
Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 75 –

Extending JSON-LD Framing Capabilities

Kosa Nenadić
1
, Milan Gavrić

2
, Imre Lendak

2

1
Schneider Electric DMS NS LLC Novi Sad, Narodnog Fronta 25 a,b,c,d, 21000

Novi Sad, Serbia; kosa.nenadic@schneider-electric-dms.com

2
Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6,

21000 Novi Sad, Serbia; gavricm@uns.ac.rs, lendak@uns.ac.rs

Abstract: Today, with the increasing popularity of JSON-LD on the Web, there is a need for

transformation and extraction of such structured data. In this paper, the authors propose

extensions of the JSON-LD Framing specification which are able to create a tree layout

based on recursive application of prioritized inverse relationships defined in a frame. The

extensions include recursive application of reverse framing, a new @priority keyword

which prioritizes reverse properties, a new embedding rule defined with the @first

keyword, and the new @reverseRoots keyword used for filtering the result hierarchies of

full-length. The proposed Extended Framing Algorithm, together with an extended frame,

can be applied on arbitrary JSON-LD input files regardless of the length of its reverse

hierarchy chains present in the frame. The proposed solution was tested on JSON-LD

documents containing the ENTSO-E CIM Profiles. The two test scenarios were selected

because of their complexity and size, each of them containing the ENTSO-E CIM Profiles

expressed in CIM RDF Schema and OWL 2 Schema, respectively.

Keywords: Common Information Model; ENTSO-E; Framing; JSON-LD; RDF; Semantic

Web

1 Introduction

The Semantic Web represents the Web of Linked Data. With the growth of the

Semantic Web, the World Wide Web Consortium (W3C) promoted common data

formats and exchange protocols, including the Resource Description Framework

(RDF) family of specifications based on the RDF data model. JavaScript Object

Notation (JSON) is considered the de-facto standard for data exchange over the

Internet, mainly due to its simplicity for developers and its consumption in mobile

and web applications [1]. Although JSON syntax is simple and clear there is no

associated semantics. In contrast, JSON-LD (i.e. a JSON based serialization for

Linked Data) adds meaning to JSON documents. A JSON-LD document is an

instance of an RDF data model. The data model of a JSON-LD document

represents a labeled, directed graph. A single directed graph can be serialized in

mailto:kosa.nenadic@schneider-electric-dms.com
mailto:gavricm@uns.ac.rs
mailto:lendak@uns.ac.rs

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 76 –

multiple ways and expressing the same information [2]. In practice, many

complex models defined as graphs need to be presented in a hierarchical way to

allow convenient access to particular data [3]. A hierarchy is commonly defined

with a tree data model. For example, various ontology editors such as OntoStudio,

TopBraid Composer, Protégé, Web Protégé, ontology browsers such as

VectorBase, and ontology libraries such as OntoLink use indented tree

visualization to present hierarchical structures associated with ontology entities

[4], [5]. In paper [6] various ontology visualization methods were analyzed,

including graph and tree structures, and a new approach for an ontology

visualization and evaluation based on descriptive vectors is presented. As a JSON

native data model is a tree [7], there is a need to transform a JSON-LD graph into

a JSON tree that is capable of modeling cyclic structure. For that purpose, a

mapping mechanism is defined in the form of JSON-LD Framing [8] – a draft

specification published by the Linking Data in JSON Community Group with the

aim to query and create specific tree layouts of JSON-LD documents. In this

specification, a frame is applied on an input graph defined in a JSON-LD

document using the JSON-LD Framing Algorithm, shaping the input document

into a tree layout result that satisfies conditions specified in the frame. The JSON-

LD Framing Algorithm complements the JSON-LD 1.0 Processing Algorithms

and API [9], which defines a set of algorithms (namely, expansion, compaction,

flattening and RDF serialization/deserialization) for programmatic transformations

of JSON-LD documents.

There is often a need to express data relationships defined in a graph in a reverse

direction. For example, a common practice when expressing a parent-child

relationship between two entities in a class hierarchy definition is that the

relationship is declared from a child to a parent. The aim of the @reverse keyword

in JSON-LD is to express an inverse relationship using a reverse property [10].

Currently, the JSON-LD Framing specification supports a basic reverse framing,

meaning that each inverse relationship has to be explicitly declared in a frame and

its sub-frames in order to be present in the result. In this paper, the authors

propose the introduction of three new framing keywords, namely @priority,

@first and @reverseRoots, and present the usage of the following extensions of

the JSON-LD Framing Algorithm:

 recursive application of reverse framing,

 prioritized inverse relationships using the @priority keyword in a reverse

property,

 node object embedding using the @first keyword as a value of the object

embed flag (i.e. @embed),

 node object filtering based on the value of the @reverseRoots keyword.

The ultimate goal of the proposed extensions is to define simple frames which

result in desired tree layouts.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 77 –

The paper is organized into sections. Section 2 presents related work, while

Section 3 defines the problem. The proposed extensions are described in Section 4

together with the pseudo-code of the algorithm. Section 5 contains the description

of the testing methodology and the overview of two test scenarios. The analysis of

the input and output data, the results of performance testing and the discussion are

presented in Section 6. Additionally, Section 6 demonstrates the application of

resulting framed outputs in a custom developed JSON tree viewer for Web-based

content visualization.

