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Abstract: Today, with the increasing popularity of JSON-LD on the Web, there is a need for 

transformation and extraction of such structured data. In this paper, the authors propose 

extensions of the JSON-LD Framing specification which are able to create a tree layout 

based on recursive application of prioritized inverse relationships defined in a frame. The 

extensions include recursive application of reverse framing, a new @priority keyword 

which prioritizes reverse properties, a new embedding rule defined with the @first 

keyword, and the new @reverseRoots keyword used for filtering the result hierarchies of 

full-length. The proposed Extended Framing Algorithm, together with an extended frame, 

can be applied on arbitrary JSON-LD input files regardless of the length of its reverse 

hierarchy chains present in the frame. The proposed solution was tested on JSON-LD 

documents containing the ENTSO-E CIM Profiles. The two test scenarios were selected 

because of their complexity and size, each of them containing the ENTSO-E CIM Profiles 

expressed in CIM RDF Schema and OWL 2 Schema, respectively. 
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1 Introduction 

The Semantic Web represents the Web of Linked Data. With the growth of the 

Semantic Web, the World Wide Web Consortium (W3C) promoted common data 

formats and exchange protocols, including the Resource Description Framework 

(RDF) family of specifications based on the RDF data model. JavaScript Object 

Notation (JSON) is considered the de-facto standard for data exchange over the 

Internet, mainly due to its simplicity for developers and its consumption in mobile 

and web applications [1]. Although JSON syntax is simple and clear there is no 

associated semantics. In contrast, JSON-LD (i.e. a JSON based serialization for 

Linked Data) adds meaning to JSON documents. A JSON-LD document is an 

instance of an RDF data model. The data model of a JSON-LD document 

represents a labeled, directed graph. A single directed graph can be serialized in 
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multiple ways and expressing the same information [2]. In practice, many 

complex models defined as graphs need to be presented in a hierarchical way to 

allow convenient access to particular data [3]. A hierarchy is commonly defined 

with a tree data model. For example, various ontology editors such as OntoStudio, 

TopBraid Composer, Protégé, Web Protégé, ontology browsers such as 

VectorBase, and ontology libraries such as OntoLink use indented tree 

visualization to present hierarchical structures associated with ontology entities 

[4], [5]. In paper [6] various ontology visualization methods were analyzed, 

including graph and tree structures, and a new approach for an ontology 

visualization and evaluation based on descriptive vectors is presented. As a JSON 

native data model is a tree [7], there is a need to transform a JSON-LD graph into 

a JSON tree that is capable of modeling cyclic structure. For that purpose, a 

mapping mechanism is defined in the form of JSON-LD Framing [8] – a draft 

specification published by the Linking Data in JSON Community Group with the 

aim to query and create specific tree layouts of JSON-LD documents. In this 

specification, a frame is applied on an input graph defined in a JSON-LD 

document using the JSON-LD Framing Algorithm, shaping the input document 

into a tree layout result that satisfies conditions specified in the frame. The JSON-

LD Framing Algorithm complements the JSON-LD 1.0 Processing Algorithms 

and API [9], which defines a set of algorithms (namely, expansion, compaction, 

flattening and RDF serialization/deserialization) for programmatic transformations 

of JSON-LD documents. 

There is often a need to express data relationships defined in a graph in a reverse 

direction. For example, a common practice when expressing a parent-child 

relationship between two entities in a class hierarchy definition is that the 

relationship is declared from a child to a parent. The aim of the @reverse keyword 

in JSON-LD is to express an inverse relationship using a reverse property [10]. 

Currently, the JSON-LD Framing specification supports a basic reverse framing, 

meaning that each inverse relationship has to be explicitly declared in a frame and 

its sub-frames in order to be present in the result. In this paper, the authors 

propose the introduction of three new framing keywords, namely @priority, 

@first and @reverseRoots, and present the usage of the following extensions of 

the JSON-LD Framing Algorithm: 

 recursive application of reverse framing, 

 prioritized inverse relationships using the @priority keyword in a reverse 

property, 

 node object embedding using the @first keyword as a value of the object 

embed flag (i.e. @embed), 

 node object filtering based on the value of the @reverseRoots keyword. 

The ultimate goal of the proposed extensions is to define simple frames which 

result in desired tree layouts. 
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The paper is organized into sections. Section 2 presents related work, while 

Section 3 defines the problem. The proposed extensions are described in Section 4 

together with the pseudo-code of the algorithm. Section 5 contains the description 

of the testing methodology and the overview of two test scenarios. The analysis of 

the input and output data, the results of performance testing and the discussion are 

presented in Section 6. Additionally, Section 6 demonstrates the application of 

resulting framed outputs in a custom developed JSON tree viewer for Web-based 

content visualization. 

