
Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 7 –

A Session-based Approach to Autonomous

Database Tuning

Krisztián Mózsi, Attila Kiss

Eötvös Loránd University, Faculty of Informatics

Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

mozsik@inf.elte.hu, kiss@inf.elte.hu

Abstract: By using autonomous tuning tools to optimize database systems, a lot of time-

consuming, manual work can be automated. However, self-tuning database systems are

trying to optimize global metrics of efficiency, they may set back rare, but critical functions

of applications that use the database. The priority of application functions cannot be

expressed in existing solutions, therefore, another approach may be needed. In this paper,

a session-based method is presented, where application functions are represented as

sessions, by building and using language models based on previous observations. With this

technique, a similarity measure can also be defined, to interpret minor differences between

sessions caused by program logic, as similarity. If usage patterns appear on user level as

well, it is reasonable to construct user groups along similar behavior, to utilize such

patterns. As the most significant part of an autonomous solution is forecasting, a method is

also presented to predict future workload characteristics, by identified user groups. Then,

this approach has been evaluated in practice, mainly to determine the optimal corpus size

and validate session recognition.

Keywords: self-tuning database; autonomous system; dynamic database tuning; response

time optimization

1 Introduction and Related Work

Optimization of database systems is quite a hard and diversified task, thus several

subtopics can be identified. The main goal of them is usually common, namely to

improve a numeric value, which characterizes database performance well. This

metric may be throughput, response time or a sort of resource utilization of

executed queries.

It is desirable to be concerned with the exploitable opportunities on the level of

database management systems, and particularly the application which uses the

database. Database administrators often try to find the most proper configuration

and index set manually, but for this purpose, hundreds of parameters, helper

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 8 –

structures and settings should be chosen appropriately, furthermore future use

cases and their correlations, patterns should be known in advance. This may be a

very hard and time-consuming activity. Therefore, automatic solutions may be

used to make this task less painful.

Offline advisor tools have already been implemented in commercial database

management systems [1, 2]. These tools require a preliminary workload history,

which describes future usage patterns well. This approach can only be used in

really special cases, as it only generates an initially optimal configuration (e.g.

index set), thus changes in workload patterns will not be taken into consideration.

In practice, it has proven to be a strict constraint to work with. Consequently a

new, online approach was needed to handle dynamically changing workload

patterns. The idea is based on the offline approach, but recommendations are

generated repeatedly for predefined time intervals. This method would be more

accurate when changes are tracked by observing the actual workload, thus new

advises are generated by need. Two ways can be identified to manifest the

recommended configuration changes: a database administrator can check these

changes, or they can be executed in an automatic way. As generation and

deployment might be a time-consuming task, adapting the database configuration

to the workload change might be late [3].

By forecasting the expected change points, automatic, self-tuning database

systems can be achieved. For this, it is essential that the change points are

following some identifiable pattern and are not random. Such solutions are already

implemented as part of commercial database systems, such as SQL Server 17+

and Oracle 18c auto-tuning functions, but an open-source solution called Peloton

is also available.

Automatic tools are based upon an assumption that databases are often used by a

higher-level application. Therefore, usage patterns appear along application

functions. Nevertheless, these applications might have non-functional

requirements that defines some features response time-critical. For these kinds of

applications, it is not always a good idea to choose global response time as a value

to optimize, because an automatic tool with such strategy would set back the

response time of a rare, but critical function. As an example, consider a critical,

insert-heavy operation, and a noncritical read operation on a concrete column of a

table. Let us suppose that the read operation is called much more often than the

insert. In this case, the global optimization technique is going to decide to create

an index to decrease the response time of reads, even though response time of the

critical function is going to increase because of the maintenance cost of the

created index.

Nevertheless, all of the already existing tools mentioned above are trying to

optimize a global value. Accordingly, a new approach is needed to get rid of this

limitation.

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 9 –

The main contributions of this paper are the following:

 a method to overcome the above mentioned limitation,

 a technique to characterize users and their operations, to take users into

consideration, if some of them behave similarly,

 a prototype implementation of the proposed approach, and its evaluation.

