Java or .Net, which contain thousands of classes and methods as

well as their dependencies. This requires considerable effort to port systems to

newer platforms when using these programing languages [17]. Therefore, general

programming languages cannot be considered as first-class languages to describe

system-wide and non-functional aspects of a system. There is a need to raise the

level of abstraction while still providing specific domain attributes for modeling of

such systems.

With mobile technology adoption continuing to gain momentum, in the next few

years more cloud based and software-as-service (SaaS) systems will grow. As

more systems migrate to the cloud, there is a big space for web services to

continue gaining popularity. SaaS, and recently Platform-as-a-Service (PaaS), as

different layers of cloud computing, require different approach to web service

development and deployment. In these infrastructures, the so-called multi-tenancy

becomes an essential factor. The multi-tenant architecture (as depicted in Fig. 1)

ensures the customization of tenant-specific requirements while sharing the same

code-base and other common resources. In this figure, four customizations of

different tenants are built based on the shared service implementation and

infrastructure. Web services in multi-tenant platforms need a way of abstracting

away the configuration and make it possible for every part of the service to be

customized for a specific tenant. These platforms are often built from the meta-

data driven solution. This therefore means that the application logic can be based

on meta-data which later can be customized [17].

Figure 1

Multi-tenancy architecture: customizations of 4 tenant-specific requirements sharing the same base

service implementation and infrastructure

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 126 –

The challenge in this architecture is to adopt or develop a modeling language at

the appropriate abstraction level to separate the logical models from its technical

aspects. This detaches the definition of service architectures independently from

the used specific platforms. A modeling language raising the level of abstraction

allows us to reuse models and keeps platform-specific artifacts at a separated tier

in the development workflow. Having a modeling language based on services

aspects with the ability to set aside technical concerns and still be able to tackle a

problem in a specific platform is hard to come across.

There are existing general purpose modeling languages such as UML. UML is

often used as a standard language for software systems modeling. It is able to

represent various kinds of software systems, from embedded software to

enterprise applications. In order to achieve this flexibility, UML provides a set of

general elements applicable to any situation such as classes or relationships [1].

However, in the SaaS or PaaS architecture, the class systems in UML often force

applications to be represented or surrounded by classes, this could make the

models difficult to understand and use. In an effort to improve this, UML provides

facilities to specialize for a specific domain, so-called UML profiles.

Nevertheless, these mechanisms are not able to represent the semantics behind the

domain concepts [1]. The challenge therefore remains in defining a domain

specific language that can be suitable for the modeling and development of this

infrastructure. In the case of modeling web services, the creation of a high-level

DSL turns into a necessity for software reuse, higher development speed and

better cost-effectiveness.

4 Features of a DSL as a Modeling Language

Introducing a new DSL with the support for modeling at a good abstraction level

is crucial. This DSL can later be used for automatic generation of the model

artifacts and code that implement the services. In theory, a general modeling

language could also be used for this purpose but an appropriately designed DSL

will perform the same job much more effectively. We define a set of features that

are essential to the DSL design in model-driven development of web services. All

of these features should be considered during the creation of a DSL to ensure the

quality of the language.

Effectiveness: The language needs to be able to deliver useable output without

having to re-tailor based on specific use case while being easy to read and to

understand. This means that the language is able to bring up good solution on

specific domain and focus on solving the particular range of problems.

Effectiveness also needs to guarantee the unambiguity feature of language

expressions and capability to describe the problem as a whole from a higher level.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 127 –

Automation and Agility: As the modeling language can raise the level of

abstraction away from programming code by directly using domain concepts, an

important aspect is the ability to generate final artifacts from these high-level

specifications. This automatic transformation has to fit the requirements of the

specific domain. Agility ensures that models can adapt to changes efficiently. This

changes from models described by the language are also propagated to the next

phase of development automatically.

Support Integration: The DSL has to be able to provide support via tools and

platforms. The DSL needs to be able to integrate with other parts of the

development process. This means that the language is used for editing, debugging,

compiling and transformation. It should also be able to be integrated together with

other languages and platforms without a lot of effort.