2 Related Works 

The recent advances in the business intelligence applications field and knowledge 

representation is paired with Semantic Web technology improvements. For 

instance, numerous new versions of W3C Web Recommendations for RDF were 

created or updated in the last three years [11]. In the same direction were efforts to 

convert data from a JSON format to a semantically-enriched, RDF format 

containing Linked Data URIs [12]. Similarly, a framework for integration of 

various governmental services was developed using semantically enhanced 

service descriptions [13]. Nearly at the same time, the W3C created JSON-LD 

[10] as a lightweight syntax to serialize Linked Data in JSON. JSON-LD gained 

significant popularity and worldwide adoption when the major search engines 

(Google, Microsoft, Yahoo! and Yandex) created schema.org – a structured data 

markup schema – with the aim to enable search engines to understand the 

information embedded in web pages in order to serve richer search results [14], 

[15]. In reference [1] JSON-LD is recognized as a format that increases the utility 

and applications of the Smart City’s data. 

The JSON-LD Implementation Report [16] gives an overview of JSON-LD 

implementation statuses in various programming languages. Most of the available 

libraries that implement JSON-LD, and the JSON-LD Processing Algorithms and 

API, also support framing in its current state. As the JSON-LD Framing 

specification is a work in progress, version 1.0 lacks support for several features 

such as reverse framing, named graphs, re-embedding of the same data in the 

result [17], etc. Work was recently reactivated on the JSON-LD Framing 

specification 1.1 [8], focusing on changes regarding the node object embed 

options, support for the basic reverse framing, and framing of named graphs. The 

JSON-LD Framing 1.0 considers embedding of node objects as enabled (i.e. true) 

or disabled (i.e. false), but the latest version 1.1 also adds the following object 

embed flags @always, @never, @last and @link as the alternatives. 

JSON-LD Framing is applied in specifications on the W3C recommendation track, 

such as Web Payments HTTP Messages 1.0 (uses JSON-LD Frame and JSON 

Schema for conformance check of JSON-LD objects of web payment messages 
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[18]) and Web Annotation Vocabulary (defines JSON-LD frames applicable to the 

graph of information that generate JSON output conforming to the serialization 

recommended by the Web Annotation Data Model [19]). In reference [20], a high 

performance cache for materialized graph views over large RDF graphs is created 

using JSON-LD Framing for denormalization of the materialized views into a tree 

data structure that is further indexed into a high performance tree indexing system. 

A similar approach is taken in [21] where JSON-LD Framing is used to represent 

RDF graphs of bibliographic data in JSON suitable for indexing with 

Elasticsearch. 

In reference [22] the authors recognized the need for recursive prioritized inverse 

relationships in frames and developed an early implementation on top of node 

object filtering, as a basis of a web component which processes and displays 

machine readable CIM Profiles in a more human friendly form. This paper 

extends those results and addresses recursive application of prioritized reverse 

framing paired with node object filtering and introduces additional framing 

keywords to achieve more flexible results. 

3 Problem Definition 

In this section, we identify some deficiencies of the existing reverse framing 

solution, namely: 

1. The inability to define a simple frame used for reverse framing. 

2. The lack of multiple-relationship based reverse framing in a simple 

frame. 

3. It is not possible to embed node objects on their first occurrence. 

4. The lack of advanced filtering used for reverse framing. 

3.1 Problem 1: Reverse Framing Complexity 

Due to the fact that JSON-LD serializes directed graphs, each property (i.e. 

directed edge) points from one node to another node or value. Sometimes, it is 

necessary to express such a relationship in reverse direction. For instance, 

considering a subClassOf relationship, pointing from a subclass to a superclass, 

explicit definition of a property that designates the opposite direction – 

superClassOf relationship is typically omitted. Such a relationship can be 

expressed in a JSON-LD graph when the @reverse subClassOf property is 

defined. In this way, a reverse hierarchy is created. 
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When a long reverse hierarchy chain is needed, creating a desired framed output 

requires a deeply nested, complex frame, as the JSON-LD Framing specification 

currently supports only basic reverse framing. This means that a main frame and 

each embedded frame should define their own @reverse keyword section which 

may be inconvenient in situations when a creator of a frame is not aware of 

hierarchy depth in a JSON-LD input. A typical example represents the inheritance 

hierarchy (i.e. rdfs:subClassOf) in any RDF Schema (RDFS) vocabulary or Web 

Ontology Language (OWL) ontology. 

