
Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 29 – 

The Cheapest Way to Obtain Solution by 

Graph-Search Algorithms 

Benedek Nagy 

Eastern Mediterranean University, Faculty of Arts and Sciences, 

Department Mathematics, 

Famagusta, North Cyprus via Mersin 10, Turkey 

E-mail: nbenedek.inf@gmail.com 

Abstract: Graph-search algorithms belong to the set of basic problem-solving algorithms in 

Artificial Intelligence. There are systematic graphs search algorithms and also heuristic 

ones. Depending on the aim, e.g., to find any solution, all solutions, the best solution, one 

can choose an appropriate algorithm. The best-first algorithm is apt to find the best 

solution if a good heuristic is provided. Even, the obtained solution itself is the cheapest 

one, the way to obtain it may contain several useless branches. In this paper, a modified 

approach is shown which finds a solution having the minimal number of useless branches 

(depending also on the used heuristic). For the new algorithm, called minimum total cost 

search, the concept of the heuristic function is also changed: instead of predicting the cost 

of the closest goal state a kind of directed heuristic function is used: providing an 

estimation to the closest goal state from the given state to the given direction.   

Keywords: Artificial Intelligence; problem solving; graph-search algorithms; cheapest way 

to obtain solution; minimum total cost search; best-first search; backtracking; heuristic 

search 

1 Introduction 

Some of the basic Artificial Intelligence algorithms are the backtracking and 

graph-search algorithms [1, 2, 7, 8]. Based on a state space (and the corresponding 

graph) representations, with their help one can find a solution of the modelled 

problem. Backtracking algorithm use minimal memory, actually, only the actual 

path is stored. At operator applications, a node with the newly obtained state is 

concatenated to the path. However, at backtrack steps the algorithm loses the 

information about the states (nodes) from that this step is made. Therefore, 

problems with graphs other than trees need special care. Graph-search algorithms 

provide other ways to obtain solutions. They store all states (nodes) that are 

already visited. Usually, they search/try several paths in parallel [5]. They explore 



B. Nagy The Cheapest Way to Obtain Solution by Graph-Search Algorithms 

 – 30 – 

all the states that can be obtained by an operator application from the state stored 

at the node by expanding  that node. In this way, graph-search strategies do not 

enter to cycles and do not repeat to try paths proved to be dead end. This is one of 

their main advantages over backtracking.  

Optimal search is a graph-search that provides optimal solution, i.e., path 

connecting the start node (initial state) with a goal state with a minimal weight. In 

a sense, this algorithm is very similar to the Dijkstra algorithm. Here, we want to 

recall the main difference between the two types of problems that are addressed by 

the Dijkstra algorithm and the optimal search. The Dijkstra algorithm is a very 

efficient shortest path search algorithm for graphs. In the problem, the graph is 

already given, and the algorithm, using dynamic programming technique, provides 

shortest path(s) starting from a given node. Opposite to this, in Artificial 

Intelligence, in the state space, the whole graph is not already given. The 

algorithm builds and explores those parts of the state space and its graph that are 

needed to find the optimal solution. The difference is more considerable when the 

graph cannot be discovered for free, but we need to pay for the discovering, i.e., 

for building the graph itself. In this paper, we consider the problem in this latter 

way. Our aim is not to find the cheapest path from the start to a goal state, but to 

find a solution and spend the least amount of cost for building the necessary part 

of the graph, i.e., the total cost of the whole construction (i.e. the search) is 

optimized. 

2 Preliminaries 

In this section we are describing the basic graph-search algorithms, and especially, 

the best-first search, but first we recall the concepts of state space and graph 

representation based on [7, 8]. For all non explained concepts the reader is 

referred to these standard textbooks on Artificial Intelligence. 

2.1 The State Space 

In Artificial Intelligence one of the most known methods to model problems is 

provided by state space which involves deterministic actions and complete 

information. The state space consists of four parts which is defined by 4-tuple 

(S,i,O,G). A set of states that is defined by S with a single initial state i, and a set 

of (target or) goal states G. O is a set of available operators (actions); for every 

oO it is described for each state s whether the operator o is applicable by the 

function o(s) = (s',c) that identifies the successor state s' of some state sG when 

action o is taken and also the cost c of applying o for s (where oO, sS). The 

value of o(s) is empty in case o is not applicable on the state s. 