2 Related Works

The recent advances in the business intelligence applications field and knowledge

representation is paired with Semantic Web technology improvements. For

instance, numerous new versions of W3C Web Recommendations for RDF were

created or updated in the last three years [11]. In the same direction were efforts to

convert data from a JSON format to a semantically-enriched, RDF format

containing Linked Data URIs [12]. Similarly, a framework for integration of

various governmental services was developed using semantically enhanced

service descriptions [13]. Nearly at the same time, the W3C created JSON-LD

[10] as a lightweight syntax to serialize Linked Data in JSON. JSON-LD gained

significant popularity and worldwide adoption when the major search engines

(Google, Microsoft, Yahoo! and Yandex) created schema.org – a structured data

markup schema – with the aim to enable search engines to understand the

information embedded in web pages in order to serve richer search results [14],

[15]. In reference [1] JSON-LD is recognized as a format that increases the utility

and applications of the Smart City’s data.

The JSON-LD Implementation Report [16] gives an overview of JSON-LD

implementation statuses in various programming languages. Most of the available

libraries that implement JSON-LD, and the JSON-LD Processing Algorithms and

API, also support framing in its current state. As the JSON-LD Framing

specification is a work in progress, version 1.0 lacks support for several features

such as reverse framing, named graphs, re-embedding of the same data in the

result [17], etc. Work was recently reactivated on the JSON-LD Framing

specification 1.1 [8], focusing on changes regarding the node object embed

options, support for the basic reverse framing, and framing of named graphs. The

JSON-LD Framing 1.0 considers embedding of node objects as enabled (i.e. true)

or disabled (i.e. false), but the latest version 1.1 also adds the following object

embed flags @always, @never, @last and @link as the alternatives.

JSON-LD Framing is applied in specifications on the W3C recommendation track,

such as Web Payments HTTP Messages 1.0 (uses JSON-LD Frame and JSON

Schema for conformance check of JSON-LD objects of web payment messages

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 78 –

[18]) and Web Annotation Vocabulary (defines JSON-LD frames applicable to the

graph of information that generate JSON output conforming to the serialization

recommended by the Web Annotation Data Model [19]). In reference [20], a high

performance cache for materialized graph views over large RDF graphs is created

using JSON-LD Framing for denormalization of the materialized views into a tree

data structure that is further indexed into a high performance tree indexing system.

A similar approach is taken in [21] where JSON-LD Framing is used to represent

RDF graphs of bibliographic data in JSON suitable for indexing with

Elasticsearch.

In reference [22] the authors recognized the need for recursive prioritized inverse

relationships in frames and developed an early implementation on top of node

object filtering, as a basis of a web component which processes and displays

machine readable CIM Profiles in a more human friendly form. This paper

extends those results and addresses recursive application of prioritized reverse

framing paired with node object filtering and introduces additional framing

keywords to achieve more flexible results.

3 Problem Definition

In this section, we identify some deficiencies of the existing reverse framing

solution, namely:

1. The inability to define a simple frame used for reverse framing.

2. The lack of multiple-relationship based reverse framing in a simple

frame.

3. It is not possible to embed node objects on their first occurrence.

4. The lack of advanced filtering used for reverse framing.

3.1 Problem 1: Reverse Framing Complexity

Due to the fact that JSON-LD serializes directed graphs, each property (i.e.

directed edge) points from one node to another node or value. Sometimes, it is

necessary to express such a relationship in reverse direction. For instance,

considering a subClassOf relationship, pointing from a subclass to a superclass,

explicit definition of a property that designates the opposite direction –

superClassOf relationship is typically omitted. Such a relationship can be

expressed in a JSON-LD graph when the @reverse subClassOf property is

defined. In this way, a reverse hierarchy is created.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 79 –

When a long reverse hierarchy chain is needed, creating a desired framed output

requires a deeply nested, complex frame, as the JSON-LD Framing specification

currently supports only basic reverse framing. This means that a main frame and

each embedded frame should define their own @reverse keyword section which

may be inconvenient in situations when a creator of a frame is not aware of

hierarchy depth in a JSON-LD input. A typical example represents the inheritance

hierarchy (i.e. rdfs:subClassOf) in any RDF Schema (RDFS) vocabulary or Web

Ontology Language (OWL) ontology.

An example of a JSON-LD frame that produces a tree hierarchy based on class

inheritance and groups all related class properties based on a property domain is

shown in Listing 1. It can be noticed that a subframe assigned to the children

property must be repeated as many times as needed, depending on a JSON-LD

document to be framed.

{
 "@context": { ...
 "children": { "@reverse": "rdfs:subClassOf", "@container": "@set" },
 "properties": { "@reverse": "rdfs:domain", "@container": "@set" }
 },
 "@type": "rdfs:Class",
 "children": {
 "@type": "rdfs:Class",
 "properties": {
 "@type": "rdf:Property"
 },
 "children": {
 "@type": "rdfs:Class",
 "properties": {
 "@type": "rdf:Property"
 },
 "children": { ... }
 }
 }
}

Listing 1

Example of JSON-LD Frame Excerpt with Reverse Properties

There is certainly an option to create a custom suited reverse frame

programmatically based on a document to be framed and the relationships of

interest, but then each document requires its own frame and reverse framing

becomes a two-step process. In the first step, a custom program creates a frame

based on an input file and inverse relationships of interest, while in the second the

frame is applied on the input file to produce a framed output.