An example of a JSON-LD frame that produces a tree hierarchy based on class 

inheritance and groups all related class properties based on a property domain is 

shown in Listing 1. It can be noticed that a subframe assigned to the children 

property must be repeated as many times as needed, depending on a JSON-LD 

document to be framed. 
 
{    
    "@context": {  ... 
        "children": { "@reverse": "rdfs:subClassOf", "@container": "@set" }, 
        "properties": { "@reverse": "rdfs:domain", "@container": "@set" } 
    },     
    "@type": "rdfs:Class",     
    "children": { 
        "@type": "rdfs:Class", 
        "properties": { 
            "@type": "rdf:Property" 
        }, 
        "children": { 
            "@type": "rdfs:Class", 
            "properties": { 
                "@type": "rdf:Property" 
            }, 
            "children": { ... } 
        } 
    }    
} 

Listing 1 

Example of JSON-LD Frame Excerpt with Reverse Properties 

There is certainly an option to create a custom suited reverse frame 

programmatically based on a document to be framed and the relationships of 

interest, but then each document requires its own frame and reverse framing 

becomes a two-step process. In the first step, a custom program creates a frame 

based on an input file and inverse relationships of interest, while in the second the 

frame is applied on the input file to produce a framed output. 

3.2 Problem 2: Reverse Framing with Multiple Relationships 

Frames with reverse properties become quite complex when additional properties 

are included or when there are multiple nested reverse properties of the same type 

creating corresponding hierarchies. For example, a frame with multiple nested 

reverse properties is shown in Listing 2. Assuming that family members work in 

the same company this frame can be used to create two hierarchies (company 

employee and parent-child hierarchies) starting from a person. 
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{    
    "@context": { ... 
        "employees": { "@reverse": "ex:employeeOf" }, 
        "children": { "@reverse": "ex:childOf" } 
    }, 
    "@type": "Person", 
    "employees": { 
        "@type": "Person", 
        "employees": { 
            "@type": "Person", 
            "employees": { ... }, 
            "children": { ... } 
        }, 
        "children": { 
            "@type": "Person", 
            "employees": { ... }, 
            "children": { ... } 
        } 
    }, 
    "children": { 
        "@type": "Person", 
        "employees": { ... }, 
        "children": { ... }, 
    } 
} 

Listing 2 

Example of JSON-LD Frame Excerpt with Multiple Nested Reverse Properties 

Currently, there is no straightforward and standardized way for creating single-

relationship or multiple-relationship based reverse tree hierarchies (thereafter 

referred to as tree hierarchies) of arbitrary depth starting from a flattened JSON-

LD document and simple frame. 

The order in which each inverse relationship is applied is important since JSON-

LD framing uses the depth-first search algorithm when traversing related nodes to 

produce a framed output. By default, reverse properties are applied in order 

determined by the Expansion Algorithm, as an expanded frame is one of the 

inputs of the Framing Algorithm. Depending on how reverse properties are given 

in the original frame, whether using plain reverse properties or reverse properties 

with expanded term definitions or their combination, their order may vary in an 

expanded frame. The order in which inverse relationships are applied should be 

unambiguously determined and easily understood regardless of the way reverse 

properties are declared. 

3.3 Problem 3: Embed on First Occurrence 

Node objects are embedded on their last occurrence (i.e. the embedding rule 

”@embed”: ”@last”) unless explicitly defined otherwise in a frame. 

Consequently, the result of reverse framing may not contain an explicitly 

expressed chain of full-length (i.e. longest hierarchy) if some element in the 

reverse chain appears later in the result. In order to overcome this deficiency, the 

embedding rule of @always could be applied, but then each referenced node and 

its subtree would be repeated in the result. 
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3.4 Problem 4: Advanced Filtering 

The Framing Algorithm supports filtering based on strict-typing and duck-typing 

[17], [23]. The first type of filtering uses values of @type for matching. In its 

absence, filtering of nodes is based on matching included properties. Reverse 

framing is performed in conjunction with filtering, meaning that the framing 

process results in an array of node objects that satisfy filtering conditions and may 

also be roots of a reverse tree hierarchy if a node is related to some other nodes 

with reverse properties given in a frame. Some of these node objects may already 

be subtree roots in other reverse tree hierarchies, so there is a need to filter them 

out. In this way, a resulting framed output would contain only reverse tree 

hierarchies of full-length. 

