
Acta Polytechnica Hungarica Vol. 16, No. 8, 2019

A DVRK-based Framework for Surgical
Subtask Automation

Tamás D. Nagy1 and Tamás Haidegger1,2

1Antal Bejczy Center for Intelligent Robotics, Óbuda University, Bécsi út 96/b,
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Abstract: Robotic assistance is becoming a standard in Minimally Invasive Surgery.
Despite its clinical benefits and technical potential, surgeons still have to perform manu-
ally a number of monotonous and time-consuming surgical subtasks, like knot-tying or
blunt dissection. Many believe that the next bold step in the advancement of robotic
surgery is the automation of such subtasks. Partial automation can reduce the cogni-
tive load on surgeons, and support them in paying more attention to the critical elements
of the surgical workflow. Our aim was to develop a software framework to ease and
hasten the automation of surgical subtasks. This framework was built alongside the Da
Vinci Research Kit (DVRK), while it can be ported onto other robotic platforms, since
it is based on the Robot Operating System (ROS). The software includes both stereo
vision-based and hierarchical motion planning, with a wide palette of often used surgi-
cal gestures—such as grasping, cutting or soft tissue manipulation—as building blocks to
support the high-level implementation of autonomous surgical subtask execution routines.
This open-source surgical automation framework—named irob-saf—is available at
https://github.com/ABC-iRobotics/irob-saf.

Keywords: robot-assisted minimally invasive surgery; surgical robotics; subtask automa-
tion; open-source platform

1 Introduction
In the last few decades, the headway of Minimally Invasive Surgery (MIS) had
a significant influence on surgical practice. Contrary to traditional procedures
performed using large incisions, MIS is executed through few-centimeter-wide
ports, using so-called laparoscopic instruments, while the surgeon observes the
area of operation via endoscopic camera stream. The smaller incisions required
by the MIS technique have a number of benefits for both the patient and the
hospital; causing less trauma and lowering the risk of complications. MIS also
shortens recovery time and hospital stay. Nevertheless, this technique presents
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serious cognitive and ergonomic challenges to the surgeons, like the limited range
of motion, or weary positions.

The next step in the evolution of MIS was the introduction of teleoperated master–
slave surgical systems. The fundamental idea of teleoperated surgery originates
from space research [1]; the patient—in this case an astronaut—was to be treated
by a slave device controlled by a remote surgeon, sitting at a master device on
Earth. On the slave side, robot arms hold laparoscopic instruments, and copy the
movement of the surgeon at the master console. To ensure visual feedback, the
slave side device is equipped with an endoscopic camera, whose video stream is
also sent to the master device and displayed to the surgeon.

Primarily due to the issues caused by time delay and system complexity, the idea
of long distance telesurgery has not become a daily practice, and stalled in the
state of research and pilots. Nevertheless, communication latency can be reduced
to an insignificant level when the master and the slave devices are close to each
other. Commercial Robot-Assisted Minimally Invasive Surgery (RAMIS) was
born along this idea, where the master and the slave devices are in the same room.
These systems are able to ease the fatigue of the surgeon, since they can operate
in a comfortable, seated position, in a more ergonomic environment. Moreover,
the motion of the surgeon is scalable, which means that the most delicate and fine
maneuvers can be controlled by relatively large hand movements.

Undoubtedly, the most successful RAMIS device is the da Vinci Surgical System
(Intuitive Surgical Inc., Sunnyvale, CA). Its 1st generation was cleared by the
U. S. Food and Drug Administration in 2000, and became a commonly used
device in a few years. Today, the 4th generation—da Vinci Xi—is available,
while the more affordable alternative X, and the Single Port solution (SP) is also
in the product portfolio of the company (Fig. 1). More than 5500 da Vinci units
are installed worldwide that performed around 1 million procedures last year [1].

2 Da Vinci Research Kit
In the mid-2010s, the 1st generation of the robot (the da Vinci classic) was sent
to retirement, since those were impractical to be serviced and supplied anymore.
Nevertheless, the retired da Vincis were still functional, and could be well used
in more failure-tolerant applications, like research. The development of the Da
Vinci Research Kit (DVRK) was started at the Johns Hopkins University, and in
a few years, an active community has gathered with more than 30 setups world-
wide [2].