3.2 Problem 2: Reverse Framing with Multiple Relationships

Frames with reverse properties become quite complex when additional properties

are included or when there are multiple nested reverse properties of the same type

creating corresponding hierarchies. For example, a frame with multiple nested

reverse properties is shown in Listing 2. Assuming that family members work in

the same company this frame can be used to create two hierarchies (company

employee and parent-child hierarchies) starting from a person.

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 80 –

{
 "@context": { ...
 "employees": { "@reverse": "ex:employeeOf" },
 "children": { "@reverse": "ex:childOf" }
 },
 "@type": "Person",
 "employees": {
 "@type": "Person",
 "employees": {
 "@type": "Person",
 "employees": { ... },
 "children": { ... }
 },
 "children": {
 "@type": "Person",
 "employees": { ... },
 "children": { ... }
 }
 },
 "children": {
 "@type": "Person",
 "employees": { ... },
 "children": { ... },
 }
}

Listing 2

Example of JSON-LD Frame Excerpt with Multiple Nested Reverse Properties

Currently, there is no straightforward and standardized way for creating single-

relationship or multiple-relationship based reverse tree hierarchies (thereafter

referred to as tree hierarchies) of arbitrary depth starting from a flattened JSON-

LD document and simple frame.

The order in which each inverse relationship is applied is important since JSON-

LD framing uses the depth-first search algorithm when traversing related nodes to

produce a framed output. By default, reverse properties are applied in order

determined by the Expansion Algorithm, as an expanded frame is one of the

inputs of the Framing Algorithm. Depending on how reverse properties are given

in the original frame, whether using plain reverse properties or reverse properties

with expanded term definitions or their combination, their order may vary in an

expanded frame. The order in which inverse relationships are applied should be

unambiguously determined and easily understood regardless of the way reverse

properties are declared.

3.3 Problem 3: Embed on First Occurrence

Node objects are embedded on their last occurrence (i.e. the embedding rule

”@embed”: ”@last”) unless explicitly defined otherwise in a frame.

Consequently, the result of reverse framing may not contain an explicitly

expressed chain of full-length (i.e. longest hierarchy) if some element in the

reverse chain appears later in the result. In order to overcome this deficiency, the

embedding rule of @always could be applied, but then each referenced node and

its subtree would be repeated in the result.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 81 –

3.4 Problem 4: Advanced Filtering

The Framing Algorithm supports filtering based on strict-typing and duck-typing

[17], [23]. The first type of filtering uses values of @type for matching. In its

absence, filtering of nodes is based on matching included properties. Reverse

framing is performed in conjunction with filtering, meaning that the framing

process results in an array of node objects that satisfy filtering conditions and may

also be roots of a reverse tree hierarchy if a node is related to some other nodes

with reverse properties given in a frame. Some of these node objects may already

be subtree roots in other reverse tree hierarchies, so there is a need to filter them

out. In this way, a resulting framed output would contain only reverse tree

hierarchies of full-length.

4 Solution

In order to address the identified problems, the authors propose extensions to the

JSON-LD frame definition and the JSON-LD Framing Algorithm.

4.1 The Extended Frame

4.1.1 Recursive Application of Reverse Properties

By this proposal each reverse property is defined in the top-level frame of a

JSON-LD frame. Each reverse property is applied recursively, meaning that they

are all implicitly passed to any subframe (i.e. using the similar approach applied

for object embed flags, the explicit inclusion flag and the require all flag). At the

same time, a reverse property can be overridden in a subframe and as such passed

to its subframes. In this way, deeply nested reverse properties are avoided in a

frame.

4.1.2 Definition of Prioritized Reverse Properties

Problem 2 described in the previous section, regarding the order in which inverse

relationships are applied, can be overcome if the order was explicitly declared. For

this reason, a frame definition of a reverse property is extended with a new

@priority framing keyword (e.g. children in Listing 3). The priority of a reverse

property is defined with a number value of the @priority keyword (a lower value a

higher priority). If the priority is not defined for a reverse property, a default

priority is determined by the Expansion Algorithm. A priority does not determine

the order in which relationships appear in a resulting tree layout because the

layout is compacted using a context included in a frame.

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 82 –

4.1.3 Definition of a New Embedding Rule - First

The authors consider the embedding of node objects on their first occurrence in a

JSON-LD graph as equally important to other alternatives. When used with

recursive reverse framing it allows for the creation of tree hierarchies of full-

length, while leaving node references to already traversed nodes. Therefore, a new

value of the @embed framing keyword is proposed, defined with the @first object

embed flag. Listing 3 illustrates how the new flag is used in a frame to globally

define that node objects are embedded on their first occurrence.

4.1.4 Definition of Hierarchy Roots

In order to keep only the tree hierarchies of full-length in resulting framed outputs

the authors introduce the @reverseRoots framing keyword (Listing 3). This

keyword acts as a flag. The value of the @reverseRoots keyword is boolean.

Setting its value to true enables filtering. If @reverseRoots is not specified, its

value defaults to false.