When designing and implementing DSLs as executable languages, there is a need

to choose the most suitable implementation approach. Related work from Mernik

et al. [12] identifies different implementation patterns, all with different

characteristics. These patterns provide another perspective to consider when

making the design decisions of DSL. These options can be broken down to the

following categories:

 As interpreter: In this method, DSL constructs are recognized and

interpreted using a standard ‘fetch-decode-execute’ cycle. With this

pattern no transformation takes place. The model is directly executable.

 As compiler/application generator: DSL constructs are translated to base

language constructs and library calls. People are mostly talking about

code generation when pointing at this implementation pattern.

 Using pre-processor: DSL constructs are translated to other constructs in

an existing language (the base language). Static analysis is limited to that

done by the base language processor.

 Embedded design: DSL constructs are embedded in an existing general

purpose language (the host language) by defining new abstract data types

and operators. A basic example is application library. This type of DSL is

mostly called an internal DSL. The good side of this is that grammar,

parsers and tools are immediately available. However, the challenge with

an embedded DSL is to tactfully design the language so that the syntax is

within the confines of what the host language allows, while still

remaining expressive and concise [17].

 Using extensible compiler/interpreter: A general purpose language

compiler/interpreter is extended by domain specific optimization rules

and/or domain specific code generation. While extending interpreters is

usually relatively easy, extending compilers is hard unless they were

designed with extensibility in mind.

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 128 –

 Commercial off-the-shelf: existing tools and/or notations are applied to a

specific domain. In this approach, it is not needed to define a new DSL,

editor and implement them. One only needs to make use of a Model-

driven Software Factory. One example is using the Mendix Model-driven

Enterprise Application Platform targeted at the domain of Service-

Oriented Business Applications.

 Hybrid: a combination of the above approaches [17].

The choice of the approach is very important because it can make a big difference

in the total effort to be invested in DSL development. With the success of open

source projects like Xtext, development of DSL is made affordable and the

development is focused on building the grammar, while support for static analysis

and validation of models are possible out of the box.

We aim to maintain the set of features defined in this section while designing

SWSM. This allows us to provide automatic transformation, agility and

integration to the development cycle. This ensures that the process of model-

driven development of web services using SWSM is efficient.

5 Model-driven Development of Web Service using

SWSM as a Domain Specific Language

Web service technologies depend on the use of XML, SOAP, WSDL. These

standards are important, but they do not effectively support automation of code

evolution at different phases in the development cycle. A DSL for modeling web

services is therefore useful because it can effectively support automation in

model-driven development. In the process of designing a suitable DSL for this

purpose, we consider some valuable lessons described in the work of Wile [20]:

Lesson T2: You are almost never designing a programming language. Most DSL

designers come from language-design backgrounds where the admirable

principles of orthogonality and economy of form are not necessarily well-applied

to DSL design. One must be careful not to embellish or over-generalize the

language.

Lesson T2 Corollary: Design only what is necessary. Learn to recognize your

tendency to over-design [17].

Keeping these principles as an effective approach during design, we created

SWSM as a modeling language for web services at the appropriate abstraction

level. As a proof of concept, this language aims to increase the efficiency of the

development process by letting users focus only on modeling of the essential

aspects that comprise the web service.

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 129 –

The syntax needs to be simple, yet expressive and concise. The possible set of

simplified syntax diagrams for the components of this DSL can be depicted as

follows:

Figure 2

Simplified syntax diagram of web services with SWSM

To describe the service as an aggregation of several ports, the keyword webservice

is used for modeling web services. Below is the syntax diagram for this model

declaration:

Figure 3

Web services syntax with SWSM

The semantics of the language expressions starts with the web service definition

identified by its name (ID). There could be a number of ports associated with a

web service and this mapping is described by the port keyword followed by a

string identifier of a port. ID is a term representing the name (identification) of an

element. The value of the target namespace is a string followed by

targetNamespace keyword. This enables developers to specify the relationship

between a port and a particular web service. In many cases, the association is a

one-to-many mapping. The syntax diagram of ports can be depicted as follows:

