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Abstract: In this paper a multi-agent based mobile robot simulation system will be 
presented where the behaviour of the system is studied with different number of agents (1, 
3,6) and also with different number of ultrasonic range sensors on agents (8 or 16 US 
sensors on individual agents). The task of the autonomous agents is to create the potential 
field (PF) of an unknown environment. The classic problems of PF building, like oscillation 
and trapping, are not the focus of the article, but instead, the article is concerned with the 
agents’ self-organizing ability where self-organizing is controlled by a genetic algorithm 
(GA). The GA is equipped with two fitness functions where one “maintains” the distances 
between certain agents (spat distr), while another “watches” the area coverage (area 
cover). In fact, the paper can be divided into three main parts. The first part describes the 
ultrasonic sensing and range measuring with systematic errors, the potential field (PF) 
building and the moving strategies. The second part contains description of the GA, the 
operation of the GA, the structure of the system, the fitness functions and a general system-
error determination. In the final third part, the obtained results are analyzed and presented 
in the appendices. 
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1 Aims and Motivation 

Nowadays, in mobile robot research a huge amount of literature is available about 
path planning and course controlling based on a potential field. These articles are 
mostly about eliminating or preventing the classic problems arising in potential 
field building, such as trapping and oscillation. With the evolution of this area of 
knowledge, newer and newer methods are appearing for handling these mentioned 
problems, but these methods usually concern single agents. A good example can 
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be seen in [1], where the authors are eliminating the oscillation problem by a 
VFB1 guiding model, in which at path planning the VFB is realized by a neuro-
fuzzy model producing an oscillation free path between the starting and docking 
positions. The developed algorithm was tested in a virtual training environment 
named “COSMOS”, and the results can be found in the mentioned article. In 
relation to this, another example can be mentioned where the classic parking 
problem is realized by a hybrid navigation structure, with the elements of 
computational intelligence [2]. The hybrid structure has three components: 
harmonic PF (calculation of the path in an initial – static – environment); neural 
network (trying to control the robot to pass through the orientation marks that the 
path is composed of); fuzzy controller (obstacle avoidance and trying to find the 
next orientation marks again). For simulation results see [2]. 

My primary aim is to create a functional simulation system that will be able to 
create the potential field of an unknown environment on a multi-agent platform. 
While developing it I will not devote to the classic problems of potential field 
building (trapping, oscillation), but I rather wish to control the group behaviour of 
agents, believing that the previously mentioned basic problems can also be 
eliminated by this. My secondary aim is, in case of a successful system, to 
accomplish its analysis (see conclusion) and (probably in another article) to 
increase the efficiency of the algorithm by tuning the system or the GA 
parameters. Later in the future I would like to apply this algorithm for multi-agent 
systems with different sensors (e.g. visual sensors) as well. 

2 Introduction 

This paper actually is a continuation of the conference paper [3], and this is why 
the basic definitions and determinations published previously are mentioned here 
only in a shortened form. 

Distributed problem solving at multi-agent mobile robot systems has its origin in 
the late 1980s [4], [5], however, since 2000, the field of cooperative mobile agents 
has shown dramatic development. It is reasonable to ask: Why should we use 
multi-agent mobile robot systems? Answering it, let me compare several 
advantages of multi-agent systems, as contrasted with single-agent ones. 

 More efficiency (faster and more accurate). 

Keeping to the main topic of the paper, in multi-agent systems – by exchanging 
the main information between one another –, the individual agents are capable to 
localize themselves faster and more accurately. 

                                                           
1 Vector Field Based guiding model 
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 More fault-tolerant. 

Namely, if in a single-agent system the agent breaks down, the task will not be 
executed, while in a multi-agent system, though depending on its intelligence, the 
execution of the task is continued. 

