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Abstract: In this study we show that sometimes it is worth to consider a non-traditional 

regular grid in diagrams and proofs by diagrams instead of the traditional rectangular 

arrangement. We refer to the hexagonal and triangular grids as non-traditional regular 

grids. Particularly, we show that not only triangular numbers can be arranged in triangular 

shape, but also, it is natural to represent the square numbers via triangles on the triangular 

grid. On the other hand, we show that hexagonal arrangement is useful to represent binomial 

coefficients, and also to solve jug puzzles. The triangular and hexagonal grids are dual of 

each other and share many properties including symmetric properties. Based on our study, 

we propose to consider them more frequently in education and diagrammatic applications 

as well. This would be fruitful also for critical thinking, design and problem solving in 

mathematics, engineering and informatics including artificial and computational 

intelligence. 
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1 Introduction 

In mathematics and many disciplines that uses (applied) mathematics and/or 

computations, x-y plots are essential to display results. Plots and diagrams play 

significant importance in education and they are main tools of human computer 

interactions as well. Based on the well-known Cartesian coordinates, they are used 

to display, examine and analyze functions. They have both theoretical and practical 

importance. More generally viewing, diagrams are useful tools in various 

disciplines. On the one hand, they are used in geometric and other mathematical/ 

computational proofs and problem solving including artificial and computational 

intelligence, as well as in engineering, mechanics and other physics related 

disciplines [3]. On the other hand, they are used to represent data in many other 

fields including statistics, psychology, sociology and in industry, just to mention a 

few. A diagram could summarize plenty of observations and statements including 
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comparisons, developments, etc. [19]. There are two main classes of diagrams, 

continuous and discrete diagrams, depending on the nature of the data (and the 

domain from where the data are taken) that is displayed by them. In this paper, we 

consider discrete diagrams, in the sense that we are using discrete sets (either finite 

sets or maybe a portion of some discrete sets, e.g., the set of integers) as domain 

and also the values are from a discrete set, e.g., nonnegative integers. 

There is a wide variety of diagrams that are frequently used for various aims. One 

of the most known diagrams are the column/bar diagrams which are appropriate to 

represent some data on a (finite subset of a) discrete domain. In these diagrams, 

depending on the “dimension” of the domain, the columns are usually arranged in 

a line, Fig. 1 (left) or, in case of two-dimensional domain, in a rectangular format, 

Fig. 1 (right). In this paper, we show that sometimes other arrangements could be 

more beneficial (even if, the most popular and known software tools do not support 

to create such diagrams in an easy way). 

     

Figure 1 

Usual format of column diagrams having one-dimensional (maybe linear) domain (left) and two-

dimensional domain (right) 

The structure and the content of the paper are as follows. In the next section we 

recall some details of the hexagonal and triangular grids with their symmetric 

coordinate systems. The triangular grid consists of equilateral triangles and forms a 

closed surface without gaps by the rotation of every second triangle. The hexagonal 

grid consists of equilateral hexagons, which also form a closed surface. Special 

coordinate systems, which are recalled, with coordinate triples are used for both 

grids to represent the movement along the main axes. Due to restrictions that the 

sum of the coordinates in the triplet is a fixed value, these are basically 2-

dimensional. In Section 3 we show figural numbers and especially, as a novel result, 

we show how the triangular grid can represent squares. Section 4 is about the 

binomial coefficients and their beneficial representation on the hexagonal grid 

implied by the detailed comparison of the square and hexagonal grid approaches.  

In Section 5 jug problems are represented on a non-traditional grid. These represent 

various usages of diagrams to aid thinking about mathematical and computational 

problems. Finally, in Section 6 we conclude the paper by motivating teachers and 

researchers to use non-rectangular grids for the representation of suitable problems. 