{
 "@context" : {
 "ex" : "http://example.com/",
 "employees" : {"@reverse" : "ex:employeeOf"},
 "children" : {"@reverse" : "ex:childOf"}
 },
 "@type": "ex:Person",
 "@embed": "@first",
 "@reverseRoots": true,
 "employees": {"@priority" : 1},
 "children": {"@priority" : 2}
}

Listing 3

Example of Extended JSON-LD Frame

4.2 The Extended Framing Algorithm

The Extended Framing Algorithm (EFA) represents an extension of the Framing

Algorithm [8] which supports the proposed, extended frame definition. In addition

to the existing framing capabilities, it creates a tree hierarchy on each filtered node

based on multiple prioritized reverse properties provided in an input frame.

The very process of creating prioritized reverse tree hierarchies in a JSON-LD tree

layout can be split into two portions. The first portion of the EFA (Listing 4)

accepts an expanded JSON-LD input file (i.e. graph) and expanded frame (i.e.

frame) together with the global framing options. Essentially, this portion of the

overall algorithm initializes the parameters used in the second, recursive portion.

It includes:

 Initialization of the current state.

 Flattening of the input graph.

 Identification of relationships to be inverted from the input frame.

 Identification of graph nodes related with the identified relationships.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 83 –

 Identification of all hierarchy roots and non-blank roots of each identified

relationship based on the related nodes, and initialization of the current

state.

Identification of non-blank roots is important as it is expected by this

implementation that all blank (i.e. anonymous) nodes are embedded inside non-

blank (i.e. named) nodes in a created hierarchy. For this reason, based on the

identified hierarchy roots, if a root is a blank node, then its hierarchy is searched

downstream for the nearest appearance of non-blank descendants which become

new hierarchy roots.

function FRAME(graph, frame, options)
 state = CREATESTATE(options)
 fGraph = FLATTEN(graph)
 revRels = GETREVERSERELATIONSHIPS(frame)
 forEach node in fGraph do
 forEach revRel in revRels do
 if node has revRel then
 add node.id into revRel.domain
 add node.revRel.value into revRel.range
 forEach revRel in revRels do
 forEach id in revRel.range do
 if not id exists in revRel.domain then
 add id into revRel.roots
 forEach revRel in revRels do
 forEach id in revRel.roots do
 if ISBLANK(id) then
 descs = FINDNEARESTNBDESCS(id, revRel)
 add descs into revRel.nonBlankRoots

else
 add id into revRel.nonBlankRoots

 state.revRels = revRels
 state.subjects = fGraph.nodes
 return RecurFRAME(state, IDS(fGraph.nodes), frame, false, undefined)
end function

Listing 4

Extended Frame Algorithm – First Portion

The second, recursive portion of the EFA (pseudo-code in Listing 5) includes:

 Flag initialization using the current frame and state – flags ensure that a

property (namely embed, explicit, requireAll, reverse and reverseRoots) is

passed from the current frame to a subframe if the subframe does not

override it;

 Filtering of subjects that satisfy the current frame and flags (i.e. matches);

 Prioritization of matches using the identified non-blank roots – meaning

that non-blank root matches have precedence over the rest of the matches

that are sorted ascending by their ids;

 Each match is processed in the following way:

o A match is skipped if it is a top-level node that is already traversed

in another reverse hierarchy and only the hierarchies of full-length

are of interest;

o Depending on the current embed value and state, the way in which

the match is referenced in the output is determined or the framing

process is continued;

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 84 –

o Based on the content of the current frame, inverse relationships are

identified, ordered by their priorities and used to build a tree

hierarchy with the match as its root. For each relationship, the

match’s related nodes are prioritized and traversed recursively with

the appropriate subframe, taking care that the related node is

skipped if it is already traversed and hierarchies of full-length are of

interest. The match and related node are marked as traversed when

they are recursively processed;

o The match’s own properties are processed;

o Default properties, defined in the current frame, are processed;

o The output is set as a value of the current parent’s property;

o If the recursive framing of a top-level node is completed and

hierarchies of full-length are of interest, then all traversed nodes are

globally stored to be checked when a new top-level node is

processed.

function RecurFRAME(state, subjects, frame, parent, property)

flags = GETFLAGS(frame, state)
 matches = FILTERSUBJECTS(state, subjects, frame, flags)
 matches = PRIORITIZENONBLANKROOTS(matches, state, frame)

 forEach match in matches do
 if property == undefined and flags.reverseRoots and

match in state.traversedAll then
 continue

 output = create(match)
 if PROCESSEMBEDVALUES(flags.embed, state, output) then
 continue

 revRels = GETREVERSERELATIONSHIPS(frame)
 revRels = ORDERBYPRIORITY(revRels)

 forEach revRel in revRels do
 rs = GETRELATED(id, revRel)
 rs = PRIORITIZENONBLANKROOTS(rs, state, frame)
 implicitFrame = CREATEIMPLICITFRAME(flags)
 subframe = GETSUBFRAME(frame, revRel)
 subframe = MERGEFRAMES(implicitFrame, subframe)

 forEach r in rs do
 if subframe.reverseRoots and

r in state.traversed then
 continue

 RecurFRAME(state, r, subframe, output.reverse, revRel)

 if not id in state.traversed then
 add id into state.traversed
 if not r in state.traversed then
 add r into state.traversed
 PROCESSOWNPROPERTIES(match, flags, frame, output)
 PROCESSDEFAULTPROPERTIES(frame, output)
 ADDFRAMEOUTPUT(parent, property, output)

 if property == undefined and flags.reverseRoots then
 add state.traversed into state.traversedAll
end function

Listing 5

Recursive Portion of the Extended Frame Algorithm

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 85 –

5 Testing Methodology

Initial testing was conducted against the set of created new reverse API tests

included in the JSON-LD Test Suite provided with the implementation of the

Extended Framing Algorithm [24]. These tests basically validate a framed output

against the expected output for a given input and frame.