Generally speaking, a multi-robot system has the following remarkable properties: 

 Larger range of task domains (flexibility) 

 Fault-tolerance 

 Greater efficiency, robustness 

In the development of multi robot systems, primary merits can be attributed to M. 
J. Mataric (MIT, USA) whose scientific achievements include researching and 
developing strategies of behaviour-based mobile robot systems [6], [7], [8]. Each 
of these studies contains relevant statements and definitions in the field of 
individual or group behaviour of mobile robots. The individual agent is very well 
defined by Tecuci in [9] –“the agent is an autonomously active entity with certain 
possibilities to sense its environment and act in it in order to achieve certain states 
of this environment in which certain previously specified goals are achieved”. 
Later, by the development of this field of science different types of agents were 
defined, and this can be observed very well in [10], where the basic classification 
of agents is extended and apart from this the agents are classified from a 
functional-computational perspective. After the definition of single agents, we can 
now focus on multi-agent systems and mainly on the cooperation between 
individual agents. In [11], the authors try to draw the agents into an agent coalition 
for the sake of a more efficient task execution. Firstly, the agent coalition is 
formed, the individual agents are rated and some value is assigned to them. Then, 
based on the agent’s value, the agent will join the coalition if the coalition brings 
to the agent at least the same or better results than when it works independently. 
Another important contribution has been made by Fukuda and Iritani, who tried to 
widen the possibilities of the cooperation between separated agents in multi agent 
mobile robot systems [12]. 

The simulation system, described in this paper has a modular structure. There is a 
separate module for the sensory system of the agents (which is the mathematical 
model of the ultrasonic range detector), another module contains the GA, 
responsible for near-optimal behaviour selection, and the next separated module is 
responsible for displaying results and assessments. 

Since the simulation system has been prepared in a MATLAB environment, it is 
inevitable to make the mathematical model of the system. The workspace is 
digitally decomposed (grid construction), and the agents are point-represented in 
this model. The visited areas are renumbered during the process of map-building, 
in order to avoid duplicity of the map occurring in the same area. The potential 
field building and calculation is based on the principle of the well-known 
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repulsive forces. A simplified map building process by one agent is represented on 
Figure 1. The agent moves to the new position, assigns the position to the grid 
construction of the model, performs distance measurements, evaluates the 
potential field value (broadcasting the parameters of its own new position to the 
other agents), and then plans the next move. The potential field values are stored 
on the host remote server, where the global potential field map of the whole WS 
will be updated. In the advanced systems (will be represented in this paper), in 
order to avoid collisions, the moving mechanism is controlled by the GA. 
 

Move to 
P0 (x0,y0) 

Take N measurements 
[D1,..Dn] 

Association to the grid 
Pj (xj,yj) 

Update the map  
(based on evaluated values) 

Planning the next  
motion 

Figure 1 
A simple map building process 

3 Sensing 
The individual agents are equipped with 8 or 16 ultrasonic sensors for distance 
measurements. The sensors are equally spaced on a ring around the body of the 
robot (see Figure 2a) so that the sensors form a regular octagon (or a polygon with 
16 points) on the circle of the agent. In this case the sensing sector of each sensor 
can be calculated with the form: 

;2
N
πβ =  (1) 

where, N is the number of sensors. The sensors can also choose either long- or 
short-range sensing. The long-range sensing (LRS) perceives the obstacle or other 
agents in the given sector (β) in infinite2 distances. The short-range sensing (SRS) 
is determined in a circle with radius R0. Occupation of the segments by other 
agents or obstacles, is represented with a binary word, and will have importance in 
choosing the next behavior or the moving mechanism. 

 β 

 
Figure 2a 

The agent, and the sensors around, located by angle β 

                                                           
2 infinite=beyond the given radius R0  
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R0 
MSB 

B1 

B2 

B6 

 
Figure 2b 

The Long, and Short range sensing 

Let us see the illustration given on Figure 2b, where the binary words of short- 
respectively long-range sensing are: 

LRS: 00101010 

SRS: 00000011 

Mathematically can be written: 
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where, bj is the value, given by the jth sensor, and Pi is the position of ith agent in 
sector εj. In case of short-range sensing the sensing sector (εj) is valid only in the 
given R0 radius. 