Also, we sketch the use of non-cubic grids in the 3-dimensional domain. 
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On the one hand we give some really new material, e.g., about the square numbers 

in the triangular grid, but we also recall some known things to highlight them for 

this new perspective we propose here, e.g., jug problems. The binomial coefficients 

are usually represented by the Pascal’s triangle (either on the square or on the 

hexagonal grid), we give a comparison by highlighting the “hidden” difference and 

we give an argument supporting the hexagonal grid approach. Up to the knowledge 

of the author there is no such work exists in the literature where the regular grids 

are compared by this perspective, i.e., how can we use them in education or in 

human-computer interaction to solve mathematical puzzles and problems and/or to 

use them to do and display inductive geometrical proofs in number theory. On the 

other hand, there are various algorithms known for these regular grids including 

some in image processing and computer graphics [6, 31], while the non-traditional 

grids are also frequently used in computer games [28]. The main aim of the paper 

is to open the eyes of the researchers, teachers and problem solvers by showing that 

state space representations, computer programs as well as mathematical 

descriptions and proofs can be done in a simpler way by finding a more suitable 

non-traditional grid based representation of the problems. 

2 Non-Traditional Regular Grids: the Hexagonal and 

the Triangular Grids 

In this section we recall and present the three regular two-dimensional grids. Each 

of them is based on a regular polygon, a tile (that is of fixed size, but maybe rotated), 

that is able to tessellate the entire plane without overlaps and holes in a monohedral 

and isogonal way (that is, the tiles are identical, and also the crossing points of the 

grid are identical) in edge-to-edge manner (that is if two tiles share more than one 

point on their boundaries, then they share a full edge, i.e., the sides of the respective 

polygons). There are three regular polygons that can be used for this aim; they are 

the squares, the equilateral triangles and the regular hexagons. We name the grids 

by the tiles that are used, and thus, we discuss the square grid, the triangular grid 

and the hexagonal grid. Sample parts of these grids are shown in Fig. 2. It is an 

important fact that grids have duals, which are obtained by exchanging the roles of 

regions and vertices of their graph, i.e., by putting points to the midpoints of the 

regions/tiles and connecting those by lines, which belong to tiles that have an edge 

in common. In this sense, the dual of the square grid is a square grid, but the 

hexagonal and triangular grids are dual grids of each other. 

Whenever one uses a grid, it is essential to have an easy-to-use elegant scheme to 

address the parts used, here the tiles. For the square grid the well-known Cartesian 

coordinate system fits, by restricting the coordinates to integers (Fig. 2, left). Since 

the Cartesian system already appears in elementary school, and the pupils use 

square-patterned exercise books, the square grid is widespread. Whenever 

somebody is talking about the “digital world” including digital image processing, 
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computer vision, printing, etc., he or she almost always thinks only of the square 

grid. However, as we also argue here, the world is not arranged in this way, one 

may consider other grids that could have some more beneficial properties depending 

on the application. 

The hexagonal and triangular grids have also easy-to-use symmetric coordinate 

systems. The tiles of the hexagonal grid can be addressed by zero-sum integer 

triplets based on Her’s papers [11, 12]. See Fig. 2 (middle). Lanes are those 

sequences of tiles that share a fixed coordinate value. They play similar role in this 

grid, as columns and rows play in the square grid. As the coordinate system reflects 

well the symmetry and the structure of the grid, the coordinate difference of two 

neighbor tiles is +1 and –1 in two of the coordinates, while the third coordinate 

value is shared for these tiles. 

The analogous symmetric coordinate frame for the triangular grid is shown in Fig. 

2 (right) [20-22, 30]. Lanes are also defined analogously to the hexagonal case. 

Notice that, the triangular grid is, in fact, not a point lattice, there are two different 

orientations of the tiles, and vectors connecting differently oriented tiles do not 

translate the grid into itself. The coordinate system, however, is reflecting the two 

types of tiles by using 0-sum triplets for even tiles ( oriented in our figures) and 

1-sum triplets for odd tiles (, respectively). The terms even and odd tiles fit well 

in this context, as all neighboring tiles (that share a side) is of opposite type than the 

original tile, and their coordinate triplets are obtained by adding (subtracting) 1 for 

a coordinate value, if the original tile is even (odd, respectively). The triangular and 

hexagonal grids are closely related and share some symmetric properties. 

 

Figure 2 

Some parts of the three regular tessellations: the square grid (on the left), the hexagonal grid (in the 

middle) and the triangular grid (on the right) with their symmetric coordinate systems. Lanes are also 

highlighted in the latter two grids. 