The DVRK consists of open-source, custom-built hardware controllers and soft-
ware elements to make possible the programming of the attached da Vinci arms.
The controllers of DVRK are built from two custom boards, an IEEE-1394 FPGA
board and a Quad Linear Amplifier (QLA); these provide the computational
power and low latency communication required for the low-level high-frequency
robot control. The controller boxes are interfaced to PC using IEEE 1394a
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Figure 1
The 4 generations of the da Vincy Surgical System; a) da Vinci Classic, b) da Vinci S, c)
da Vinci Si and d) da Vinci Xi, completed with the most recent e) X and f) SP systems.

Image credit: Intuitive Surgical Inc.

(FireWire); one of the controllers have to be connected directly to the PC, then
this controller is able to manage the communication of further controllers in a
daisy chain. On the PC side, the open-source cisst libraries [3] are for the mid-
level control and FireWire communication, built by Catkin build system. These
libraries themselves offer the functionality to the programming of the robot, how-
ever, a ROS interface was also implemented; more than half of the research insti-
tutes use the latter for the programming of the da Vinci [4].

ROS is used commonly in robotics, mainly in the field of research, and most of
the research centers working with the DVRK, or the RAVEN platform [4], rely on
ROS. Beyond the compatibility with the mentioned platforms, ROS is quite pow-
erful, offering built-in solutions for a number of problems e.g., accessing sensory
data, calibrating stereo-cameras, and enabling highly modular development.
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3 Subtask Automation in Surgery
Many believe that the next step in the technical development of RAMIS is going
to be partial (or conditional) automation [5]. The surgical workflow of RAS
procedures often contains time-consuming and monotonous elements—so-called
surgical subtasks—like suturing, knot-tying, or blunt dissection. The automation
of these subtasks can reduce the fatigue and the cognitive load on the surgeon,
who can hence pay more attention to the more critical parts of the intervention
[6].

As the development of the technological background in the last couple of years
offers a rising potential, like deep learning or mechatronics, the automation of
surgical subtasks became a prevailing topic in the research of surgical robotics.
A number of autonomous surgical subtasks are already implemented, or being
currently developed by various research groups. A list of relevant subtasks in the
research of surgical automation is compiled in Table 1.

Table 1
List of surgical subtasks from the aspect of suitability for partial automation.

Subtask Sensor in-
tegration

Experimental
environment

Compl-
exity

Clinical
relevance Ref.

shape cutting stereo
camera

gauze patch,
FRS Dome1 medium high [7]

suturing stereo
camera

silicone,
foam, FRS
Dome

high high [8]

ligation – special
phantom medium high [9]

palpation force
sensor

special
silicone phan-
tom, FRS
Dome

medium medium [10]
[11]

tumor
palpation and
resection

force
sensor

special
silicone phan-
tom, FRS
Dome

high medium [12]

debridement stereo
camera tiny objects medium high [13]

[14]
suction and
debridement – special

phantom medium high [15]
bowel
anastomosis 3D camera porcine bowel high high [16]

1 Florida Hospital Nicholson Center, Celebration, FL
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blunt
dissection

stereo
camera

sandwich-
like silicone
phantom

medium high [17]
[18]

tissue
retraction

stereo
camera

silicone
phantom low high [19]

peg transfer stereo
camera

training
phantom medium low [20]

The automation of a number of subtasks are currently under active research, such
as different aspects of suturing, soft tissue cutting, debridement, palpation or
blunt dissection, employing techniques like learning-by-observation, motion de-
composition and state machines [7–20].

Figure 2
Recently automated surgical subtasks. a-c) Multilateral cutting, d) tumor palpation and e)

resection, debridement. Image credit: [7, 12, 14].

All of the mentioned surgical subtasks are to be performed on soft tissue, in a
highly deformable environment. In contrast to subtasks involving hard tissue,
like bone cutting, where the target organ can be fixed and registered with the sur-
gical device via a navigation system, soft tissue presents new challenges from the
aspect of automation, as the robot has to operate in unpredictable environment.
Probably the biggest challenge is the development of perception algorithms; it
is not trivial how the information, needed for the execution of the current sub-
task can be extracted from the surrounding soft, specular environment. Despite
the fact that working implementations could be found e.g., on instrument seg-
mentation/pose estimation [21, 22] or organ segmentation and 3D reconstruc-
tion [23–25], autonomous navigation inside the patient’s body still presents a
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huge challenge being under intensive research. As of today, shared control is
a more viable option for these clinical routines [26, 27]. Furthermore, the gen-
eration of required motion patterns and the design of control methods for the
manipulation of unknown soft tissues is also problematic [28].