For the detailed testing, the authors searched for convenient data sources that are

sufficiently large and complex to evaluate the proposed extensions providing at

the same time verifiable results. The CIM Profiles which are part of the CGMES

defined by the European Network Transmission System Operators for Electricity

[14] (ENTSO-E) were chosen as the testing data source. These profiles were used

for the 5
th

 interoperability tests conducted by the European Transmission System

Operators (TSO) in 2014.

In order to clarify the connections between input and output data, the following

terms are defined:

 CIM Profile – a subset of CIM classes, properties and associations

including CIM extensions. It may be defined using the CIM RDF

Schema [25].

 CIM RDF Schema – an IEC standard, which relies on the subset of RDF

classes and properties and set of CIM RDF Schema extensions [25].

 RDF/XML – an XML syntax for RDF graphs.

 CIMXML model exchange format – an IEC standard, defines a CIM

Profile serialization using the RDF/XML [26].

CIMXMLs of the ENTSO-E CIM Profiles were used as a starting data source in

two test scenarios. In the first test scenario, the profiles were transformed into

JSON-LD syntax and used as a testing input. As a CIM Profile does not contain

blank nodes related with RDFS properties, it was decided to conduct additional

testing using the representation of CIM Profiles in a more expressive OWL 2 (the

latest version of OWL). For this reason, the profiles were mapped into the OWL 2

representation in RDF/XML syntax, transformed into JSON-LD syntax

afterwards, and as such used as a testing input in the second test scenario. In both

test scenarios, the same input frame is applied to create a CIM Profile tree

hierarchy.

5.1 The RDFS Test Scenario

In this scenario, the CIMXML files containing the RDFS representation of CIM

Profiles were used as a starting data source. Those files were converted into

JSON-LD syntax since both RDF/XML and JSON-LD are capable to serialize an

RDF graph. The translation was done using the RDF Translator [27]. The frame

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 86 –

shown in Listing 6 was used together with a translated CIM Profile as an input to

the Extended Framing Algorithm.

5.2 The OWL 2 Test Scenario

Based on the authors’ previous experiences (an analysis of CIM Profile

conversion into OWL was presented in reference [28]), a custom converter was

implemented in order to transform CIMXML of CIM Profiles into the OWL 2

format. The conversion was accomplished in the following steps:

 RDFS class and property constructs were transformed into corresponding

OWL 2 class and property constructs (i.e. rdfs:Class into owl:Class;

rdfs:Property into owl:DatatypeProperty or owl:ObjectProperty

depending on a relation designated by rdfs:Property).

 The RDFS extensions (i.e. constructs that share cims namespace) were

transformed into corresponding OWL 2 constructs where possible.

cims:multiplicity was replaced with OWL object and data property

restrictions, cims:inverseRoleName was mapped to owl:inverseOf, and

cims:dataType was replaced with rdfs:range of an

owl:DatatypeProperty.

 The rest of the RDFS extensions (namely, cims:AssociationUsed,

cims:stereotype, cims:isFixed, cims:ClassCategory and

cims:belongsToCategory) were preserved as meta data of defined classes

and properties.

 Classes that model primitive datatypes, such as String, Date, Integer, etc.,

were skipped and corresponding data types from XML Schema

Definition (XSD) namespace were used instead.

In addition to the subset of RDF properties applied in CIM RDFS, the authors

used rdfs:isDefinedBy property to designate that each defined owl:Class,

owl:DatatypeProperty and owl:ObjectProperty is defined by the created

owl:Ontology. In this way, one more hierarchical level was created in the CIM

profile ontology compared to the corresponding profile RDF Schema.

The created CIM Profiles in OWL2 form were validated in Protégé ontology

editor (Figure 1). JSON-LD serialization of a CIM Profile is used as an input in

the Extended Framing Algorithm together with the frame shown in Listing 6 (see

5.3).

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 87 –

Figure 1

OntoGraph Vizualization of Topology Profile Ontology in Protégé

5.3 Test Frame

The input frame (Listing 6) shapes the initially provided JSON-LD document into

hierarchy trees starting from an ontology or class, groups related classes and

properties, embeds subclasses based on their inheritance relationship, groups all

properties that belong to a class. It ensures that a hierarchy tree is not a subtree of

another tree that only explicitly declared properties are included in the output and

that node objects are embedded when they are first encountered. The same

resulting framed output can be achieved by creating a simpler frame in each test

scenario. For instance, in the RDFS test scenario OWL constructs and inverse

rdfs:isDefinedBy property can be avoided in the frame. However, the authors

wanted to keep the same input frame not affecting the framing process. At the

same time, the results of such framing served as a confirmation of properly

implemented profile conversion.