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 130 –

Figure 4

Port syntax with SWSM

A port is identified by a name (ID term). It consists of one or many operations,

each operation is then defined by input and output. This structure can be seen in

the syntax diagram of an operation:

Figure 5

Operation syntax with SWSM

Each input and output of an operation is of the type message. The keywords input

and output make the semantics of an operation signature easy to comprehend by

describing the parameters for the operation with its returning type. The message

element defines the data elements of an operation. Each message can consist of

one or more fields (parts). These fields play the role of the parameters of a

function call as in a traditional programming language. All modeled fields form

the method signature for each operation.

Given a collection of operations O1…On with associated input and output

messages, we define the mapping to web services and ports:

 One or more operations (O1…On) are mapped to a port P1 to describe one

function of a web service.

 P1 defines the connection point to a web service, one or more web

services (W1…Wn) are modeled within an SWSM file.

The message format and protocol details for a web service are modeled via

binding. A binding is identified by its name (ID on the diagram) and the mapping

to a port is described by port attribute. The binding style is represented by

bindingStyle attribute. Value of transport attribute has the direct semantics of

defining which transportation protocol to use. For example, in the case of HTTP,

we can simply assign “http” to transport. This is more convenient than the

approach currently used in WSDL where "http://schemas.xmlsoap.org/soap/http"

is assigned. To define the operations that the port exposes, the mapping

operationBinding is used. For each operation binding, the corresponding SOAP

action is described with its encoding type of input and output.

Figure 6

Binding syntax with SWSM

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 131 –

The best way of illustrating the syntax is to start modeling web services in a case-

study. The first step in model-driven development of web services is designing the

models. The output of this phase are models that conform to a web service meta-

model, which can be represented in a textual format complying to the grammar of

a DSL. Model artifacts are later used as input for the generation process. One of

the important influencing factors is that any changes in the models will propagate

changes in other stages. SWSM has a mechanism to support change propagation.

To start modeling web services with SWSM, the process begins with representing

the principal elements of a web service in the modeling language:

 Types: used to define the abstract elements in the description of the web

service. They can be of a simple or complex type. They are identified by

the keyword type.

 Messages: are units of information exchanged between the web service

and the customer application (logically they are input/output messages

and sometimes also fault messages). Each operation provided by a web

service is described by at most, one input message and one output

message. These messages relate to the parameters of the operation. In

SWSM messages are identified by the message keyword.

 Interfaces (or portTypes in WSDL1.0): they constitute aggregations of

operations provided by the service. In SWSM interfaces start with the

keyword interface.

 Bindings: they specify in particular the protocol used to invoke the

methods of an interface. In SWSM bindings start with the keyword

binding.

 Services and ports: the service can constitute an aggregation of ports. A

port is an endpoint enabling access to an interface through an URI

address. Services are identified by the keyword webservice in SWSM.

We can define multiple web services within one single design [18].

Utilizing MDD principles, web service development using SWSM can be

decomposed into four steps:

1. Modeling the web service using SWSM language.

2. Enhancement and automatic validation of web service models.

3. Generating Java code using built-in code generation feature of SWSM.

4. Code refinement, refactoring and testing.

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 132 –

Figure 7

Stages in development of web services using SWSM language

To demonstrate the modeling syntaxes, we can see how SWSM is used to

represent various essential elements of web services in an example. To model the

service as an aggregation of several ports, the keyword webservice is used. The

code bellow shows how the keyword webservice is used to define a service called

DictionaryService:

webservice DictionaryService {

 port LookUpPort

 targetNameSpace "http://ws.mydictionary.net/lookUp"

 }

end

The semantics of the webservice block indicates a web service, which can consist

of one or many ports. This can be seen from the syntax diagram described above.

However, on this dictionary look-up example, there is only one port named

LookUpPort declared. In the next step, the ports associated to the service also

need to be defined:

port

 LookUpPort {

 op LookUp

 }

end

In a port, there are operations involved, LookUp operation is the one in this case.