};|||{ 00 RPPP iij <−=ε  (3) 

where, Pi is the position of ith agent, and P0 is the position of reference agent [13]. 
The surrounding environment of the reference robot is represented with the binary 
words LRS and SRS. We can say that two binary words are equivalent if the 
number of 1s and the position of 1s in relation to one another are identical (e. g. 
the words ς1=01100000 és ς2=00000110 are equivalent). It is observable that with 
shifting to left or right, or with circular operations we can get several equivalent 
words. Let us name these equivalent bits stimulus and label (ς). The stimulus 
contains the description of the environment of the mobile robot [13]. 

In the perception model, the starting positions of the agents are already known 
(see Appendix 3). In an ideal case, the (d) distance is calculated from the time of 
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flight (t) and the spreading of speed of sound (v), in case of ultrasonic range 
measurements [14]. 

;.
2
1 tvd =  (4) 

In this model the ideal case is considered, that is after checking the sensing 
segment’s occupation, the distance calculations in x and y directions has been 
provided. The distance measurement model can be seen on Figure 3. 

Error 

P0 

Pj 

Di
0 

j
iD~  

j
iD̂

ρj

The edge of the 
sensed object 

β

γ
 

Figure 3 
The mathematical model of US sensing 

As a result of WS rasterizing (grid construction), an exact result of distance 
measurement is almost impossible. Unfortunately this is inconceivable in real 
environment, since we have to take into consideration the error (δD), see Figure 3. 

|;ˆ~| j
i

j
iD DD −=δ  (5) 

where, j
iD~ is the real distance, and j

iD̂ is the evaluated one. 
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j
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The distances measured with N ultrasonic sensors are stored in the L measuring-
vector. The measuring-vector belonging to the P0 location is: L0≅[D1

0,D2
0,..,D8

0]. 
Besides, the evaluated distances in the model (after the grid association) belonging 
to the Pj position are stored in the distance-vector: ]ˆ,..,ˆ,ˆ[ˆ

821
jjj

j DDDL = . The 

errors depend on the complexity of the environment and certainly on the map grid 
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width (see Figure 3). With reference to the members of Lj vector, for the sake of 
better evaluation results, the weighting vector (wi) has been introduced. Regarding 
the distance between the robot location and Pj raster position, the weighting can be 
written as: 

;
2
jew j

ηρ−=  (7) 

where η is a positive constant, and ρj is the distance between P0-Pj locations (See 
Figure 3). Namely wj=1 if the agent is exactly in the position Pj (in this case 
Pj≡P0). 

4 The Potential Field 

The creation of the artificial potential field (APF) has been done by the well-
known repulsive force method [1], [13]. 
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where, UART is the APF, UGOAL is the potential field spreading from the goal, UOBS 
is the potential field of the obstacle, kp is a positive gain, l0 is a threshold limit 
beyond which are no repulsive forces, and η is a positive constant. 

The potential field building 

In case of validity of the next condition: 

;0ˆ],,1[ ≥∈∀ j
iDNi  (9) 

the potential field is calculated from the jL̂  vector. This condition is valid for the 

visibility of Pj position simultaneously. If the above mentioned condition is not 
valid, it means that the agent is on the obstacle, or is part of the obstacle. The 
evaluated value of the potential field at the location Pj in step “t” (if the above 
mentioned condition is valid), is: 
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where λ is a positive coefficient. The potential field values, belonging to Pj 
position, measured by kth mobile robot, at time “t”, are stored in set Ω. 
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To the t
jΩ  set, is associated the following confidence weight vector: 
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where the normalized weight component of t
jW is: 
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Finally an acceptable potential field value can be readily calculated as follows: 
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5 Motion Mechanism 

After the execution of sensing, measurements, and estimating the value of the 
potential field in position P0, the agent has to move to the next position to 
continue its measurements. This move can be applied as based on three motion 
selection [13]: 