Our aim was to develop an open-source framework to support such development
projects; to provide software packages that contains already implemented basic
functionalities, eventually becoming universal building blocks in surgical subtask
automation [20]. The architecture of this software package—the iRob Surgical
Automation Framework, or irob-saf—is presented herein.

4 Materials and Methods
One of the fundamental tasks in the development of this surgical automation
framework was the hierarchical decomposition of surgical motion patterns. The
workflow of surgical interventions, as well as the motion of the surgeon, can
be decomposed into elements on different levels of granularity [29–31], similar
to behavior trees [32]. In the literature, there are several different definitions
of some granularity levels, nevertheless, no consistent definition can be found
for the whole domain. To decompose surgical motion and implement partial
automation, it is necessary to define these levels as precisely as possible. For that
manner, we defined the levels of granularity—according to the current state of
research—as follows (Fig. 3):

1. Operation: The entire invasive part of the surgical procedure.

2. Task: Well delimited surgical activity with a given high-level target/goal
to achieve.

3. Subtask: Circumscribed activity segments that accomplish specific minor
landmarks in completing the surgical task.

4. Surgeme: An atomic unit of intentional surgical activity resulting in a
perceivable and meaningful outcome.

5. Motion primitive: General elements of motion patterns, that can be di-
rectly translated into robot commands.

In most studies, the granularity level chosen for surgical automation is the level
of subtasks (Table 1). The execution of those subtasks usually leads to the ac-
complishment of a specific milestone, which is in line with the term of partial
automation. Subtasks can be further divided into surgemes, which are universal
to different subtasks. Thus, from the viewpoint of automation, different subtasks
can be built of a set of universal surgemes. Those thoughts lead to the assembly
of a motion library (irob-saf ), containing a set of universal surgeme implemen-
tations.

To build this motion library, a number of surgical subtasks had to be decomposed
into a set of universal surgemes. For that purpose, several features and events
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Figure 3
Overview of surgical motion’s granularity levels. Mapping of an example, Laparoscopic

Cholecystectomy procedure onto different granularity levels [17, 20].

were defined that separates subsequent surgemes from one another. A prime one
is the overall shape of motion; this distinguishes for example the cutting from free
navigation. Another important feature is the presence of tissue interaction during
the surgeme; the instrument can move freely in the abdomen, it can grasp a loose
piece of tissue, or even manipulate a tissue layer anchored to the anatomy. If
the type of tissue interaction changes during the subtask execution, it will surely
means the transition to another surgeme. The final aspect of decomposition was
the instrument required to be used during the procedure, e.g., a grasping surgeme
might not be performed using scissors, and a cutting might not be done using
grasping tools.

5 The Architecture of the Framework
The ROS platform—used widely in robotics—offers solutions to build modular,
reusable software on a large scale. A ROS-based architecture consists of so-
called nodes, intercommunicating with each others over channels of three types:

• Topic: continuous data streaming

• Service: request–response type communication with blocking behavior,
has benefits for e.g. requesting calculations

• Action: request–response type communication with non-blocking behav-
ior, useful for environmental interactions.

Due to its benefits, the irob-saf framework was completely built on ROS,
and tailored to be usable alongside the DVRK. However, due to the implemented
ROS interface, the framework is easily portable to other platforms. A system,
performing a surgical subtask autonomously, can be assembled from the nodes
of irob-saf based on the principle shown in Fig. 4. Sensors and perception
algorithms, directed by ROS nodes, are used for the purpose of the measurement
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Figure 4
The control scheme of partial automation offered by the framework. Perception nodes
gather information from the environment. The subtasks-level logic contains the whole
workflow of the subtask, processes the incoming information, and also communicates

with the surgeon. This node also sends commands to the hierarchical set of nodes,
appointing the surgemes to be executed. The generated motion is executed by the robot

under permanent monitoring of the surgeon.

and estimation of the properties of the environment. The information gained,
including errors eventually, are all channeled into the subtask-level logic node.
This node is responsible for the processing of the information regarding the en-
vironment, and the commands originating from the surgeon. Additionally, the
surgical workflow is coded in this node; its elements are translated into surgemes
and sent to the surgeme server in the form of ROS actions. Propagating down
from the surgeme server, the robot motion is generated by a hierarchical net-
work of nodes, then sent to the robot (the ROS nodes from DVRK). Important to
note, due to the principle of partial automation, the permanent monitoring of the
surgeon is essential during the execution of the subtask.