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 31 – 

There is a one to one correspondence between the definition of state space and its 

graph representation. The graph is defined by (N,E,v0,T), where N is the set of 

vertices (nodes). Each state sS is represented by a unique vertex, i.e., there is a 

bijection from S to N. The initial state i is represented by the start node v0, where 

v0N. The set of edges E contains an edge, i.e., (v,v')E if and only if the vertices 

v and v' correspond to states s and s' and we have oO such that o(s) = (s',c) and 

the edge (v,v') have the label (o,c) indicating which operator with which cost is 

applied. The set of terminal nodes T  N represents the goal states, i.e., there is a 

bijection between G and T. Since we have a bijection between S and N we may 

identify every vertex by a state, from here, we do not make difference between a 

vertex and the state it represents (if we do not have other ambiguity). Thus, we 

may simply refer to a vertex v by the state s assigned to it. 

The aim is to find the/a path in the graph representation of the state space starting 

at the start node (representing the initial state) to a terminal node (representing a 

target state): the sequence v0o1v1o2v2…vn-1onvn is such path if vi represents state si 

and o(si) = (si+1,ci) for some cost ci and snT. The cost of a path is defined by 

 

n

i i
c1 , as usual. 

In this paper we will use heuristic search methods, therefore we need the concept 

of heuristic function. It is usually defined in the following way: 

A function which is an estimation of the distance of the state from the closest 

target state (if any) is called heuristic function, which assigns a nonnegative real 

value to each state h : S  0. It is assumed that h(s) = 0 if and only if sT.  

See [3], a survey on heuristic functions in Artificial Intelligence, for more details. 

2.2 Graph-Search Algorithms 

In this subsection, we give the pseudo code of a general graph-search algorithm. 

These algorithms generate the graph representation of the problem, called search 

graph, dynamically. They use list data structure to represent nodes which includes: 

the (actual) state, the parent node, the operator was applied for generating the 

actual state, and the cost from the initial state to the actual state [8]. We note that 

if we do not have real costs, then the number of steps, i.e., the depth of the node is 

stored instead. 

The data structure for a node is built up from 

 a state s, 

 pointer pt to the parent node, 

 operator o that was applied to obtain s, 

 cost c, 

 heuristic value h(s). 



B. Nagy The Cheapest Way to Obtain Solution by Graph-Search Algorithms 

 – 32 – 

For non-heuristic search algorithms we do not need the heuristic values, that is we 

can write 1 (or the smallest positive unit used by the algorithm) for states not in T 

and 0 for states in T. This value will not modify the work of the algorithm. 

The basic steps of graph-search algorithm are expanding the search graph as 

follows:  

 

Algorithm 1 (Function Expand) 

function Expand (v). 

1. For each operator o applicable to the state s stored at node v  do 

1.1.  Apply o to s and hence obtain (s',c)  

1.2.  If there is not vertex v' such that it stores s',   

Then create vertex v' with data: s',v,o,cv+c, where cv is 

     the cost stored at vertex v. Put vertex v' into OPEN. 

Else decide whether or not to change the pointer pt of v' to v  

     and its cost to cv+c. 

     If v' is found in the list CLOSED,   

     Then decide for each of its descendants in G whether or not 

           to rewrite the stored cost, accordingly.  

2. End for 

3. Return % End Expand 

 

Algorithm 2 (Graph-search) 

1. Create a search graph, G, containing only the start node, s: 

2. Let the list OPEN contain only the initial state in the start node, s.  

3. Create a list called CLOSED that is initially empty. 

4. While (OPEN is non empty)  

4.1.   Select the first node in OPEN, remove it from OPEN, and put 

  it on CLOSED. Call this node vN. 

4.2.   If vT, i.e., it is a target node,   

  Then terminate successfully with the solution obtained by 

       tracing a path along the pointers from v to s in G. 

4.3.   Call the function Expand with parameter v. 

4.4.   Reorder the list OPEN, %either according to some arbitrary 

  scheme or according to heuristic merit%. 

5. End while 

6. Return failure (there is no solution with this representation). 

 



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 33 – 

The nodes in OPEN are the tip nodes of the graph-search, and the nodes on 

CLOSED are the non-tip nodes. In Breadth-first and Depth-first search algorithms 

there is no real cost function, unit cost, e.g., the depth is used. In the Breadth-first 

search algorithm with a queuing function the newly generated states put at the end 

of the queue, after all the previously generated states. However, the Depth-first 

search algorithm puts the newly generated states at the front of the queue (more 

like a pushdown stack architecture). 