Directional1 – here the standard deviation of potential field is calculated in all (N) 
sensing sectors within the given maximum movement step (dm) at time “t” and “t-
1”. Moreover, the move in time “t+1” will be calculated according to the motion 
direction (φ) and motion step (ds). For the P0 location of the robot at time “t+1” 
can be written: 

;.0
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s
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Let us store the difference of the standard deviations of potential fields at the same 
sensing vector, at time “t” and “t-1” in vectorΔ.. Then the ith component of this 
vector is: 

});,..2,1,,|({ 1 NijUUllstd i
t
ij

t
ijijiji =∈∀−==Δ − ε  (17) 

Besides, let array Λ be the standard deviation of potential field for all locations in 
the same sensing sector at time “t”. For the ith component of this vector can be 
written: 
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where εv is defined similarly like εi, - see above. After that, the motion direction in 
sector i: 
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where Pj is the location, and εi is the sensing sector. Namely, the agent will select 
its direction of movement (φ) in “i” sector, based on the condition (19). The exact 
position, ),( 00

1
0 yxPt+ , within the selected sector, should satisfy the following 

condition: 

,...);,max(),(|),( 210000 ΛΛ=Λ yxyx i  (20) 

Directional2 – The strategy is almost the same as previously (see Directional1), 
the only difference being in selecting the exact position within the selected sector. 
The exact position selection is based on the minimum value of vector Λ. 

,...);,min(),(|),( 210000 ΛΛ=Λ yxyx i  (21) 

Limited random – The agent selects its motion direction and step size randomly, 
within the given limits. 

φi=rand([1..N]); (22) 

ds=rand([1..dm]); (23) 

The next question should be about how to make the potential field building 
process more effective. The answer lies in the appropriate behaviour mechanism. 
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6 Behaviour Selection Mechanism 

Usually, in behaviour-based task execution at mobile robots, the next behaviour is 
very much influenced by the environment (as we know, the environment of the 
mobile robot is represented by stimuli; see above). In a general case, it exists as a 
set of behaviours out of which the best behaviour will be chosen by the algorithm, 
based on the environment’s appraised measurements. 

Behaviour in single agent environment – Let the primitive behaviour correspond 
to the direction of the 8 (or 16) ultrasonic sensors (see Figure 2b, {B1, B2, …B8}). 
In other words, the elementary motions are summarized in vector B, B=[B1..BN]. 
The values of this vector can be Bi∈{-1,1} in such a way that: Bi=1, if the agent is 
capable of executing the required move, else Bi=-1. The behaviour and the 
weighting vectors are: 
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where, the values of weighting: Wi=-1, if Bi=-1, and in other cases the weighting 
is: 
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The simplified behaviour selection process can be summed up as follows: Based 
on the sensing vector (see LRS, SRS mentioned above), the appropriate stimulus is 
given which triggers a condition for the behaviour selection mechanism. Next, as 
the output of the embedded learning mechanism (See Figure 4; dashed line), the 
near optimal behaviour will be selected. Let us have a few more words about the 
simplified learning mechanism. Any response to the sensing vector of the agent 
(what is nothing else than a stimulus, and the response to the stimulus, which is 
the behaviour) is represented by the varying weight. The learning step is the 
following: if the agent has selected the motion direction, then the components of 
the W vector will be updated. As a result of a series of updating, the outcome will 
be some more significant directions. 
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STIMULUS 
EXTRACTIONS

BEHAVIOUR 
SELECTION

BEHAVIOUR  
WEIGHTING

PERFORMANCE 
EVALUATION

ςk 

Bk

SENSORS

 
Figure 4 

The simplified behaviour selection 

The process: a stimulus (ςk) is chosen, to which the appropriate behaviour (Bk) 
belongs, next the motion is executed, and then the operation is appraised by 
weighting (W). The next stimulus-behaviour pair selection is based on this 
weighting vector, which produces a more effective motion mechanism. 