4 Solution 

In order to address the identified problems, the authors propose extensions to the 

JSON-LD frame definition and the JSON-LD Framing Algorithm. 

4.1 The Extended Frame 

4.1.1 Recursive Application of Reverse Properties 

By this proposal each reverse property is defined in the top-level frame of a 

JSON-LD frame. Each reverse property is applied recursively, meaning that they 

are all implicitly passed to any subframe (i.e. using the similar approach applied 

for object embed flags, the explicit inclusion flag and the require all flag). At the 

same time, a reverse property can be overridden in a subframe and as such passed 

to its subframes. In this way, deeply nested reverse properties are avoided in a 

frame. 

4.1.2 Definition of Prioritized Reverse Properties 

Problem 2 described in the previous section, regarding the order in which inverse 

relationships are applied, can be overcome if the order was explicitly declared. For 

this reason, a frame definition of a reverse property is extended with a new 

@priority framing keyword (e.g. children in Listing 3). The priority of a reverse 

property is defined with a number value of the @priority keyword (a lower value a 

higher priority). If the priority is not defined for a reverse property, a default 

priority is determined by the Expansion Algorithm. A priority does not determine 

the order in which relationships appear in a resulting tree layout because the 

layout is compacted using a context included in a frame. 
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4.1.3 Definition of a New Embedding Rule - First 

The authors consider the embedding of node objects on their first occurrence in a 

JSON-LD graph as equally important to other alternatives. When used with 

recursive reverse framing it allows for the creation of tree hierarchies of full-

length, while leaving node references to already traversed nodes. Therefore, a new 

value of the @embed framing keyword is proposed, defined with the @first object 

embed flag. Listing 3 illustrates how the new flag is used in a frame to globally 

define that node objects are embedded on their first occurrence. 

4.1.4 Definition of Hierarchy Roots 

In order to keep only the tree hierarchies of full-length in  resulting framed outputs 

the authors introduce the @reverseRoots framing keyword (Listing 3). This 

keyword acts as a flag. The value of the @reverseRoots keyword is boolean. 

Setting its value to true enables filtering. If @reverseRoots is not specified, its 

value defaults to false. 
 
{ 
    "@context" : {         
        "ex" : "http://example.com/",         
        "employees" : {"@reverse" : "ex:employeeOf"}, 
        "children" : {"@reverse" : "ex:childOf"} 
    }, 
    "@type": "ex:Person",   
    "@embed": "@first", 
    "@reverseRoots": true, 
    "employees": {"@priority" : 1},  
    "children": {"@priority" : 2} 
} 

Listing 3  

Example of Extended JSON-LD Frame 

4.2 The Extended Framing Algorithm 

The Extended Framing Algorithm (EFA) represents an extension of the Framing 

Algorithm [8] which supports the proposed, extended frame definition. In addition 

to the existing framing capabilities, it creates a tree hierarchy on each filtered node 

based on multiple prioritized reverse properties provided in an input frame. 

The very process of creating prioritized reverse tree hierarchies in a JSON-LD tree 

layout can be split into two portions. The first portion of the EFA (Listing 4) 

accepts an expanded JSON-LD input file (i.e. graph) and expanded frame (i.e. 

frame) together with the global framing options. Essentially, this portion of the 

overall algorithm initializes the parameters used in the second, recursive portion. 

It includes: 

 Initialization of the current state. 

 Flattening of the input graph.  

 Identification of relationships to be inverted from the input frame. 

 Identification of graph nodes related with the identified relationships. 
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 Identification of all hierarchy roots and non-blank roots of each identified 

relationship based on the related nodes, and initialization of the current 

state. 

Identification of non-blank roots is important as it is expected by this 

implementation that all blank (i.e. anonymous) nodes are embedded inside non-

blank (i.e. named) nodes in a created hierarchy. For this reason, based on the 

identified hierarchy roots, if a root is a blank node, then its hierarchy is searched 

downstream for the nearest appearance of non-blank descendants which become 

new hierarchy roots. 
 