The algorithm ends successfully whenever the selected node for expansion is a 

target node. The desirable path v0o1v1o2v2…vn-1onvn can be obtained by tracing the 

pointers from vn to v0 in the reverse order (if the/a solution exists). Whenever the 

set of terminal nodes are empty, i.e., T = , or no terminal node can be obtained 

from the start node using the given operators, the algorithm terminates reporting 

unsuccessful search (failure).  

Since this is a graph-search algorithm some of the states obtained by Expand may 

already be in OPEN or CLOSED, i.e., they have already been generated. 

Recognizing and deciding what to do if some of the newly generated data are 

already generated before, has some computational cost. In the simplest cases, e.g., 

when the cost of the obtained solution is not of high importance, there is no extra 

process for the states that are already in the database. For Breadth-first, Depth-

first, and, as we will see, for best-first search algorithms in the else branch of step 

1.2 of the function Expand can be deleted (no change will happen if a state is 

already stored in some nodes of the database, i.e., in the already obtained search 

graph). 

In this paper, we would like to obtain a solution as fast and in the cheapest way as 

possible. Therefore, two specific graph-search algorithms, namely, the optimal 

search and the best-first search are the most important for us. We briefly recall 

them in the next two subsections. 

We note that relations of graph-search and parallel algorithms are investigated in 

[1, 5]. However, in this paper, we mainly deal with the traditional, sequential 

approach. 

2.3 The Optimal Search 

A systematic search algorithm that provides the optimal (minimal cost) solution 

(in case a solution exists) is the optimal search. Since the aim is to find the best 

solution (minimal cost path from the start node to a terminal node) in the Expand 

function if a cheaper path is found to a node v' than the actually stored path 

(through the links to the parent nodes), then the parent node of v' and the cost of 

the path to node v' are updated. However, it is not possible to find a cheaper path 

to node that is already in the list CLOSED. In this search algorithm, the list OPEN 

is sorted in a non decreasing way by the stored cost of the path to the node. 



B. Nagy The Cheapest Way to Obtain Solution by Graph-Search Algorithms 

 – 34 – 

At the next algorithm, we do not want to get the optimal solution (for sure), but 

we want to obtain a solution as fast as possible. This can be done by the use of a 

heuristic function. 

2.4 The Best-First Search 

One of the search algorithms that searches in a graph by selecting and expanding 

the most promising node based on the special rule is the Best-First search. This 

algorithm selects the promising node by using a heuristic function, h(s), which 

takes a state (stored in a node v) as argument and returns a non-negative real 

number. At this algorithm, the nodes in the list OPEN are ordered (may be based 

on the variety of heuristics ideas) so that the "best" one will be the first in the list, 

and thus, it can be easily selected. The heuristic function estimates the cost of a 

path from node v to a target node. We then expand the node to generate its 

successors and quit if one of them is a target. Otherwise, among all the other 

nodes (including the newly generated ones), again the most promising node (i.e., 

the node containing the state with the smallest heuristic value among the nodes 

stored in the list OPEN) is chosen and the process continues. By using a heuristic 

function, the search can be informed about the direction to a target and predict 

how close the end of a path is to a target [6, 7]. It is known that Best-First search 

can provide a solution in the fastest way if the heuristic function is informative 

enough. 

The function Expand for best-first search algorithm is specified from Algorithm 1, 

as we have already indicated, by simply deleting the Else branch of step 1.2. In 

Algorithm 2 the reordering of the list OPEN (step 4.4) goes by non-decreasing 

values by the heuristic values of the states stored.  

We note that in [4] search algorithm based on the best-first is presented using the 

memory in an efficient way.  

3 The New Approach 

The new approach is somewhat similar to the Best-First search algorithm, it is a 

kind of modification of the usual graph-search algorithms reducing the cost of the 

applied operators. The heuristic function is also redesigned for this purpose. 

3.1 Appropriate Type of Heuristic Functions 

The heuristic function, to obtain our aim, has two arguments, not only a state, but 

also a chosen direction to go forward from that state, i.e., an operator. By the help 



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 35 – 

of this new feature, we can reduce the cost of the applied operations. In this new 

algorithm, the data structure that is stored contains vertices with the following data 

structure: 

 a state s, 

 pointer pt to the parent node, 

 operator o that was applied to obtain s, 

 cost c, 

 an applicable operator o' (that is chosen to apply to state s) 

 heuristic value h(s,o').  