A port is associated with an interface by the association binding. The meta-class

interface constitutes an aggregation of several operations.

binding LookupBinding {

 portType LookUpPort

 operationBinding OpBinding

 transport http

 soapBindingStyle rpc

}

end

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 133 –

Each operation (identified by the keyword op) consists of message(s) which

define(s) its inputs and outputs. A message naturally refers to a meta-class

indicating its simple or complex type:

op LookUp {

 input Input

 output Output

}

message Input {

 username : String

 word: String

}

message Output {

 meaning : String

 wordType : String

 related : Integer

}

In addition, we can also define the action associated with an operation by using

the keyword opBinding:

opBinding OpBinding {

 soapAction "http://ws.mydictionary.net/lookUpAction"

 inputSoapBody literal

 outputSoapBody literal

}

For the HTTP protocol binding of SOAP, the value of soapAction is required. For

other SOAP protocol bindings, this value could be omitted. The inputSoapBody

and outputSoapBody indicate whether the message parts are encoded using some

encoding rules.

Putting all the pieces together gives us the information needed to model a simple

web service. These models are later used as input for code generation. SWSM

makes it possible to design web services by using simple and fast syntaxes. In

contrast to other approaches, SWSM is uncomplicated, rapid and easy to adapt.

The syntax used in SWSM is simple and more intuitive in comparison to the

complex structure of UML. The order in which aspects of a web service are

defined is the same as the logical order, when we design a web service. This

makes the designing process more natural and perceptive. Using SWSM enables

us to focus only on the essential aspects of the web service. This approach

promotes model-driven development principles and makes the web service

development process more efficient.

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 134 –

All of the SWSM language infrastructures can be packed as a plug-in for the

Eclipse integrated development environment. This includes a text editor with

autosuggestion and validation capabilities. This enables the development phase to

be carried out seamlessly. We also built a code generation feature (Java language)

based on a code template engine and embedded it into SWSM. Textual models

created using SWSM are used as input for the generation of Java web services.

Code generation can be executed right within the editor [18].

The role of MDA in this development process is to raise the level of abstraction in

which we develop systems. This is aimed to improve productivity similarly as

when we moved from assembly language to third-generation languages. At first,

third-generation language compilers did not produce code as optimal as hand-

crafted machine code. Over time, however, the productivity increase justified the

changeover, especially as computers speeded up and compiler technology

improved [7]. SWSM is similarly used at a different level of abstraction to third-

generation programming languages, to tackle overall productivity.

6 Related Work

Model-driven development of web services is still evolving to address the problem

of increasing complexity and fast-changing technologies in the software industry.

Model-driven development of web-services is discussed in the work of Benguria

et al. [1]. This approach focuses on building platform independent models for

service oriented architectures. The solution provides a platform independent meta-

model and a set of transformations that link the meta-model with specific

platforms following the MDA approach. There are also existing UML-based

approaches to modeling services. UML collaboration diagrams have been used

extensively to model behavioral aspects, such as service collaboration and

compositions in the work of Bezivin et al. [2]. In this approach, the Platform-

Independent Model is created using UML. This PIM is transformed using Atlas

Transformation Language (ATL) to generate the Platform-Specific Model based

on three target platforms: Java, Web Service and Java Web Service Developer

Pack (JWSDP). This approach showed that UML profiles allow the extension of

the UML meta-model. However, UML profiles make the creation of

transformation rules difficult.

The support for SaaS and Services Modeling has also been addressed by providing

lightweight extensions to UML through Profiles. These approaches can be seen in

the work of Fensel and Frankel et al. [6, 7, 3]. UML-profiles for services and SOA

are proposed by Heckel et al. [8]. This effort developed a suitable syntax for this

domain by sketching a UML profile for SOA based on UML 1.x standards with a

direct mapping between WSDL 1.1 elements and their model elements. Once the

profile is properly defined, its semantics can be given in terms of a graph

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 135 –

transformation. This approach has an advantage of UML generality, it can be used

to model just about any type of application, running on any type and combination

of hardware, operating system, programming language, and network. However,

since UML is large and complex, using multiple models/diagrams makes it

difficult to keep them consistent with each other and more code has to be added

manually.