function FRAME(graph, frame, options) 
 state = CREATESTATE(options) 
 fGraph  = FLATTEN(graph) 
 revRels  = GETREVERSERELATIONSHIPS(frame) 
 forEach node in fGraph do 
  forEach revRel in revRels do 
   if node has revRel then 
    add node.id into revRel.domain 
    add node.revRel.value into revRel.range 
 forEach revRel in revRels do 
  forEach id in revRel.range do 
   if not id exists in revRel.domain then 
    add id into revRel.roots    
 forEach revRel in revRels do  
  forEach id in revRel.roots do 
   if ISBLANK(id) then 
    descs = FINDNEARESTNBDESCS(id, revRel)  
    add descs into revRel.nonBlankRoots 

else 
    add id into revRel.nonBlankRoots 

 state.revRels  = revRels  
 state.subjects   = fGraph.nodes 
      return RecurFRAME(state, IDS(fGraph.nodes), frame, false, undefined) 
end function 

Listing 4 

Extended Frame Algorithm – First Portion 

The second, recursive portion of the EFA (pseudo-code in Listing 5) includes: 

 Flag initialization using the current frame and state – flags ensure that a 

property (namely embed, explicit, requireAll, reverse and reverseRoots) is 

passed from the current frame to a subframe if the subframe does not 

override it;  

 Filtering of subjects that satisfy the current frame and flags (i.e. matches); 

 Prioritization of matches using the identified non-blank roots – meaning 

that non-blank root matches have precedence over the rest of the matches 

that are sorted ascending by their ids; 

 Each match is processed in the following way: 

o A match is skipped if it is a top-level node that is already traversed 

in another reverse hierarchy and only the hierarchies of full-length 

are of interest; 

o Depending on the current embed value and state, the way in which 

the match is referenced in the output is determined or the framing 

process is continued; 
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o Based on the content of the current frame, inverse relationships are 

identified, ordered by their priorities and used to build a tree 

hierarchy with the match as its root. For each relationship, the 

match’s related nodes are prioritized and traversed recursively with 

the appropriate subframe, taking care that the related node is 

skipped if it is already traversed and hierarchies of full-length are of 

interest. The match and related node are marked as traversed when 

they are recursively processed; 

o The match’s own properties are processed; 

o Default properties, defined in the current frame, are processed; 

o The output is set as a value of the current parent’s property; 

o If the recursive framing of a top-level node is completed and 

hierarchies of full-length are of interest, then all traversed nodes are 

globally stored to be checked when a new top-level node is 

processed.  
 
function RecurFRAME(state, subjects, frame, parent, property) 

flags = GETFLAGS(frame, state) 
 matches = FILTERSUBJECTS(state, subjects, frame, flags) 
 matches = PRIORITIZENONBLANKROOTS(matches, state, frame) 
 
 forEach match in matches do  
  if property == undefined and flags.reverseRoots and  

match in state.traversedAll then 
   continue 
 
  output = create(match) 
  if PROCESSEMBEDVALUES(flags.embed, state, output) then 
   continue 
 
  revRels = GETREVERSERELATIONSHIPS(frame) 
  revRels = ORDERBYPRIORITY(revRels) 
 
  forEach revRel in revRels do 
   rs = GETRELATED(id, revRel) 
   rs = PRIORITIZENONBLANKROOTS(rs, state, frame)    
   implicitFrame = CREATEIMPLICITFRAME(flags) 
   subframe = GETSUBFRAME(frame, revRel) 
   subframe = MERGEFRAMES(implicitFrame, subframe) 
 
   forEach r in rs do 
    if subframe.reverseRoots and  

r in state.traversed then 
     continue 
 
    RecurFRAME(state, r, subframe, output.reverse, revRel) 
    
    if not id in state.traversed then 
     add id into state.traversed 
    if not r in state.traversed then 
     add r into state.traversed 
  PROCESSOWNPROPERTIES(match, flags, frame, output) 
  PROCESSDEFAULTPROPERTIES(frame, output) 
  ADDFRAMEOUTPUT(parent, property, output) 
 
  if property == undefined and flags.reverseRoots then 
   add state.traversed into state.traversedAll 
end function 

Listing 5 

Recursive Portion of the Extended Frame Algorithm 



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 85 – 

5 Testing Methodology 

Initial testing was conducted against the set of created new reverse API tests 

included in the JSON-LD Test Suite provided with the implementation of the 

Extended Framing Algorithm [24]. These tests basically validate a framed output 

against the expected output for a given input and frame. 

For the detailed testing, the authors searched for convenient data sources that are 

sufficiently large and complex to evaluate the proposed extensions providing at 

the same time verifiable results. The CIM Profiles which are part of the CGMES 

defined by the European Network Transmission System Operators for Electricity 

[14] (ENTSO-E) were chosen as the testing data source. These profiles were used 

for the 5
th

 interoperability tests conducted by the European Transmission System 

Operators (TSO) in 2014. 