The heuristic function is applied to each element of the OPEN list. In this 

algorithm, we have again the two lists. At a node the state, pointer, operator and 

cost are the same as before. The new part is a chosen operator and the new type of 

heuristic function. Now, we are ready to present the new algorithm with the 

appropriately modified Expand function. 

3.2 The Minimum Total Cost Search 

To reduce the cost (of the applied operations) in the Expand function, we should 

not use all the applicable operations for a given state at a time, we continue the 

search only in a chosen direction. In this way, the algorithm has a similarity to the 

backtracking search. The list OPEN is assumed to be sorted by the stored heuristic 

value h(s',o) in non-decreasing order.  

 

Algorithm 3. (Function Best-Continue) 

function Best-Continue(v)  

1. Apply o' stored in v to s stored in v and hence obtain (s',c). 

2. If there is no such node in OPEN and CLOSE that stores the state s'  

Then 

2.1. If s' is a goal state,   

Then terminate with the solution reaching s' from s   

     (and its predecessors). 

2.2. For each operator o applicable to the state s' do 

     Create a node v' to store state s', pt to node v, o', c, then the 

     applicable operator o and the heuristic value h(s',o).  

     Insert v' into the list OPEN in non-decreasing way by h(s',o). 

2.3. End for 

3. Return % End Best-Continue 

 



B. Nagy The Cheapest Way to Obtain Solution by Graph-Search Algorithms 

 – 36 – 

Algorithm 4. (Minimum Total Cost Search, MTCS) 

1. Create a search graph, G, containing only the initial state with its 

applicable operators:  

2. For each operator o applicable to the initial/start state s do 

2.1. Let the list OPEN contain the node: s. NUL, NUL, 0, o, h(s,o). 

        Insert it into OPEN by the values h(s,o) in non-decreasing way. 

3. End for  

4. Create a list CLOSED that is initially empty. 

5. While (OPEN is non empty)  

5.1.   Select the first node of OPEN, remove it from OPEN, and put 

  it into CLOSED. Call this node vN. 

5.2.   Call the function Best-Continue with parameter v. 

6. End while   

7. Return failure (there is no solution with this representation). 

 

The algorithm is complete and correct: For finite search graphs, if a solution 

exists, it will find a solution; and it terminates with failure if there is no solution. 

However, for problems represented by infinite graphs, it may not produce solution 

if, e.g., the heuristic function directs the search to an infinite branch without 

solution. This is actually, the same phenomenon for other heuristic search 

algorithms, including heuristic backtracking and best-first. (To overcome this 

issue one may use the optimal search, or its mix with the best-first, i.e., the A- or 

A*-algorithms.) However, if the heuristic is not completely misleading in an 

infinite search space, the new algorithm can be applied. Moreover, due to the new 

type of heuristic function, the total cost of the explored search tree is minimized 

(according to the quality of the heuristic function). 

The new approach is between the graph-search and backtracking, by breaking the 

expand function into parts applying operators one-by-one, similarly as they are 

used in backtracking algorithms. On the other side, since we have no backtrack 

operation, we keep all the already explored parts of the search graph, the new 

method also inherits the advantages of graph-search algorithms (e.g., loops and 

alternative paths to the same dead end do not cause such problems that could 

occur at backtracking).  

We note that by efficient practical design we do not really need to store the 

repeated information (i.e., s, pt, o and c) at nodes storing the same state. By using 

linked (multi)lists we can store this part of the information separately and this part 

can be linked by a pointer to the real node that contains additionally o' and h(s,o').  



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 37 – 

3 Example 

In this section, an example is shown. We also compare the work of the heuristic 

backtracking, the optimal search, the best-first and our new MTCS algorithm. Let 

the graph representation of our problem be given as it is shown in Figure 1. The 

cost assigned to the operator application is written at the left side of the edges by 

blue color. The heuristic values (indicated by red) are given in Table 1.  

 

      v0 

                                                 2                                h4 

                                         h1          3   h2          4     h3      6     

              a                                        b                     c                                   d 

               1   h5            2             3      4      h8           2                        3    2 

                                 h6                  h7                           h9                     h10        h11  

              e                                        f                             g            h                         i 

               3   h12           2               3   h14                                        4 

                                 h13                                                                     h15 

               j                                              t                                             k 

 

Figure 1 

The graph of the state space representation of the example 

In the example, we use two heuristic functions, the perfect heuristic and a non-

perfect (another) heuristic (which is more realistic), as specified in Table 1.  