We underline again that since the hexagonal and triangular grids are graph theoretic 

duals of each other, there is a confusion of their names also in the scientific 

literature. In applications similar to communication networks, usually the grid 

points, the crossing points of the edges are addressed and used, while in graphical 

algorithms, in image processing and analysis, the hexagons/triangles are used and 

addressed as pixels. Here, in the paper, we use the convention that the grid is named 

after its tiles in the tessellation, which fits the latter approach. On the other hand, 
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sometimes the name honeycomb grid is also used in the literature, e.g., in relation 

to networks [30], and it usually refers to the triangular grid in our terminology. 

3 Triangular Numbers and Squares 

3.1 Usual Diagrammatic Representations (based on Hexagonal 

and Square Grids) 

Already the ancient Greeks have defined and used figural (also called figurate or 

figurative) numbers which were defined as the number of small stones arranged in 

a geometric form. The most known such numbers are the squares, but also the 

triangular numbers have a large literature [7]. Fig. 3 shows some of these numbers 

in the usual diagrammatic representations. 

 

Figure 3 

Some triangular numbers (top) and squares (bottom) as figurate numbers 

While the square numbers 𝑛□ can be computed as squares of natural numbers, i.e., 

there is a well-known operation that yields exactly to those numbers 𝑛□ = 𝑛2, there 

is no direct mathematical operation is used to get the triangular numbers. On the 

other hand, by the structure of the shape, it is easy to see that 

n = ∑ in
i=1  (1) 

which in fact results  

𝑛 =
𝑛(𝑛+1)

2
 (2) 

for a triangle having n stones in each of its sides. 
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As one can observe, the stones are put in a triangle shape, but their neighborhood 

refers to the hexagonal grid (as we showed by the grey color). On the right side of 

the figure it is also shown how the next number can be obtained in the general case, 

e.g., the proof of 

(n + 1)2 = n2 + 2n + 1 (3) 

is displayed. In the next subsection, we investigate the number of stones in a triangle 

shape when the underlying grid is the triangular one. 

3.2 Representing Squares on/with Triangles 

In the previous part we have shown that triangular numbers and square numbers are 

usually represented by hexagonal and rectangular arrangements, respectively. One 

may ask, what about if the triangular grid is used as a basis of the representation.  

In this subsection we investigate this topic and show its significance. We also give 

geometric proofs for some interesting number theoretic facts by applying our 

diagrams. 

Figure 4 shows some of these diagrammatic shapes. On the right hand side of the 

figure we also show the “construction” for the proof of the next statement. 

 

Figure 4 

Square numbers in triangular shapes in the triangular grid. Even pixels are with black stones, odd 

pixels are with white stones (left). The number of light blue stones/balls (on even pixels) is n on the 

right, similarly there are n orange bordered balls (on even pixels) and the same number of black 

bordered orange balls (on odd pixels). The number of brown balls is n + 1.connections 

Proposition 1. The number of stones in the triangle having side-length n on the 

triangular grid is exactly n2. 

Proof. It goes by induction. 

Base case: n = 1, 

12 = 1, (4) 

and the first (leftmost) figure contains exactly 1 stone. 

Hypothesis: the equilateral triangle with side length k contains exactly 

k2 (5) 

stones (triangles). 
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Proof of inheritance: we obtain the equilateral triangle with side length k + 1 by 

adding some triangles of the next lane, especially, number k odd and number k + 1 

even triangles, altogether 2k + 1 triangles are added. This with the hypothesis (5) 

gives 

k2 + 2k + 1 (6) 

triangles which number is the same as 

(k + 1)2. (7) 

            □ 

Moreover, from Fig. 4, by observing that in fact, the black and white stones 

represent two consecutive triangular numbers, i.e., 𝑛 of even triangles (with black 

stones on them) and (𝑛 − 1) odd triangles with white stones on them (n > 1), we 

can deduce the following result by having this new diagrammatic proof. 