In order to clarify the connections between input and output data, the following 

terms are defined:  

 CIM Profile – a subset of CIM classes, properties and associations 

including CIM extensions. It may be defined using the CIM RDF 

Schema [25]. 

 CIM RDF Schema – an IEC standard, which relies on the subset of RDF 

classes and properties and set of CIM RDF Schema extensions [25]. 

 RDF/XML – an XML syntax for RDF graphs. 

 CIMXML model exchange format – an IEC standard, defines a CIM 

Profile serialization using the RDF/XML [26]. 

CIMXMLs of the ENTSO-E CIM Profiles were used as a starting data source in 

two test scenarios. In the first test scenario, the profiles were transformed into 

JSON-LD syntax and used as a testing input. As a CIM Profile does not contain 

blank nodes related with RDFS properties, it was decided to conduct additional 

testing using the representation of CIM Profiles in a more expressive OWL 2 (the 

latest version of OWL). For this reason, the profiles were mapped into the OWL 2 

representation in RDF/XML syntax, transformed into JSON-LD syntax 

afterwards, and as such used as a testing input in the second test scenario. In both 

test scenarios, the same input frame is applied to create a CIM Profile tree 

hierarchy. 

5.1 The RDFS Test Scenario 

In this scenario, the CIMXML files containing the RDFS representation of CIM 

Profiles were used as a starting data source. Those files were converted into 

JSON-LD syntax since both RDF/XML and JSON-LD are capable to serialize an 

RDF graph. The translation was done using the RDF Translator [27]. The frame 
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shown in Listing 6 was used together with a translated CIM Profile as an input to 

the Extended Framing Algorithm. 

5.2 The OWL 2 Test Scenario 

Based on the authors’ previous experiences (an analysis of CIM Profile 

conversion into OWL was presented in reference [28]), a custom converter was 

implemented in order to transform CIMXML of CIM Profiles into the OWL 2 

format. The conversion was accomplished in the following steps: 

 RDFS class and property constructs were transformed into corresponding 

OWL 2 class and property constructs (i.e. rdfs:Class into owl:Class; 

rdfs:Property into owl:DatatypeProperty or owl:ObjectProperty 

depending on a relation designated by rdfs:Property). 

 The RDFS extensions (i.e. constructs that share cims namespace) were 

transformed into corresponding OWL 2 constructs where possible. 

cims:multiplicity was replaced with OWL object and data property 

restrictions, cims:inverseRoleName was mapped to owl:inverseOf, and 

cims:dataType was replaced with rdfs:range of an 

owl:DatatypeProperty.  

 The rest of the RDFS extensions (namely, cims:AssociationUsed, 

cims:stereotype, cims:isFixed, cims:ClassCategory and 

cims:belongsToCategory) were preserved as meta data of defined classes 

and properties. 

 Classes that model primitive datatypes, such as String, Date, Integer, etc., 

were skipped and corresponding data types from XML Schema 

Definition (XSD) namespace were used instead.  

In addition to the subset of RDF properties applied in CIM RDFS, the authors 

used rdfs:isDefinedBy property to designate that each defined owl:Class, 

owl:DatatypeProperty and owl:ObjectProperty is defined by the created 

owl:Ontology. In this way, one more hierarchical level was created in the CIM 

profile ontology compared to the corresponding profile RDF Schema.  

The created CIM Profiles in OWL2 form were validated in Protégé ontology 

editor (Figure 1). JSON-LD serialization of a CIM Profile is used as an input in 

the Extended Framing Algorithm together with the frame shown in Listing 6 (see 

5.3).  
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Figure 1  

OntoGraph Vizualization of Topology Profile Ontology in Protégé 

5.3 Test Frame 

The input frame (Listing 6) shapes the initially provided JSON-LD document into 

hierarchy trees starting from an ontology or class, groups related classes and 

properties, embeds subclasses based on their inheritance relationship, groups all 

properties that belong to a class. It ensures that a hierarchy tree is not a subtree of 

another tree that only explicitly declared properties are included in the output and 

that node objects are embedded when they are first encountered. The same 

resulting framed output can be achieved by creating a simpler frame in each test 

scenario. For instance, in the RDFS test scenario OWL constructs and inverse 

rdfs:isDefinedBy property can be avoided in the frame. However, the authors 

wanted to keep the same input frame not affecting the framing process. At the 

same time, the results of such framing served as a confirmation of properly 

implemented profile conversion. 
 