Table 1 

Heuristic values used in the example 

hi i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

perfect 99 9 99 99 99 99 6 99 99 99 99 99 99 3 99 

another 5 10 11 14 4 5 6 4 7 6 8 3 4 3 4 

                

h(v) v: v0 a b c d e f g h I j t k   

perfect 9 99 6 99 99 99  3 99 99 99 99 0 99   

another 10 4 5 7 7 3  3.5 99 4 99 99 0 99   

The upper part of the table shows the new type of heuristic functions that are apt 

to use for backtracking and the MTCS algorithm. The lower part of the table 



B. Nagy The Cheapest Way to Obtain Solution by Graph-Search Algorithms 

 – 38 – 

shows traditional heuristic functions that can be used for the best-first algorithm. 

For the “another” heuristic the average new-type heuristic values of the out-edges 

are used at the corresponding nodes. 

Let us see, how the solution is obtained by various algorithms. Let us start with 

the optimal search. Obviously, it starts by expanding the node v0. By applying all 

the 4 operators it obtains 4 new nodes (a,b,c,d) and this costs 2+3+4+6=15. The 

nodes in OPEN are ordered by their cost value, and thus, node a is expanded in 

the next step with cost 1: node e is obtained. In the next 2 steps nodes b and e are 

expanded, by costs 9 and 3, respectively; adding the nodes f, g and j to the 

explored search graph. Then, node c is expanded having a better path to g, and 

adding 2 to the total cost (of the graph we have paid so far). Now the nodes j, f, g 

and d are expanded: this gives 0+5+0+5 cost and adding nodes t, h and i to the 

explored part of the graph. Node i has the smallest cost among the nodes in 

OPEN, therefore it is expanded (it is moved to CLOSED without other changes). 

Now, t is among the nodes with the smallest cost in OPEN, and it can be tested 

that it contains a goal state. The solution is found: v0 to b, then to f and from f to t. 

Even the cost of the solution is 9, the cost of the explored part of the search graph 

is 40. 

Now let us see how the heuristic search algorithms works with perfect heuristic. 

The best first must start by expanding the start node v0 and, hence, obtaining 

nodes a, b, c, and d, it costs 15. Then, the smallest heuristic value is 6 and it is at 

node b. By expanding b the nodes e, f and g are obtained with additional cost 9. 

Now, the smallest heuristic value is 3 (at f) among the nodes in OPEN. 

Consequently, expanding f, the nodes j and t are explored (cost 5), and the node t 

has 0 heuristic value. The search is finished, the solution is found, and the total 

cost of the search was 29. 

The backtracking using the perfect heuristic given in the first row of the table, will 

go from v0 to b and, then to f, and it finds the terminal node t in the next step. The 

total cost of the search is 9, it is exactly the same as the cost of the solution (it was 

obtained without backtrack steps). 

Algorithm MTCS works in a similar manner. In the beginning, it has basically 4 

edges in the open list indicated by the values h1, h2, h3 and h4. It choses the edge v0 

to b as h2 is the smallest among the values in the list OPEN. Using Best-continue, 

the edges indicated by h6, h7 and h8 are found and stored in OPEN. Then, the edge 

with h7 is chosen for Best-continue. In the next round, by the edge with h14 the 

solution is found. The total cost of the MTCS search was 9, same as the total cost 

of the backtracking (with perfect heuristic values).  

Let us see the performance of the heuristic search algorithms with a non-perfect 

heuristic function. One can easily check that, in our example, the best-first search 

finds the solution by using the heuristic values from the last row of Table 1, with 

an even larger total cost than previously: it is 33. It is usual that without a really 



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017 

 – 39 – 

good heuristic function the performance of the heuristic search algorithms are 

worst than with them. (Actually, the quality of the heuristic function is essential.) 

Let us see, how the backtracking works: It will go from v0 to a, and then to e, and 

to j (with total cost 6, so far). In the next step, it realizes the dead end, and 

backtracks to v0. Then, it goes to b and then to g. The total cost of used operators 

is 6+7=13, so far. However, it realizes the dead end, and backtracks to b. Then it 

continues to e, again, moreover to j (the total cost is 13+5=18, so far). Again, 

realizing the dead end backtracks and backtracks to b. Now, it goes to f, and, 

finally, from f it finds the terminal node t. The total cost of the search is 24, it is 

much larger than the cost of the solution, even the backtrack steps had no direct 

extra costs.  