Proposition 2. The sum of two consecutive triangular numbers is always a square, 

i.e., 

(𝑛 + 1) + 𝑛 = (n + 1)2. (8) 

If one thinks about subsets of the grids having these special shapes, they can also 

be defined by their coordinates in an elegant way, and thus, the triangular grid 

should not be discriminated against the square grid. While a square with “area” of 

n2 can be defined on the square grid with the pixels 0  x,y  n, a triangle with of n2 

triangle pixels is defined, e.g., by x,z  0 and y  n. Further, |x|,|y|  n, on the square 

grid defines square with side-length 2n+1 and, thus with (2n+1)2 pixels. On the 

triangular grid |x|,|y|,|z|  n defines triangle with side-length 3n+1 and, thus with 

(3n+1)2 pixels. In some cases, and very often in computerized scenario, one can 

limit the values of the variables according to the fact that only a finite segment of 

the discrete space is really needed. The description we gave above is also helpful 

from this point of view, showing the relation of the number of possible states and 

the possible values of the variables. As we have shown, the triangular grid gives a 

nice analogy of the square grid even in diagrammatic thinking and proof techniques 

based on the symmetric coordinate system recalled in this paper. 

As we can see, representing the squares, as well as the proof that the squares are 

represented by the equilateral triangles on the triangular grid is as natural as their 

representation and proof on the square grid. Actually, the result we have presented 

in this section is related to the coarsening property of the square and triangular grids 

[9] that can be used in various applications, e.g., imaging and cartography. This 

property says that a pixel can be divided into equal-sized same-type regular, but 

smaller pixels. This refinement in both of these grids means that a pixel can be cut 

to n2 pixels (for any natural number n). For the sake of completeness we should note 

that the hexagonal grid does not have this property, a hexagon tile cannot be cut to 

smaller identical regular hexagons. 
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In the next sections we present such examples when the usage of non-traditional 

grids has a real advantage. 

4 Diagrams of Binomial Coefficients 

It is a well-known way to compute the binomial coefficients by the Pascal’s triangle. 

Let us go a little bit closer and see what should be the underlined grid for, e.g., a 

column type diagram showing some finite segment of the Pascal’s triangle.  

As usual, the numbers of the triangle are written in lines below each other. The next 

row is written below the previous one and the values are inserted in the space 

between the values of the of the previous row, one may think about two options: 

either to put the numbers in a square grid, but rotate the grid by 45; or to arrange 

the numbers according to the hexagons of the hexagonal grid (see Fig. 5 for both 

options). Here, we are arguing for the latter option. For this, let us see how the 

“neighbor” numbers are related to each other (see the arrows on the figures).  

To work with binomial coefficients, let us have n marbles in a row such that k of 

them are (identical) red and the rest n – k are (identical) blue. The binomial 

coefficient (
𝑛
𝑘
) gives the number of ways to put our marbles in a sequence.  

The neighboring elements represented by the blue solid arrow show scenarios when 

we got a new blue marble, the red solid arrow shows the case when a new red marble 

is provided. Broken arrows show that we have removed a blue or a red marble, 

respectively. Yellow arrows show that how it could be that we got one extra marble 

and now we have, e.g., n + 1 marbles such that k of them is red (n = 5 and k = 4, in 

the left side of the figure). In this way, the two yellow arrows should be considered 

together. Consequently, the addition rule can be applied showing the identity 

(
𝑛

𝑘 − 1
) + (

𝑛
𝑘
) = (

𝑛 + 1
𝑘

) (9) 

for n  k > 0. On the left, on the square grid we have considered all four neighbors 

of a cell. However, the neighborhood shown by green color on the right also carries 

some information. The green solid (broken) arrow shows the change of the scenario 

by changing, i.e., recoloring one of the blue marbles to red (vice versa, 

respectively). Let us consider the part of the grid with these numbers such that the 

top hexagon is addressed by (x,y,z) = (0,0,0) meaning that we have x red, z blue and 

altogether y marbles. We are using actually that sextant of the grid where y  0 and 

x,z  0. Thus, to have a valid meaning of the coordinates in our marble scenarios, 

we use the absolute values of the coordinates presented in Fig. 2 (middle). In this 

way, it is straightforward to see that the blue solid arrow direction is increasing the 