Behaviour in a multi-agent environment – Let the agent to the stimulus (ςk) select 
the behaviour (Bk), at time „t”. After it, the robot learns, based on its local 
performance criteria. In the case if a common basis for behaviour selection is 
used, the agents can share their learned knowledge. The behaviour weight vector 
will be updated, based on the following: 
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t
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where operator “normal” is normalizing the weight vector, and ΔW is an 
increment vector. The performance of operator “shape” is illustrated on Figure 5, 
where the updated weight vector passes through function1, and conditionally 
function2 [15]. 

 Function_1 Function_2 

Wi+ΔWi 
W0 

 
Figure 5 

The “shape” operator 

The function1: 
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The function2: 
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where coefficients α and ψ influence the shape of the function. Then, the jth 
component of the ΔW weight-increment vector is: 
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where E(Bk) is an evaluation of behaviour Bk and δ∈[-1,1]. At time t=0, the ith 
component of the behaviour weight vector is: 
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where β is the number of the feasible behaviours. 

Behaviour selection mechanism – this mechanism assigns the behaviour weight to 
the corresponding behaviour (sel: W→Bk.). The behaviour selection mechanism 
can work in two ways: 

a) selection based on the probability of the behaviour weight vector distribution: 

;| )( kwPkk BB =ς  (31) 

b) selection based on maximum weight: 

;| ),..,max( 21 Nk wwwwkk BB ==ς  (32) 

After behaviour selection the agent moves along in the selected direction, with 
step size d0. Let us mark the position at time “t”→Pt, and at time “t+1”→Pt+1. In 
this case this whole process (action) can be defined as [15]: 
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The next step in behaviour based robotics was, mainly in environments where 
multi-agent robot groups occur, that for the selecting of near optimal behaviour 
genetic algorithms and/or neural networks were used. In this paper the near 
optimal behaviour is selected through a genetic algorithm which is working with 
two fitness functions. The essence of behaviour-control is that the agents are 
organized into robot groups, the efficiency of the individual agents is evaluated, 
and then based on this evaluation the next “action” is selected. In “action”, the 
direction selection is considered with two situations. The first is the spatial 
distribution of agents (when the distance between two agents i and j is less than 
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the given threshold distance: dij≤R2). The second is the area coverage, when 
dij>R2. 

Spatial distribution - For the reference robot i, and m – neighbouring robots, is 
valid: 
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Area coverage: 
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where, dim is the distance between robot i and m, then md is the number of group 
robots inside of R2 threshold limit, γm is the relative angle of motion direction (see 
Figure 3, where mth agent is moving to Pj location and θi≡ρi), and 0

nD is the nth 
component of L0 vector. 

Let the significant proximity direction a time t be u
iθ  (that is the direction of the 

ith agent’s motion is u, where u is one of the 8/16 sensing sectors: u∈[1..N]). 
There exists a probability vector ϖi, where the components express the efficiency 
of (34) and/or (35) if the motion was executed. This ϖi vector can be written as 
follows: 

ϖi=[φ1, φ2, … ,φN];

where φk∈[0,1] and ;1
1∑ =

=
N

k kφ . In case if the agent in the next motion (at time 

t+1) selects a different motion direction “v”, (v∈[1..N]), denotes it by v
iθ , then 

the kth component of the ϖi vector will be updated as follows: 
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where ψ is a positive coefficient. As a result of permanent updating some motion 
directions become more significant than others. 
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7 Genetic Algorithm 

In this system the near optimal motion direction is selected through a GA. The 
simplified operation of the genetic algorithm works as follows: 

 The fitness of each member in a GA population is calculated according to an 
evaluation function (fitness functions), which measures how well the 
individual performs. 

 Individuals performing well are propagated in proportion to their fitness; on 
the other hand, the poorly performing members are reduced or eliminated 
completely. 

 By exchanging the information between members it is possible to create new 
search points, by which the population explores the search space and 
converges in an optimal solution. 