Finally, we show the performance of MTCS with the non-perfect heuristic values 

specified in Table 1. Again, the list OPEN contains the edges indicated by the 

values h1, h2, h3 and h4. However, in this case, h1 looks the best choice (and it 

costs 2). Then instead of that edge the edge with h5 will be in the list OPEN. In the 

next round, it seems the best choice and the edge indicated by h12 will replace it in 

OPEN. Then edge with h12 is chosen and moved to CLOSED. The total cost of the 

search is 6, so far. In the next round the edge h2 is chosen for Best-continue. 

Consequently, OPEN will include the edges with h6, h7 and h8. Then the edges 

with h8 and h6 are chosen, and both become CLOSED. The total cost is 6+9=15 up 

to this point. Then the choice of the edge with h7 to Best-continue gives two new 

OPEN edges: the ones with h13 and h14. The latter one is a better choice and the 

algorithm terminates with the solution. The total cost to find it was 21, less than 

the costs of the other algorithms. Of course, without perfect heuristic values we 

usually need to pay some extra costs to explore some parts that are not directly 

needed for the solution, however, by our algorithm this extra cost is minimized. 

Backtracking algorithms keep only a path in their memory, and thus, with a 

heuristic backtracking algorithm with a good heuristic function the solution may 

be obtained without any backtrack steps (see, the solution with perfect heuristic). 

In this way, the total cost to find the solution is exactly the same as the cost of the 

solution itself. However, if the heuristic function is not good enough, the total cost 

to obtain the solution increases, and disadvantages of the backtracking algorithm 

may occur, e.g., by applying (and paying again for) the same operator at the same 

state reached in a newer path, as we have seen at the case of “another” heuristic. 

Even best-first could be believed as a method exploring the minimal part of the 

search graph to obtain a solution, we have shown that our new algorithm can work 

with even less cost. The best-first pays extra fees when at expand, it is applying 

operator(s) at a node not only in the ideal direction.   

 

 

 



B. Nagy The Cheapest Way to Obtain Solution by Graph-Search Algorithms 

 – 40 – 

Conclusions 

There are some cases in real life when we do not have a chance to freely see what 

and how will happen if we do something (modelled by applying an operator). In 

these cases, to try and analyze how a given step may help to find a solution (to 

reach a goal state), one may need to pay the cost of this step (operator). 

Consequently, the problem to find the cheapest (optimal) solution shifts to the 

problem to obtain a solution in the cheapest way, i.e., exploring a minimum-cost 

part of the search tree that is needed for the solution.  

In this paper, we have modified the well-known search algorithms and we have 

obtained a general heuristic algorithm to have a search algorithm with minimum 

total cost. The algorithm is related to the best-first graph-search algorithm and also 

to heuristic backtracking algorithms uniting their advantages for the considered 

types of problems.  

References 

[1] Kenneth A. Berman, Jerome L. Paul: Algorithms: Sequential, Parallel, and 

Distributed. Thomson/Course Technology, 2005 

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: 

Introduction to Algorithms. MIT Press and McGraw-Hill, 1990 (3rd edition, 

2009) 

[3] Fred Glover, Harvey J. Greenberg: New Approaches for Heuristic Search: 

A Bilateral Linkage with Artificial Intelligence, European Journal of 

Operational Research 39/2 (1989) 119-130 

[4] Richard E. Korf: Linear-Space Best-First Search, Artificial Intelligence 

62/1 (1993) 41-78 

[5] Benedek Nagy: On the Notion of Parallelism in Artificial and 

Computational Intelligence, Proceedings of the 7th International 

Symposium of Hungarian Researchers on Computational Intelligence, 

Budapest, Hungary (2006) pp. 533-541 

[6] Ira Pohl: Heuristic Search Viewed as Path Finding in a Graph, Artificial 

Intelligence 1/3-4 (1970) 193-204 

[7] Elaine Rich, Kevin Knight, Sivashankar B Nair: Artificial Intelligence. Tata 

McGraw-Hill, 3rd edition, 2008 (Elaine Rich, Kevin Knight: Artificial 

Intelligence, 1st edition, 1983) 

[8] Stuart Russell, Peter Norvig: Artificial Intelligence – A Modern Approach. 

Prentice Hall, 1995 (3rd edition, 2009) 