There are also other efforts to provide domain specific languages for modeling of

web services and service-oriented architecture. A qualitative study that provides

some analysis of a number of such approaches through a series of three

prototyping experiments, in which each experiment has developed, analyzed, and

compared a set of DSLs for process-driven SOAs, can be seen in the work of

Oberortner et al. [13].

Maximilien et al. [11] developed a DSL for Web APIs and Services Mashups.

This effort describes a domain specific language that unifies the most common

service models and facilitates service composition and integration into end-user-

oriented Web applications. A number of interesting design issues for DSLs are

discussed including analysis on levels of abstraction, the need for simple and

natural syntax as well as code generation.

On the track of non-UML-based modeling approaches, there are efforts also

supporting modeling of services. The Web Services Modeling Framework

(WSMF) [6] defines conceptual entities for service modeling. It is an effort to

build the Web Service Modeling Framework (WSMF) that provides the

appropriate conceptual model for developing and describing web services and

their composition. Its philosophy is based on the following principle: maximal de-

coupling complemented by a scalable mediation service. Web-Service Modeling

Ontology (WSMO) [10] provides a conceptual framework and a formal language

for semantically describing all relevant aspects of Web services in order to

facilitate the automation of discovering, combining and invoking electronic

services over the Web. It has its foundations in WSMF but it defines a formal

ontology to semantically describe web services. The Web Services Modeling

Language (WSML) [4] provides a formal syntax and semantics for the WSMO

based on different logical formalisms.

In general, approaches utilizing UML such as in [1], [2] and [8, 7, 3] make the

creation of transformation rules challenging. On the other hand, non-UML-based

modeling approaches as in [10, 6, 4] provide the conceptual models for web

services but have limitation for code generation support. Existing DSL approaches

such as [11] is rather complex. For model-driven development of web services,

there is the need for simple and natural syntax that provide the support for code

generation. Language such as SWSM is an effort aiming at making this possible.

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 136 –

Conclusions

MDD approach can be applied to web services in order to increase the resilience

of implementations, as web services technologies change and evolve. The result of

this research brings up the design theory and methodology for implementing and

utilizing a domain specific language for model-driven development of web

services. Adopting domain specific languages, such as the one we introduce, can

increase productivity and ease the burden of development of web services as the

backbone on SOA systems. SWSM also reduces the cost implied in maintaining

the systems and provides a solution to software reuse.

SWSM was written at a good abstraction level. This improves code readability

and makes program integration easier. SWSM enables users without experience in

programming at a higher level to focus only on knowledge of their concerned

domain. Hence under this approach, it is possible for different stakeholders such

as business experts and IT experts to model web services during early stages of

web services design. Another advantage of SWSM for modeling is the ability to

generate more verification on the syntax and semantics than a general modeling

language. This can reduce errors on the testing or debugging process. However,

we also need to point out that this approach has several drawbacks. There is an

extended learning curve for a new language, even though SWSM as a domain

specific language proves to be a lot easier to learn than a general programming

language. Additionally, as a general language is adopted by more people, it could

be more feasible to find staff capable of solving the problem using their language

knowledge. There are also spaces for improvement in the syntaxes of SWSM.

In practice, approach using SWSM can be applied to the web service development

process in various environments. As members of our team are working with

companies in the top global Fortune 500 dealing with large-scale web services for

financial services and telecommunication industries, the outlined approach has

started to gain adoption and initially has been applied successfully. Our future

work will continue on the enhancement of SWSM and introduce a suitable model

transformation for both SOAP and Representational State Transfer (REST) web

services.

Acknowledgement

This work has been supported by the Department of Computer Science and

Engineering, Faculty of Electrical Engineering and by the grant of Czech

Technical University in Prague number SGS14/078/OHK3/1T/13.