{
 "@context": {
 // owl, rdf, rdfs, xsd, cim, entsoe, tp, ...
 "children": { "@reverse": "rdfs:subClassOf", "@container": "@set"},
 "properties": { "@reverse": "rdfs:domain", "@container": "@set"},
 "defines": { "@reverse": "rdfs:isDefinedBy", "@container": "@set"}
 },
 "@type": ["owl:Ontology", "rdfs:Class", "owl:Class"],
 "@embed": "@first",
 "@reverseRoots": true,
 "@explicit": true,
 "defines": {
 "@priority": 1,
 "@type": ["owl:Class", "owl:DatatypeProperty", "owl:ObjectProperty"]},
 "children": {
 "@priority": 2,
 "@type": ["rdfs:Class", "owl:Class"]},
 "properties": {
 "@priority": 3,
 "@type": ["rdf:Property", "owl:ObjectProperty", "owl:DatatypeProperty"]}
}

Listing 6

Frame for CIM Profiles

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 88 –

6 Results and Discussion

The performance testing of the Extended Framing Algorithm implementation

based on forked version of jsonld.js, available at [24], was conducted on a

computer with an Intel Core i5-4300M/2.60 GHz CPU with 16 GB of RAM and

500 GB HDD running Microsoft Windows 8.1 Enterprise (64-bit) with Node

v6.8.1. The testing was done in two scenarios, where 1000 iterations of the

framing were executed for each file, and an average time was calculated.

Tables 1-2 present model metrics of the input and output data, and average

framing times in RDFS and OWL 2 test scenarios, respectively.

Table 1

Data ModelMetrics per ENTSO-E CIM Profile document in RDFS

Profiles

Input Output

#
C

la
ss

es

#
P

ro
p

e
rt

ie
s

#
T

ri
p

le
s

S
iz

e

[b
y

te
s]

#
T

ri
p

le
s

S
iz

e

[b
y
te

s]

#
H

ie
ra

rc
h

y

tr
ee

s

L
o

n
g

es
t

h
ie

ra
rc

h
y

[l
en

g
th

]

A
v

er
ag

e

fr
am

in
g

ti
m

e
[m

s]

GeographicalLocation 10 23 240 25332 58 5015 6 2 6.981

TopologyBoundary 10 28 284 32533 67 5680 7 2 8.075

Topology 18 31 355 36790 88 7085 8 3 10.182

DiagramLayout 21 46 585 58819 118 8789 14 3 15.769

EquipmentBoundary 25 39 567 59392 116 9517 10 5 15.583

StateVariablesProfile 33 63 770 74973 166 11775 24 3 21.362

SteadyStateHypothesis 75 84 1232 125892 292 24728 24 7 35.453

EquipmentProfileCore 177 412 4483 444497 1107 85889 69 7 171.210

EquipmentProfileCore-

ShortCircuit
183 399 4417 448550 1093 86127 69 7 154.307

EquipmentProfileCore-

Operation
222 417 4799 480497 1207 90106 69 7 187.640

EquipmentProfileCore-

ShortCircuitOperation
226 624 6451 633842 1629 126640 69 7 281.026

Dynamics 252 2802 21655 2057966 6067 440244 39 7 1233.987

In order to have better understanding of results, input and output files of both test

scenarios are compared and analyzed. The OWL 2 representation of profiles has a

slightly smaller number of defined classes due to usage of XSD primitive data

types when compared with RDFS representation, while the number of properties

is the same. A conversion of CIM Profile representation in RDFS into OWL 2 had

a significant impact on number of triples in OWL 2 profiles as some RDFS

extensions are represented with several triples in OWL 2 (e.g. cims:multiplicity

into OWL 2 restrictions). The number of triples in OWL 2 representation is

increased for ~48.9% on average in comparison with the RDFS representation,

while the size of the input file is increased for ~24.9% on average.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 89 –

Table 2

Data Model Metrics per ENTSO-E CIM Profile document in OWL 2

Profiles

Input Output

#
C

la
ss

es

#
P

ro
p
e
rt

ie
s

#
T

ri
p
le

s

S
iz

e

[b
y
te

s]

#
T

ri
p
le

s

S
iz

e

[b
y
te

s]

#
H

ie
ra

rc
h
y

tr
ee

s

L
o
n
g
es

t

h
ie

ra
rc

h
y

[l
en

g
th

]

A
v
er

ag
e

fr
am

in
g

ti
m

e
[m

s]

GeographicalLocation 7 23 334 30019 59 5635 1 3 8.854

TopologyBoundary 7 28 404 36236 69 6389 1 3 10.512

Topology 16 31 500 43085 93 8100 1 4 13.612

DiagramLayout 16 46 867 72747 123 9987 1 4 22.829

EquipmentBoundary 20 39 821 69265 119 10738 1 6 22.477

StateVariablesProfile 29 63 1158 95947 183 13744 1 4 32.877

SteadyStateHypothesis 70 84 1795 155311 307 28066 1 8 54.195

EquipmentProfileCore 169 412 6830 574211 1161 98731 1 8 311.856

EquipmentProfileCore-

ShortCircuit
175 399 6745 584335 1143 99826 1 8 273.016

EquipmentProfileCore-

Operation
214 417 7235 617918 1261 104570 1 8 343.537

EquipmentProfileCore-

ShortCircuitOperation
218 624 9882 854579 1683 148120 1 8 522.892

Dynamics 247 2802 36035 2833795 6097 509551 1 8 2441.795

The number of output triples in OWL 2 representation is increased for ~4.2% on

average when compared with its counterpart in RDFS representation, while the

size of an output file is increased for ~14.6% on average. This is the consequence

of the introduced rdfs:isDefinedBy property and conversion of rdfs:Property into

owl:DatatypeProperty and owl:ObjectProperty. The number of hierarchy trees in

each OWL 2 output is one, as there is a single ontology root object that defines all

class and property node objects in contrast to the corresponding RDFS output in

which each hierarchy tree has a class as a root object. This is illustrated in Figure