y and z coordinates (adding a blue marble), the red solid arrow direction is 

increasing the x and y coordinates and the green solid arrow direction is increasing 

the x and decreases the z. The unmentioned third coordinate does not change in 

these movements. Broken arrows act in opposite way, respectively. Moreover, the 

directions of the green arrows, the horizontal lanes of the hexagonal grid gives all 
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the possibilities when we have exactly n marbles, the values in these lanes sum up 

to 2n showing that if any marble could be red or blue, we have actually, that many 

possibilities to list the n marbles (two color, two possibilities for each marble and 

multiplication rule is applied). Actually there are various places in the literature, 

e.g., [13], where the binomials are written not with two, but with three values, such 

that the sum of the two values in the lower part is the upper value. This writing, i.e., 

(
𝑛

𝑘, 𝑛 − 𝑘) reflects well that behind the scene the hexagonal structure should be 

understood. Moreover, this notation also underlines the other important identity 

among binomial coefficients, i.e., the symmetry 

(
𝑛

𝑘, 𝑛 − 𝑘) = (
𝑛

𝑛 − 𝑘, 𝑘). (20) 

The lanes of the grid along two of the three lane directions reflect the scenarios 

when the numbers of the red and blue marbles are fixed to k and n – k, respectively, 

and finally in the green arrows direction, the sum, the total number of marbles is 

fixed (to n). Thus, it is beneficial to design a column diagram for the binomial 

coefficients with a two-dimensional domain by arranging the columns in a 

hexagonal structure. 

 

Figure 5 

Binomial coefficients represented on grids with their relations 

Note that both in the square and in the hexagonal grid cases, the binomial 

coefficients on the pixels show the number of shortest paths to the given pixel from 

the top most pixel, where a path is going through on neighboring pixels. 

The application of the hexagonal grid for binomial coefficients served as an 

argument in favor of the hexagonal approach. 

5 Solving the Jug Problem 

In problem solving in general, as well as, particularly, in Artificial Intelligence, it is 

crucial how the problem is represented (in mathematical, formal way and also on 

the computer) [15, 16]. By having an elegant representation, the problem and also 
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its solution can be simplified a lot. In this section, we present such an example, 

when a non-traditional grid could help a lot. 

As we have seen the hexagonal grid is opt to represent triplets with a fixed sum. 

Although in Fig. 2 (middle) the coordinate system uses 0-sum triplets, as it is shown, 

e.g., in [22], any fixed sum integer triplets can be used. In the most known jug 

problems three jugs with various capacities are used and the sum of the water in 

them is fixed by the initial condition, e.g., the largest jug is full initially, the others 

are empty. The task is to measure a given amount of water that is usually not 

identical to the capacity of any of the jugs used. The rule that allows one to pour 

water from a jug (let it be called source jug) into another (target jug, respectively) 

is as follows: let the amount of water in the source jug be s, and let the capacity of 

the target jug be c, while the actual amount in it is t (c  t); then the player can pour 

(transform) exactly  

min{s, c – t} (11) 

amount of water. The amount either fits the target jug or this amount empties the 

source jug. The problem is well known in Artificial Intelligence and also plays an 

important role in the teaching of algorithmic solutions for artificial intelligence 

problems. Here, we present the specific problem with jugs of capacity 5, 3 and 2 

liters and with initial state having 5 liters of water in the largest jug. The goal could 

be to obtain either 1 or 4 liters of water in a jug (to obtain 2 or 3 liter is obvious by 

the size of the two other jugs). Now instead of the hexagons, we use the dual 

representation and use the gridpoints to represent the possible states of the problem. 

 

Figure 6 

Diagrammatic representation and solution of the jug problem with jugs with 5, 3 and 2 liters, starting 

with the largest jug full 

Fig. 6 on the left shows the grid, where triplets (A,B,C) represent the amount of 

waters in the jugs of size (5,3,2), respectively. Lanes with different color show the 

states where the amount in one of the jugs is fixed. Some of the states of the left 

figure are excluded because of the capacities of the jugs. The blue parallelogram in 

the middle represents the given constraints (red values show the coordinates 

representing invalid values). One can see that only triplets of the lanes B  {0,1,2,3} 

and C  {0,1,2} are allowed. By the constraint the problem have 12 possible states. 