References

[1] Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A.,

Friess, M.: A Platform Independent Model for Service-oriented

Architectures. Enterprise Interoperability, pp. 23-32, 2007

Acta Polytechnica Hungarica Vol. 11, No. 8, 2014

 – 137 –

[2] Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA

Approach for Web Service Platform. In Proceedings of Enterprise

Distributed Object Computing Conference, pp. 8-70, 2004

[3] Bordbar, B., Staikopoulos, A.: Automated Generation of Metamodels for

Web Service Languages. In Proceedings of Second European Workshop on

Model-driven Architecture, 2004

[4] De Bruijn, J., Lausen, H. (Ed.): The Web Service Modeling Language

WSML. W3C Member Submission. Retrieved December 14, 2012,

http://www.w3.org/Submission/WSML/, 2005

[5] Deursen, A., Klint, P.: Little languages: Little maintenance. Journal of

Software Maintenance, pp. 75-93, 1998

[6] Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF,

Electronic Commerce. Research and Applications, pp. 113-137, 2002

[7] Frankel, D., Parodi, D.: Using Model-driven Architecture to Develop Web

Services, IONA Technologies (2
nd

 Ed.), 2002

[8] Heckel, R., Lohmann, M, Thöne, S.: Towards a UML Profile for Service-

Oriented Architectures. MDAFA, 2003

[9] Krueger, C. W.: Software Reuse. ACM computing Surveys, pp. 131-183,

1992

[10] Lausen, H., Polleres, A., Roman, D. (Ed.): Web Service Modeling

Ontology (WSMO) W3C Member Submission. Retrieved December 14,

2012, http://www.w3.org/Submission/WSMO/, 2005

[11] Maximilien, E. M., Wilkinson, H., Desai, N., Tai, S.: A Domain Specific-

Language for Web APIs and Services Mashups, In Proceedings of 5
th

International Conference on Service Oriented Computing (ICSOC), LNCS

4749, Springer-Verlag, pp. 13-26, 2007

[12] Mernik, M., Heering, J., Sloane, A. M.: When and How to Develop

Domain Specific Languages. ACM Computing Survey, Vol. 37 No. 4, pp.

316-344, 1999

[13] Oberortner, E., Zdun, U., Dustdar, S.: Domain specific Languages for

Service-oriented Architectures: An Explorative Study. Towards a Service-

Based Internet. Springer-Verlag Berlin, Heidelberg, pp. 159-170, 2008

[14] Object Management Group (OMG): Meta Object Facility (MOF) Core.

Retrieved March 20, 2012, http://www.omg.org/spec/MOF/2.4.1/, 2012

[15] Object Management Group (OMG): The Architecture of Choice for a

Changing World. Retrieved March 20, 2012, http://www.omg.org/mda,

2012

[16] Qafmolla, X., Nguyen, V.: Automation of Web Services Development

Using Model-driven Techniques. In Institute of Electronics Engineers, The

V-C. Nguyen et al. Domain Specific Language Approach on Model-driven Development of Web Services

 – 138 –

2
nd

 International Conference on Computer and Automation Engineering

(ICCAE 2010), pp. 190-194, 2010

[17] The Enterprise Architect: Building an Agile Enterprise. Retrieved

November 18, 2012, http://www.theenterprisearchitect.eu, 2012

[18] Web Modeling Group - Czech Technical University in Prague (WMG):

SWSM Language. Retrieved March 15 2013, from http://webmodeling.net,

2013

[19] Wikipedia: Domain Specific Language. Retrieved January 12, 2012, from

http://en.wikipedia.org/wiki/Domain specific_language, 2012

[20] Wile, D. S.: Lessons Learned from Real DSL Experiments. Science of

Computer Programming, 51, pp. 265-290, 2002

[21] World Wide Web Consortium (W3C): Web Services Architecture.

Retrieved December 20, 2009, http://www.w3.org/TR/ws-arch, 2013

[22] Yu, X., Zhang, Y., Zhang, T., Wang, L., Hu, J., Zhao, J., Li, X.: A Model-

driven Development Framework for Enterprise Web Services. Information

Systems Frontiers, pp. 391-409, 2007