Camera image is one of the most important sources of information in the automa-
tion of RAMIS. The usage of the endoscopic camera image is undoubtedly the
most obvious choice, since it does not require the placement of any additional in-
strument into the already crowded operating room. Nevertheless, in irob-saf,
the video stream—preferably stereo—can be provided by a wide range of cam-
eras as long as it is interfaced with a ROS topic. Examples interfaces for USB we-
bcameras and the stereo endoscope of the da Vinci are implemented in the frame-
work. The calibration of the cameras—either mono or stereo—is performed by
the built-in, easy-to-use camera calibration tool of the ROS environment, using a
checkerboard pattern [33]. Furthermore, the basic stereo image processing algo-
rithms, like disparity map calculation or the generation of the 3D point cloud are
also performed with one of the built-in libraries of ROS [34].

The algorithms usable for perception are out of scope of the current work, how-
ever, the framework offers a pre-built infrastructure to run those with the required
input and output channels. These algorithms can be built using C++, Python, or
even MATLAB. To ease development, the framework contains examples such as
the detection of ChArUco markers [35]. It is important to note that further sensor
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modalities, like force sensors, or RGB-D cameras can also be easily added to the
existing infrastructure.

The arms of the da Vinci surgical robot are interfaced with the framework by
high-level robot control nodes, one node per arm. These nodes are responsible
for executing the trajectories generated by higher level nodes, while checking for
errors originating from the robot. The trajectories are sent through ROS actions
instead of topics, which are more favorable in environmental interaction scenar-
ios. ROS actions makes it possible for the higher-level nodes to do further work
during action execution, e.g., monitoring the environment, or sending actions to
other nodes. Moreover, actions provide the ability to send feedback and the re-
sult of the action, or preempt the action with another, if any environmental change
makes it necessary, e.g. the location of the target was changed during execution.

The framework also offers solution for hand–eye calibration; namely the coordi-
nate systems of the arms can be registered to the camera coordinate frame, that
makes possible the generation of the robot motion relative to the camera. Visual
markers attached to the instruments are used to estimate the tool positions based
on the stereo camera stream. The hand–eye calibration can be performed using
a MATLAB script, that records tool positions in the robot coordinate frame (re-
ceived from DVRK through ROS) and in the camera coordinate frame (estimated
using the visual markers) simultaneously, in manually set positions. Based on
the recorded positions, the optimal rigid transformation is calculated between the
two coordinate systems [36–38]. The registration is then saved to a yaml file
(“YAML Ain’t Markup Language”), that is loaded by the corresponding high-
level robot control node, which thus able to receive position commands in the
camera coordinate frame from the higher-level nodes of the system.

These high-level robot control nodes are robot-specific, but their interface to the
other nodes of the framework is universal. This means that the usage of another
type of robot arm requires only the implementation of the high-level robot control
node itself.

The surgical motion library, mentioned in Section 4, containing the implemen-
tation of universal surgemes, can be found in the package irob_motion of
the framework. This surgeme library offering surgemes as parameterizable ROS
actions, such as: grasp, cut, place object, release object, navigate, dissect and
manipulate tissue. The implemented surgemes are able to do the necessary
safety checks, e.g., the proper instrument is used for the current surgeme. Further
surgemes can be implemented based on the existing ones, and then added to the
library.

The whole architecture is controlled by a subtask-level logic node. This node is
subtask specific, an individual node needs to be implemented for each different
surgical subtask. Here is where the information from the perception nodes is
received and processed; all the errors, exceptions of the system and user (surgeon)
interactions are also channeled; and the surgeme level motion commands are
generated. Subtask-level logic nodes are designed to contain and perform the
specific workflow of the current subtask. The framework offers skeletons and
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also examples how to implement such nodes for the specific surgical subtask. At
this level, behavior trees would offer a very structured representation of surgical
knowledge and workflow [32], and it is planned to utilize this model in the future
development of the framework.

6 Examples
The usage of the framework is explained through two examples on the automation
of subtasks. We decided to implement subtasks that require simpler perception
methods; those algorithms are out of scope of the current work. The automation
of a training exercise and an actual surgical exercise is presented in the following.