Acta Polytechnica Hungarica Vol. 19, No. 4, 2022 

‒ 37 ‒ 

An operation from a state to a state is to move in the graph along a lane until one 

reaches the border of the parallelogram. The yellow arrows represent a path which 

touches all the 10 states that can be reached in the problem with the specified 

operations: 

(5,0,0)  (2,3,0)  (2,1,2)  (4,1,0)  (4,0,1)  (1,3,1)  (1,2,2)  (3,2,0)  

(3,0,2). 

The direction (and orientation) of the arrows, the operations applied show which 

two jugs were considered (the third one has a fixed value along the direction 

considered, i.e., the lane embedding the arrow), the direction of the arrow shows 

from where the water is poured to where: 

- Horizontal arrows from left to right show operation to pour water from B (3 liter 

capacity jug) to C (2 liter capacity jug), while opposite direction arrows show 

operation to move water from C to B; in these movements jug A, the 5 liter capacity 

jug does not change its water contents (these operations are moves on the blue lines 

on Fig. 6, left). 

- Moving along the green lanes of Fig. 6 (left), down-left direction arrows represent 

operation from A to C, right-up direction represents from C to A, left-up direction 

represents from B to A, and finally, right-down direction arrows (red lane 

directions) stand for operations that move water from A to B. 

Since all the reachable states are touched in the previously described path, the 

solution of any problem can be read, e.g., 1 liter can be obtained after 2 operation 

applications, while 4 liter can be obtained in the largest jug after 3 operation 

applications. One can also see that some states cannot be reached, i.e., there is no 

way to get (3,1,1) and (2,2,1) if none of them were the initial state. We note that in 

our special case, the operations of our path are invertible, one can go back to some 

earlier stage, which is however, not the case in many analogous jug problems. 

Related problems are nicely studied in [5] with some geometric thoughts, using 

reflections, i.e., when an operation is not represented by the side of the 

parallelogram, its arrow touches the boundary in a state, and if this state is not the 

corner of the parallelogram, then the “reflection”, similarly as the light is reflected 

on a mirror gives the next operator that can be used. In this way, the chain of 

operations used can also be seen as a billiard ball experiment by listing the states of 

the border touches of the ball when it reflects ideally on the sides of the 

parallelogram (when the initial state is not in a corner of the parallelogram). 

A solution of the jug problem with the dual representation of the hexagonal grid is 

depicted clearly showing that the usage of non-rectangular grids for the 

representation of problems can have advantages compared to rectangular grids. 

In general, we can state that a computer program can be much shorter and faster, 

moreover it is easier to design/follow it if the appropriate representation is used. 

However, in the program it may not necessarily be stored and will use a third 

variable if three variables have a fixed-sum: For instance, in the case of the 
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hexagonal approach above, one may store only the actual values of the contents of 

the first two jugs, A and B as, let us say, x and y, and from those the content of the 

third jug, C, can always be determined as 5 – x – y. The important thing is not 

actually, the number of variables used in the implementation, but the picture, the 

diagram of the problem behind the scene in which here we used the third value even 

if it is dependent on the first two values. With these comments we have arrived to 

the last part of the paper. 

Discussion, Conclusions and Further Thoughts 

In this paper, it was shown that it is worth to consider a non-traditional 

representation of a problem. Diagrams based on non-traditional two-dimensional 

regular tilings were discussed. We have started with the comparison of the 

representations of triangular numbers in the hexagonal grid with square numbers in 

the rectangular grid as a motivational example. We have shown that a different view 

could be beneficial, it may give a proof or a technique with the same simplicity or 

even simpler way than using the rectangular representation of the problem. 