{    
    "@context": { 
        // owl, rdf, rdfs, xsd, cim, entsoe, tp, ...  
        "children": { "@reverse": "rdfs:subClassOf", "@container": "@set"}, 
        "properties": { "@reverse": "rdfs:domain", "@container": "@set"}, 
        "defines": { "@reverse": "rdfs:isDefinedBy", "@container": "@set"} 
    }, 
    "@type": ["owl:Ontology", "rdfs:Class", "owl:Class"],    
    "@embed": "@first", 
    "@reverseRoots": true, 
    "@explicit": true, 
    "defines": { 
        "@priority": 1, 
        "@type": ["owl:Class", "owl:DatatypeProperty", "owl:ObjectProperty"]}, 
    "children": { 
        "@priority": 2, 
        "@type": ["rdfs:Class", "owl:Class"]}, 
    "properties": { 
        "@priority": 3, 
        "@type": ["rdf:Property", "owl:ObjectProperty", "owl:DatatypeProperty"]} 
} 

Listing 6  

Frame for CIM Profiles 
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6 Results and Discussion 

The performance testing of the Extended Framing Algorithm implementation 

based on forked version of jsonld.js, available at [24], was conducted on a 

computer with an Intel Core i5-4300M/2.60 GHz CPU with 16 GB of RAM and 

500 GB HDD running Microsoft Windows 8.1 Enterprise (64-bit) with Node 

v6.8.1. The testing was done in two scenarios, where 1000 iterations of the 

framing were executed for each file, and an average time was calculated.  

Tables 1-2 present model metrics of the input and output data, and average 

framing times in RDFS and OWL 2 test scenarios, respectively. 

 

Table 1 

Data ModelMetrics per ENTSO-E CIM Profile document in RDFS 

Profiles 

Input Output 
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GeographicalLocation 10 23 240 25332 58 5015 6 2 6.981 

TopologyBoundary 10 28 284 32533 67 5680 7 2 8.075 

Topology 18 31 355 36790 88 7085 8 3 10.182 

DiagramLayout 21 46 585 58819 118 8789 14 3 15.769 

EquipmentBoundary 25 39 567 59392 116 9517 10 5 15.583 

StateVariablesProfile 33 63 770 74973 166 11775 24 3 21.362 

SteadyStateHypothesis 75 84 1232 125892 292 24728 24 7 35.453 

EquipmentProfileCore 177 412 4483 444497 1107 85889 69 7 171.210 

EquipmentProfileCore-

ShortCircuit 
183 399 4417 448550 1093 86127 69 7 154.307 

EquipmentProfileCore-

Operation 
222 417 4799 480497 1207 90106 69 7 187.640 

EquipmentProfileCore-

ShortCircuitOperation 
226 624 6451 633842 1629 126640 69 7 281.026 

Dynamics 252 2802 21655 2057966 6067 440244 39 7 1233.987 

 

In order to have better understanding of results, input and output files of both test 

scenarios are compared and analyzed. The OWL 2 representation of profiles has a 

slightly smaller number of defined classes due to usage of XSD primitive data 

types when compared with RDFS representation, while the number of properties 

is the same. A conversion of CIM Profile representation in RDFS into OWL 2 had 

a significant impact on number of triples in OWL 2 profiles as some RDFS 

extensions are represented with several triples in OWL 2 (e.g. cims:multiplicity 

into OWL 2 restrictions). The number of triples in OWL 2 representation is 

increased for ~48.9% on average in comparison with the RDFS representation, 

while the size of the input file is increased for ~24.9% on average.  
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Table 2  

Data Model Metrics per ENTSO-E CIM Profile document in OWL 2 

Profiles 

Input Output 
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GeographicalLocation 7 23 334 30019 59 5635 1 3 8.854 

TopologyBoundary 7 28 404 36236 69 6389 1 3 10.512 

Topology 16 31 500 43085 93 8100 1 4 13.612 

DiagramLayout 16 46 867 72747 123 9987 1 4 22.829 

EquipmentBoundary 20 39 821 69265 119 10738 1 6 22.477 

StateVariablesProfile 29 63 1158 95947 183 13744 1 4 32.877 

SteadyStateHypothesis 70 84 1795 155311 307 28066 1 8 54.195 

EquipmentProfileCore 169 412 6830 574211 1161 98731 1 8 311.856 

EquipmentProfileCore-

ShortCircuit 
175 399 6745 584335 1143 99826 1 8 273.016 

EquipmentProfileCore-

Operation 
214 417 7235 617918 1261 104570 1 8 343.537 

EquipmentProfileCore-

ShortCircuitOperation 
218 624 9882 854579 1683 148120 1 8 522.892 

Dynamics 247 2802 36035 2833795 6097 509551 1 8 2441.795 

 