6.1 Automating peg transfer
The first example for automation is a RAS training exercise, peg transfer. During
this exercise, small tubes have to be placed from one peg to another, to enhance
the visuomotor skills of the surgeon (Fig. 5). This exercise is simple enough to
present how an autonomous subtask execution can be built using our framework.
One and two armed solutions were implemented of the peg transfer exercise.
During the one armed execution, the tubes are simply grasped and placed on
another peg by one PSM arm. In the two armed version, the tube is grasped and
lifted up from the peg from one PSM arm, then transfered to another PSM, that
places it on the target peg.

The position of the training board was estimated by the stereo camera stream of
the built-in endoscope of the da Vinci. The video stream was captured by a Deck-
Link Blackmagic (Blackmagic Design Pty. Ltd., Port Melbourne, VIC) card, and
forwarded to ROS using GStreamer [39]. The cameras were calibrated using
the ROS built-in camera_calibration package. The board was marked by
ArUco or ChArUco markers, that can be detected robustly by the camera, and can
be used to estimate the board’s position [35]. To start the nodes for computer
vision, the launching of two launch files from the irob_vision_support
package is necessary:

• cam_blackmagic_raw.launch: starts the node for streaming the
camera image from one of the da Vinci’s cameras

• charuco_detector.launch: for the pose estimation of the peg trans-
fer board based on a ChArUco marker.

The nodes responsible for the generation and execution of surgical motion are
operating at 4 different levels of hierarchy. The uppermost level is the level of
subtasks, with nodes of the irob_subtask_logic package. This level is
built on a single node, that contains the workflow of the subtasks, receives the
pose estimation of the peg transfer board, and chooses the surgemes for execu-
tion. The execution of surgemes is requested using ROS actions, that is sent to
the proper node in the lower level. The second level of hierarchy contains the im-

– 70 –



Acta Polytechnica Hungarica Vol. 16, No. 8, 2019

plementation of the universal surgemes. At this level, one surgeme server node is
launched for each arm operating, receiving ROS actions from the subtask level,
and sending ones to the lower, third level. This third level is responsible for the
high level control of the arms, and consists of robot server nodes; one such node
is responsible for the handling of one arm. These nodes accept ROS action com-
mands for robot movements, and are also connected to the appropriate DVRK
node at the fourth, lowermost level to execute the requested movements.

While the nodes of the three lower levels are universal for different subtasks, the
uppermost, subtask-level logic node is unique. This node contains the work-
flow, basically a sequence of surgemes to execute, however, in case of more
complex subtasks, a state machine implementation can be useful as well. The
motion—both in case of one and two armed solutions—is composed of only
three surgemes: grasp, place and release (Fig. 6). All surgemes of the frame-
work including these three, are built of two motion primitives: spatial navigation
of the instrument’s endpoint, and the movement of the instrument’s jaws. These
motion primitives can be described well by only a few parameters, and based on
the given parameters, the robot trajectories can be easily generated. These three
surgemes are built up as follows:

• Grasp:

1. navigate to approach position (waypoints can be added)

2. navigate to grasp position

3. close jaws

• Place:

1. navigate to approach position (waypoints can be added)

2. navigate to place position

• Release:

1. open jaws

2. navigate to leave position

The execution of those surgemes is requested by sending parameterized actions
for to the surgeme server representing the chosen arm. The parameters of those
surgeme action requests are calculated by the measured or estimated properties
of the environment, received from the computer vision module. Such parameters
can be the size of the object to grasp, the compression rate during grasping, or
the approach and grasp position of the instrument endpoint.

This hierarchy can be assembled by launching the following instances, in case of
two armed execution:

• peg_transfer_dual.launch from package irob_subtask_logic

• surgeme_server.launch from package irob_motion, in two in-
stances, parameterized for each arms
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Figure 5
The setup for the peg transfer exercise. The board is marked using a ChArUco marker for

image-based pose estimation.

• dvrk_server from package irob_robot, also in two instances, pa-
rametereized for each arms

• DVRK console, with the arms to be operated

The performance of the autonomous execution was compared to humans in the
case of the standard exercise, where six tubes are to be placed from the original
pegs to another six pegs using two arms. The completion times of six subjects,
with minimal expertise in the usage of the da Vinci system were measured after
a short practice period. It turned out that the average time needed for the task
was 71.4 seconds in the case of novice users, while the automatic agent’s perfor-
mance was 64.0 seconds. However, the speed of the execution could be further
increased, at higher speed we found the accuracy of the arms position control
started to decrease.