2 in which the JSON Tree Viewer web component displays the frames of the

Topology Profile in RDFS and OWL 2 respectively. At the same time, this is a

good example how JSON-LD Framing is used to shape input data to ease further

JSON to DOM rendering. The length of the longest hierarchy tree in a framed

OWL 2 profile was one level longer than the length of the corresponding RDFS

counterpart.

As for the average framing time (later referred to as framing time), Figure 3

illustrates how it relates to other measured values. Figure 3 (a) shows the linear

dependence of framing time (presented in a logarithmic scale) with respect to the

number of ontology, class and property triples in both test scenarios. Framing time

was slightly longer in OWL 2 case. The reason for this was the greater number of

other types of triples in input files which is confirmed with results shown in

Figure 3 (b). Also, Figure 3 (b) shows that the framing time advances with a linear

dependence of the number of input triples in both test scenarios. Similarly, Figure

3 (c) shows the linear dependence of framing time with respect to input file size in

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 90 –

both test scenarios. As for the number of output triples in both scenarios, shown in

Figure 3 (d), it is nearly the same since RDFS output contains some triples that

were related to defined primitive data types which were removed from OWL 2

input, while in the OWL 2 input a rdfs:isDefinedBy relationship was introduced

and preserved in the output triples (Figure 2). It should be noted that there is a

linear dependence between data shown in Figure 3 (a) and Figure 3 (d) as the

output contains ontology, class, property triples together with reverse property

triples. The linear dependence was present between output file sizes and framing

time in both test scenarios as well Figure 3 (e), which is the consequence of the

size of input files, Figure 3 (c).

Figure 2

JSON Tree View of TopologyProfile in RDFS (left) and OWL 2 (right)

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 91 –

Figure 3

(a) Number of Input Ontology, Class and Property Triples vs. Framing Time,

(b) Number of Input Triples vs. Framing Time, (c) Input File Size vs. Framing Time,

(d) Number of Output Triples vs. Framing Time, (e) Output File Size vs. Framing Time

Conclusion

This paper extends the existing JSON-LD Framing specification with recursive

prioritized reverse framing. Defined extensions allow definition of a frame which

can be applied on an arbitrary number of input files regardless of the length of a

reverse hierarchy chain of the given inverse relationship from the frame.

Otherwise, a custom suited frame must be created for each input file. It also

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 92 –

allows combination of multiple inverse relationships in reverse tree hierarchies

based on defined priorities, which the authors find suitable for grouping of related

nodes using different inverse relationships. The set of existing embedding rules is

extended with a new rule which enables embedding of node objects on their first

occurrence. This rule, when combined with recursive reverse framing, enables

creation of reverse tree hierarchies of full-length. Additionally, one of the

proposed extensions enables filtering of such reverse tree hierarchies.

The proposed Extended JSON-LD Framing Algorithm is designed and

implemented, and results of its application on a set of complex RDFS vocabularies

and OWL 2 ontologies, using a single frame, are analyzed showing overall linear

dependence of the number of input triples with respect to framing time when

multiple inverse relationships are defined in a frame. The framing applied in the

test scenarios shows how an arbitrary ontology can be transformed into a tree and

used as input for other processes as well as how framing can be used in the

validation of properly implemented RDFS into OWL 2 conversions on the

examples of ENTSO-E CIM Profiles.

The future work is intended towards research of more advanced property value

filtering (e.g. a property value equal to, less than, greater than some value) that

could be used in conjunction with recursive prioritized reverse framing.

Acknowledgment

We would like to thank to our colleagues from Schneider Electric DMS NS LLC

Novi Sad, Serbia for their support.

References

[1] U. Aguilera, O. Peña, O. Belmonte, and D. López-de-Ipiña, “Citizen-

centric data services for smarter cities,” Futur. Gener. Comput. Syst., pp. 1-

14, 2016.

[2] M. Lanthaler and C. Gütl, “Model Your Application Domain, Not Your

JSON Structures,” in Proceedings of the 4
th

 International Workshop on

RESTful Design WSREST 2013 at the 22
nd

 International World Wide Web

Conference WWW2013, 2013, pp. 1415-1420.

[3] M. Lanzenberger, J. Sampson, and M. Rester, “Ontology Visualization:

Tools and Techniques for Visual Representation of Semi-Structured Meta-

Data,” J. Univers. Comput. Sci., Vol. 16, No. 7, pp. 1036-1054, 2010.

[4] B. Fu, N. F. Noy, and M.-A. Storey, “Indented Tree or Graph? A Usability

Study of Ontology Visualization Techniques in the Context of Class

Mapping Evaluation,” in Proceedings of the 12th International Semantic

Web Conference - Part I, 2013, pp. 117-134.

[5] E. S. Alatrish, “Comparison of Ontology Editors,” e-RAF J. Comput., Vol.