To find and represent these new search points, the GA uses its operators. Several 
operators are known, but the three most frequently used ones are: reproduction 
(selects the fittest members and copies them exactly; crossover (swapping some 
part of their representations.); mutation (prevents the loss of information that 
occurs as the population converges on the fittest individuals). 

In every step the mobile robot checks its environment, then according to the 
vectors (34), (35) and the probability vector ϖi, (what is the result of the learning 
process), next motion direction is selected. In compliance with this probability 
vector, the GA population will be determined on the basis of this ϖi vector. The 
structure of this whole system can be seen on Figure. 6. 
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Figure 6 

The architecture of the system 
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Inside the dashed lines the GA module can be seen. For chromosome 
representation let us define a 2D coordinate frame, centred at the current location 
of the agent, and square bounded, where the sides are determined by the maximal 
step size (2.dm+1). In accordance with this, the local region for the agent’s next 
movement is: x’, y’∈[-dm, dm]. Moreover, let us suppose that (2.dm+1) 
corresponds to a binary string L, following from the fact that location within the 
local region can be represented by two binary values, with length L. For the 
behaviour evolution of a single agent, we can use a chromosome of length 2L, and 
for a group with M robots it is 2LM. 

The fitness functions – In this system 3 fitness functions are used, out of which the 
1st is the general fitness function (fg), used for exploring less confident regions and 
for avoiding the repetition of other agents’ work [13]. 
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where tk
iw  is the confidence weight corresponding to the location of agent i, then 

m is the number of agents grouped together during one evolutionary movement 
step, me is the number of robots which do not belong to m, that is the inter-
distance between two robots i and j is greater than R1 (dij>R1). The 2nd and 3rd 
fitness functions are special functions, and correspond to the criteria of multi-
robot spatial diffusion and area coverage, see relations (34), (35). 
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where, md is the number of robots with inter-distances dij>R2, where mc is the 
number of area-covering robots, Δν is the number of location visited by agents mc 
and ξi is the proximity distance between robot i and other agents. The complete 
fitness function can be defined as follows: 

;
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8 The System Error 

At simulation systems the question of system errors is not avoidable. There are 
several possibilities to error definition. Usually at models related to mobile robots, 
we can define errors arising from: a) non-ideal mathematical models, b) 
discretization of the work space. Of course each of these errors is repairable. The 
1st is repairable by the more exact mathematical models, and the 2nd one by 
scaling. In the present system, the error arising from discretization of the WS is 
formally defined as follows [13]: 

;)ˆ~(1
1

2∑
=

−≅
K

j
j

t
j UU

K
tε  (41) 

where K, denotes the total number of locations in the potential field map, and 
j

t
j UU ˆ,~  belongs to the estimated and true potential field values at position Pj(xj,yj). 

Conclusion 

It is a simulation system for potential field building process in the multi-agent 
domain that has been described in this paper. The aim is to provide an opportunity 
for studying the behaviour vectors of agents, for the sake of selecting the near-
optimal behaviour. 

The aims stated in the first section (aims & motivation) have been fulfilled. A 
working multi-agent based simulation model has been created and the features 
mentioned in the second section (introduction), namely “more efficiency”, have 
“more or less” been realised as well. Let us look at one of the most important 
elements of the list: “faster and more accurate”. An unambiguous answer is given 
in Appendix 5, where on Figure 12 it is clearly seen that in case of a single agent, 
the system was not able to create the potential field in 30 steps, while in case of 3 
or 6 agents (Figures 13 and 14) it was accomplished successfully. Another 
conception of mine was that the basic problems of trapping and oscillation will be 
solved by a GA algorithm. The idea has proved to be successful too, as seen in the 
5th interval on Figure 15b in Appendix 6, where in case of single agent the 
problem is clearly visible, while on Figures 16 and 17 (in case of 3 or 6 agents) 
this problem is not present. The reason why I used the words “more or less” above 
is because I expected slightly better results from the aspect of area coverage. In 
my view, in case of 6 agents it is possible to improve the area coverage by tuning 
the GA parameters and fitness functions. 
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Appendices 