6.2 Automating blunt dissection
Another subtask example implemented using the framework was blunt dissec-
tion. Blunt dissection is a common subtask in MIS, usually used to separate
loosely connected layers of tissue without damaging sensitive anatomical struc-
tures, like nerves or blood vessels. During this subtask, to ensure that none of
those sensitive structures get damaged, no sharp instruments are used, the layers
are separated by gentle opening movements of the forceps’ jaws. This subtask is
more relevant from the aspect of surgery, and still simple enough to be automated
using simple perception algorithms. The details of this subtask automation were
presented in [17].

The development and testing of this algorithm was performed using a silicone
phantom consisting of two harder layers of silicone connected with a softer, de-
structible silicone layer. In our test environment, two calibrated web cameras
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Figure 6
The workflow used in the automation of two-armed peg transfer. a) Setup before starting peg

transfer. b–d) Left arm grasps the object. e) The object is lifted to the passing location. f–h) The
object is grasped by the right arm. i–j) The object is released by the left arm. k–l) The object is

placed on the target peg. m–n) The object is released by the right arm.

were utilized, with fixed focal length, attached onto a stable frame to provide the
stereo image feed. The detection of the dissection profile relies on the depth map
of the camera scene, calculated from the distance of each corresponding point
pair on the rectified stereo pair.

The process presented in Fig. 7 is initiated by manually selecting a starting and
an end point of the blunt dissection line. The precise dissection profile, where
the dissection will be performed, is selected autonomously, by searching for the
local minima of depth in the environment of the points of the manually selected
dissection line (Fig. 7). The accuracy of the dissection line detection is further
increased using Hampel filter to remove outliers. To ensure to progress evenly
inward between the tissues, the point with the lowest depth of the dissection
profile is used for the location of the next dissection movement.

As the subtask-level logic node receives the points of the dissection profile, so-
called dissect surgemes are performed by the arm of the DVRK controlled da
Vinci, consisting of the following primitives:

• Dissect:

1. navigate to the point of dissection (Fig. 8/a)

2. slowly penetrate the tissue (Fig. 8/b)

3. open the jaws to separate layers (Fig. 8/c)

4. pull out the instrument in an open position (Fig. 8/d)

The system performing blunt dissection autonomously can be assembled a simi-
lar way as the one for peg transfer. In this case, only one arm is required, and the
computer vision is implemented in MATLAB. The USB stereo camera pair can
be launched by stereo_cam_usb.launch of the irob_vision_support
package.
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Figure 7
Method for blunt dissection automation via computer vision. a) Image of blunt dissection

phantom; b) disparity map of the field of view (color represents the points’ distances
from the camera); c) plot of disparity changes in vertical direction; d) blunt dissection

profile from the local minima of the disparity map. Image credit: [17].

The accuracy of the system was measured during 10 test cases: the average accu-
racy was 2.2 mm with a standard deviation of 0.5 mm in the camera views plane.
In the depth axis—perpendicular to the camera plane—the 1 mm accuracy with
standard deviation of 0.6 mm was measured. The overall performance of the au-
tonomous blunt dissection algorithm was evaluated on the silicone-based custom
designed phantom, by performing single dissections on 25 different locations. 21
of the 25 attempts succeeded; in 4 cases the dissection profile was missed by a
maximum of 3 mm [17].

Discussion and conclusions

An open-source, ROS-based software package was presented, which aims to ease
surgical subtask automation research. This framework interfaces sensory inputs,
perception algorithms and robots, and contains a surgeme-level motion library.
The whole system can be controlled by a subtask-level logic ROS node, tailored
to the needs of the current subtask to be automated. The iRob Surgical Automa-
tion Framework is available at https://github.com/ABC-iRobotics/
irob-saf, and is being continuously developed and updated.
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Figure 8
Motion primitives of the surgical subtask automation. a) The surgical instrument (large
needle driver) moves to the dissection target; b) the robot pushes the instrument into the

phantom; c) the instrument is opened; d) the robot pulls out the instrument.
Image credit: [17].

The framework can help in the implementation of further, more complex sub-
tasks. In such development, it is straightforward to add new, necessary surgemes—
like clipping or suturing. The implementation of new subtask can be added to the
irob_motion package easily. Based on the our experiences, the most chal-
lenging aspect in automating more complex subtasks is the perception estimation
of the environment, as computer vision usually struggles with light reflections
or moving, deformable and hardly recognizable tissue, even in phantom environ-
ment, or ex vivo.
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