The number of output triples in OWL 2 representation is increased for ~4.2% on 

average when compared with its counterpart in RDFS representation, while the 

size of an output file is increased for ~14.6% on average. This is the consequence 

of the introduced rdfs:isDefinedBy property and conversion of rdfs:Property into 

owl:DatatypeProperty and owl:ObjectProperty. The number of hierarchy trees in 

each OWL 2 output is one, as there is a single ontology root object that defines all 

class and property node objects in contrast to the corresponding RDFS output in 

which each hierarchy tree has a class as a root object. This is illustrated in Figure 

2 in which the JSON Tree Viewer web component displays the frames of the 

Topology Profile in RDFS and OWL 2 respectively. At the same time, this is a 

good example how JSON-LD Framing is used to shape input data to ease further 

JSON to DOM rendering. The length of the longest hierarchy tree in a framed 

OWL 2 profile was one level longer than the length of the corresponding RDFS 

counterpart. 

As for the average framing time (later referred to as framing time), Figure 3 

illustrates how it relates to other measured values. Figure 3 (a) shows the linear 

dependence of framing time (presented in a logarithmic scale) with respect to the 

number of ontology, class and property triples in both test scenarios. Framing time 

was slightly longer in OWL 2 case. The reason for this was the greater number of 

other types of triples in input files which is confirmed with results shown in 

Figure 3 (b). Also, Figure 3 (b) shows that the framing time advances with a linear 

dependence of the number of input triples in both test scenarios. Similarly, Figure 

3 (c) shows the linear dependence of framing time with respect to input file size in 
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both test scenarios. As for the number of output triples in both scenarios, shown in 

Figure 3 (d), it is nearly the same since RDFS output contains some triples that 

were related to defined primitive data types which were removed from OWL 2 

input, while in the OWL 2 input a rdfs:isDefinedBy relationship was introduced 

and preserved in the output triples (Figure 2). It should be noted that there is a 

linear dependence between data shown in Figure 3 (a) and Figure 3 (d) as the 

output contains ontology, class, property triples together with reverse property 

triples. The linear dependence was present between output file sizes and framing 

time in both test scenarios as well Figure 3 (e), which is the consequence of the 

size of input files, Figure 3 (c). 
 

 
Figure 2  

JSON Tree View of TopologyProfile in RDFS (left) and OWL 2 (right) 
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Figure 3  

(a) Number of Input Ontology, Class and Property Triples vs. Framing Time, 

(b) Number of Input Triples vs. Framing Time, (c) Input File Size vs. Framing Time,  

(d) Number of Output Triples vs. Framing Time, (e) Output File Size vs. Framing Time 

Conclusion 

This paper extends the existing JSON-LD Framing specification with recursive 

prioritized reverse framing. Defined extensions allow definition of a frame which 

can be applied on an arbitrary number of input files regardless of the length of a 

reverse hierarchy chain of the given inverse relationship from the frame. 

Otherwise, a custom suited frame must be created for each input file. It also 
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allows combination of multiple inverse relationships in reverse tree hierarchies 

based on defined priorities, which the authors find suitable for grouping of related 

nodes using different inverse relationships. The set of existing embedding rules is 

extended with a new rule which enables embedding of node objects on their first 

occurrence. This rule, when combined with recursive reverse framing, enables 

creation of reverse tree hierarchies of full-length. Additionally, one of the 

proposed extensions enables filtering of such reverse tree hierarchies.  

The proposed Extended JSON-LD Framing Algorithm is designed and 

implemented, and results of its application on a set of complex RDFS vocabularies 

and OWL 2 ontologies, using a single frame, are analyzed showing overall linear 

dependence of the number of input triples with respect to framing time when 

multiple inverse relationships are defined in a frame. The framing applied in the 

test scenarios shows how an arbitrary ontology can be transformed into a tree and 

used as input for other processes as well as how framing can be used in the 

validation of properly implemented RDFS into OWL 2 conversions on the 

examples of ENTSO-E CIM Profiles. 

The future work is intended towards research of more advanced property value 

filtering (e.g. a property value equal to, less than, greater than some value) that 

could be used in conjunction with recursive prioritized reverse framing. 
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