This paper contains 6 appendices. In Appendix 1 the geometrical 2D map of the 
WS and its exact potential field can be seen. Appendix 2 includes tables with 
system parameters, GA parameters and computer parameters, used in the 
simulation. In Appendix 3 the starting positions of mobile agents can be found, 
while Appendix 4 contains the table and graph of running times with different 
number of agents and sensors. In Appendix 5 the resulting PFs are seen, also built 
up by different number of agents and sensors on the agents, while in Appendix 6 
the wandered trajectories are represented in 6 intervals. 

Appendix 1 

The Workspace and its exact potential field 

 

 

 

 

 

 

 
 

Figure 7 
The WS in 2D with two obstacles 

 

 

 

 

 

 

 

 

 

 
 

Figure 8 
The exact PF of WS 
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Appendix 2 

Tables of parameters used in the system and in the GA 

 

Table 1 
System parameters 

Description Unit Value 
   
The loaded WS size unit 195 x 120 
WS resolution (grid width) grid 3 

Normalised WS 
GridWidth

Y
GridWidth

X ;  40 x 65 

Maximum movement step (dm) location 7 
Behaviour-vector increment  0,2 
Threshold distance R1 grid 10 
Threshold distance R2 grid 15 

 

Table 2 
Parameters used in GA 

Description Unit Value 
Robot description (in GA)  bit 8 

Population size (P)  20/3045/65/90/120 
Generations per step  8/12/18/26/36/48 

Crossover probability (pc)  0,6 
Mutation probability (pm)  0,1/0,05/0,005 

   

 

Table 3 
Computer parameters 

Description Unit Value 
Operation system  WIN-XP, prof. 
Processor clock GHz 1,60  

RAM size Mbyte 512 
   

 

 

 



Acta Polytechnica Hungarica Vol. 6, No. 4, 2009 

 – 129 – 

Appendix 3 

The starting positions of the mobile robots 

 

 

 

 

 

 

 

 

 
 

Figure 9 
Starting position of 1 agent 

 

 

 

 

 

 

 

 

 

 

Figure 10 
Starting positions of 3 agents 
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Figure 11 
Starting positions of 6 agents 

Appendix 4 

Table of results 

Table 4 
The Running Times 

 

Running Times 
(in seconds) 

Maximum number of steps 5 30 
Number of sensors 8 16 8 16 
Number of robots ↓     

1 37 31 208 195 
3 77 150 595 657 
6 177 240 1162 1521 
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Graph-1: The running Times
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Appendix 5 

 

a.)
b.)

Figure 12 
The resulting PF of WS, built up by 1 agent in 30 steps 

a) 8 sensors, b) 16 sensors 

Figure 13 
The resulting PF of WS, built up by 3 agents in 30 steps: 

a) 8 sensors, b) 16 sensors 

a.) b.)
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Appendix 6 

 
Figure 15a 

Trajectories of 1 agent, in 6 intervals, MaxRunStep=30, 8 sensors 

 

Figure 14 
The resulting PF of WS built up with 6 agents in 30 steps: 

a) 8 sensors, b) 16 sensors 

a.)
b.)
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Figure 15b 

Trajectories of 1 agent, in 6 intervals, MaxRunStep=30, 16 sensors 

 
Figure 16a 

Trajectories of 3 agents, in 6 intervals, MaxRunStep=30, 8 sensors 
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Figure 16b 

Trajectories of 3 agents, in 6 intervals, MaxRunStep=30, 16 sensors 

 
Figure 17a 

Trajectories of 6 agents, in 6 intervals, MaxRunStep=30, 8 sensors 
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Figure 17b 

Trajectories of 6 agents, in 6 intervals, MaxRunStep=30, 16 sensors 
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