Especially, we have shown that equilateral triangles on the triangular grid represent 

the square numbers, and the difference of two consecutive square numbers can 

easily be seen on their diagrammatic representations. We have shown that a 

(general) binomial coefficient has six neighbors, each with a specific meaning, thus 

the hexagonal grid is more comfortable to use for representing Pascal’s triangle than 

the square grid. Finally, the jug problem is recalled, and again, even though the 

states of these problems have only two parameters, it is fruitful to use a 

representation that based on three variables but have a fixed sum. Our results are 

not only important in educational purpose, e.g., in computer aided teaching, but also 

play significant role for system designers and researchers, when thinking about the 

best ways of human computer interaction or data visualisation in their fields. As we 

have clearly shown, using problem-specific grids makes sense and simplifies many 

issues, in particular some representations. One of the most important open questions 

here is to characterize when it is better to use, e.g., two independent variables and 

not naming and referring the others or to use three named variables with a constant 

sum (see the jug problem). Mathematically these descriptions are equivalent, but 

from simplicity, from diagrammatic and reasoning point of view they are different. 

There is no general rule found yet, but one needs to think carefully when choosing 

the representation of the problem. The reasoning, the problem solving, the algorithm 

and the computer program could be easier and simpler, if additional meaningful 

values are computed and used, even if they are determined by the free variables. 

In the paper we have treated only discrete problems with discrete diagrammatic 

tools, however, as the Cartesian coordinates can be used for the whole plane, also 

the hexagonal and triangular coordinates have such extensions [1, 12, 23], thus in 

the future continuous diagrams can also be expanded by changing their domain from 

the rectangular to the hexagonal or to the triangular grids. On the other hand, there 

are many other useful two-dimensional grids, e.g., some semi-regular grids and their 

duals (cf. [2, 4, 10, 17, 18, 27, 29]). 
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The hexagonal grid is optimal in the sense that the smallest length of the grid lines 

is used to create a grid, this is why the bees use this structure and this is where the 

name honeycomb comes for this type of drawings. Also, among the two-

dimensional grids the hexagonal grid provides the best packing density (by putting 

equal-sized disks, the most efficient way is to arrange them according to a 

hexagonal grid that gives the places of the disks as the inner circles of the hexagons). 

In three dimensions, it is not the cubic that grid gives the best sphere packing 

structure, but, e.g. the face-centered cubic grid [14] which can be seen, in this term, 

as the three-dimensional generalization of the hexagonal grid. On the other hand, in 

the case of the hexagonal grid it holds that, for each pixel, if they have a common 

boundary point, they share a full side, thus, there is only one type of neighbor 

relation among the pixels. This is not true for the square and triangular grids which 

may lead to some topological paradoxes. For instance, considering also diagonal 

neighbors on the square grid, one may have two lines which cross each other 

without a common tile: the two diagonals of a chessboard are built up by black and 

white squares, respectively, thus clearly they have no common tile (square). 

Considering only the closest 4 neighbors of each square, one may “draw” a closed 

curve which may have multiple insider regions causing another topological 

paradox, i.e., the Jordan curve theorem does not hold for this digital scenario. There 

is no such problem on the hexagonal grid, the digital (grid) analogue of the Jordan 

curve theorem holds. The cubic grid has also various pairs of cubes that share 

point(s) on their boundary, but they do not share a full square side, thus it is also 

paradoxical, and thus, there are various difficulties when one wants to use it in three-

dimensional graphics and imaging. The body-centered cubic grid, in three 

dimensions, gives such a tessellation of the space that any voxel (Voronoi cell of 

the tessellation) has only neighbors where either a full hexagon side or a full square 

side is shared. In this way objects made in this grid will stay connected and do not 

fall apart. In this sense the body-centered cubic grid can be used as a generalization 

of the hexagonal grid to three dimensions [14]. Finally, the three-dimensional 

analogue of the triangular grid is the diamond grid representing the structure of the 

connections of the Carbon atoms in the diamond crystal [8, 24]. Some efficiently 

used coordinate systems for these three-dimensional grids are provided in [25, 26], 

some of them use more than 3 coordinates, but restrictions on the sum of the values. 

We believe that diagrammatic thinking and applications of diagrams based on the 

non-traditional grids is fruitful, but less known areas for the community. As we have 

shown by our case studies, there are various problems where the use of non-

traditional grids gives some advantages. With this paper, we invite everybody who 

is interested to contribute to this direction as well. 
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