4, pp. 23–38, 2012.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 93 –

[6] K. Machová, J. Vrana, M. Mach, and P. Sinčák, “Ontology evaluation

based on the visualization methods, context and summaries,” Acta

Polytech. Hungarica, Vol. 13, No. 4, pp. 53-76, 2016.

[7] M. Lanthaler and C. Gütl, “On using JSON-LD to create evolvable

RESTful services,” in Third International Workshop on RESTful Design,

2012, No. April, pp. 25-32.

[8] M. Sporny, G. Kellogg, D. Longley, and M. Lanthaler, “JSON-LD Framing

1.1 An Application Programming Interface for the JSON-LD Syntax,”

Draft Community Group Report 04 October 2016, 2016. [Online].

Available: http://json-ld.org/spec/latest/json-ld-framing/. [Accessed: 06-

Oct-2016].

[9] D. Longley, G. Kellogg, M. Lanthaler, and M. Sporny, “JSON-LD 1.0

Processing Algorithms and API, W3C Recommendation 16 January 2014,”

W3C, 2014. [Online]. Available: https://www.w3.org/TR/json-ld-api/.

[Accessed: 24-Feb-2016].

[10] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström,

“JSON-LD 1.0, A JSON-based Serialization for Linked Data, W3C

Recommendation 16 January 2014,” W3C, 2014. [Online]. Available:

https://www.w3.org/TR/json-ld/. [Accessed: 26-Feb-2016].

[11] W3C, “RDF Current Status,” 2016. [Online]. Available:

https://www.w3.org/standards/techs/rdf#w3c_all. [Accessed: 24-Nov-

2016].

[12] J. Weaver and P. Tarjan, “Facebook Linked Data via the Graph API,”

Semant. Web, Vol. 4, No. 3, pp. 245-250, 2013.

[13] K. Furdík, M. Tomášek, and J. Hreňo, “A WSMO-based framework

enabling semantic interoperability in e-government solutions,” Acta

Polytechnica Hungarica, Vol. 8, No. 2, pp. 61-79, 2011.

[14] Schema.org, “About Schema.org,” Schema.org, 2014. [Online]. Available:

https://schema.org/docs/faq.html. [Accessed: 13-May-2016].

[15] P. Mika, “On Schema.org and Why It Matters for the Web,” IEEE Internet

Comput., vol. 19, no. 4, pp. 52–55, Jul. 2015.

[16] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström,

“JSON-LD Implementation Report,” json-ld.org, 2015. [Online].

Available: http://json-ld.org/test-suite/reports/.

[17] M. Sporny, G. Kellogg, D. Longley, and M. Lanthaler, “JSON-LD Framing

1.0, An Application Programming Interface for the JSON-LD Syntax,”

W3C Community Group Draft Report, 2012. [Online]. Available:

http://json-ld.org/spec/ED/json-ld-framing/20120830/. [Accessed: 03-Mar-

2016].

[18] M. Sporny and D. Longley, “Web Payments HTTP Messages 1.0 W3C

K. Nenadić et al. Extending JSON-LD Framing Capabilities

 – 94 –

First Public Working Draft 15 September 2016,” W3C, 2016. [Online].

Available: https://www.w3.org/TR/webpayments-http-messages/.

[Accessed: 30-Dec-2016].

[19] R. Sanderson, P. Ciccarese, and B. Young, “Web Annotation Vocabulary

W3C Candidate Recommendation 22 November 2016,” 2016. [Online].

Available: https://www.w3.org/TR/annotation-vocab/. [Accessed: 27-Nov-

2016].

[20] T. Kim, S. Campinas, R. Delbru, H. Jung, and S.-P. Choi, “High

Performance Indexing of Materialized Graph Views,” in Proceedings of the

12
th

 International Conference on Business Innovation and Technology

Management, 2013, pp. 1-7.

[21] T. Johnson, “Indexing Linked Bibliographic Data with JSON-LD,

BibJSON and Elasticsearch,” Code4Lib J., No. 19, pp. 1-11, 2013.

[22] K. Nenadić, M. Letić, M. Gavrić, and I. Lendak, “Rendering of JSON-LD

CIM Profile Using Web Components,” in Proceedings of the 14
th

International Symposium on Intelligent Systems and Informatics (SISY),

2016.

[23] G. Kellogg, “More specific frame matching #110,” GitHub, 2012. [Online].

Available: https://github.com/json-ld/json-ld.org/issues/110. [Accessed: 01-

Jun-2016].

[24] K. Nenadić, “Fork of jsonld.js with Recursive Prioritized Embedding Using

@reverse,” 2016. [Online]. Available:

https://github.com/knenadic/jsonld.js.

[25] IEC, “Energy management system application program interface (EMS-

API) - Part 501: Common Information Model Resource Description

Framework (CIM RDF) Schema. IEC 61970-501.” 2006.

[26] IEC, “Energy management system application program interface (EMS-

API) - Part 552: CIMXML Model exchange format. IEC 61970-552.”

2013.

[27] A. Stolz, B. Rodriguez-Castro, and M. Hepp, “RDF Translator: A RESTful

Multi-Format Data Converter for the Semantic Web.” 2013.

[28] K. Nenadić and M. Gavrić, “Enhancing CIM with Linked Data Capability,”

in Proceedings of the 24
th

 Telecommunications Forum (Telfor), 2016.