2 Sessions and User Groups

If priority values were assigned to each function of the application, the limitation,

caused by the global optimization technique, could be solved during the

deployment of indices. At the same time, as initial knowledge comes only from

query logs, it is not trivial to identify these functions on the level of individual

queries. For this, a language model is going to be constructed.

A function can be modeled as a sequence of query-transactions, which is called a

session, and a transaction is defined as a sequence of queries. It is clearly visible

that a method is needed to transform sequences of queries to sessions, based on

the log, furthermore to create groups of the identified sessions, as multiple

instances of the same – or almost the same – session are expected to appear in the

log.

Sessions are issued by users of the upper-level application. It is desired to take

users into consideration, if some of them are behaving similarly, for example,

several bank clerks in an administration system of a bank are invoking similar

functions of the system, as they fulfill the same work. A user can be described by

the type of the invoked sessions, and users who invoke similar sessions can be

grouped by this fact.

3 Life-Cycle of Self-Tuner Database Systems

The high-level behavior can be described by the observation-forecasting-reaction

cyclically repeating triplet. Autonomous databases actively watch query history to

reveal past correlations, then give predictions for the future based on the

recognized patterns, and finally perform the corrections at a suitable time.

Autonomous database systems are expected to be fully automatic, that is, they

should operate reliably without human intervention. This method does not require

any database administrator to continuously fine-tune the system according to the

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 10 –

changes in the patterns. Note that the primary guarantee of the automatism is an

appropriate forecaster component, which predicts based on past observations.

These systems proceed on a query log, which contains various information about

past queries, such as the time when the query was executed, query text, executed

physical plan and response time. The sequence of queries found in the log is

characterized to retrieve relevant properties, on which a grouping could be based.

A dimensionality reduction is needed, because making predictions for each query

one by one would be too expensive. Sought solutions have identified three types

of properties altogether, and each of them selected one, which suited their goals

the most. By selecting physical properties to characterize queries, it is assumed

that the most important attribute of a query is its resource utilization. It might be

true, but it is not rewarding to build prediction systems upon physical properties,

because changes of the schema, table sizes or the amount of resource affect these

values. Another option is to choose logical properties, namely accessed columns

and syntax tree of the executed query. Unfortunately, pattern recognition is quite

hard in this case [4]. Grouping by similar arrival rate history of templates can be

seen in QueryBot 5000 [4], which founds on the Peloton framework [3]. Firstly,

the arrival rate patterns of query templates are collected. Then, a collection is

created for each template by sampling these arrival rates, thus templates are

clustered based on cosine similarity of the collections. It can be observed that

queries of the same transaction belong to the same cluster, but disadvantages are

exposed during clustering. Unfortunately, infrequent, but long-running queries are

regarded as noise, furthermore similar transactions may belong to different groups

because of minor differences caused by program logic.

After picking a predictable property regarding the constructed groups, forecasting

models are built. By using such trained models, information about future behavior

is obtained, then optimization is done based on that. Self-tuner systems should

prepare for changing behavior, that is, new queries may appear, already observed

ones may be replaced to another group or even disappear, therefore prediction

models possibly become invalid.

4 Session Identification and Clustering

Identifying sessions is an appropriate way to group queries as well. In opposition

to QueryBot 5000 [4], program logic differences are handled well, moreover,

important queries are not considered as noise.

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 11 –

4.1 Preprocessing Query Logs

To handle similar queries together, the text of the queries should be canonized.

The first step is to apply semantics-preserving transformations, such as

regularizing alias names and transforming logical expressions into normal form.

Existing solutions can be found [5] for this purpose. After this step, the parameters

of the queries should be masked.

Equivalence of canonized queries can be defined based on the equivalence of the

query texts, the similarity of execution time and size of the result table. By

aggregating query templates that were considered equivalent, the number of

considered data decreases. Unique identifiers are assigned for each template to

reference them in the next steps.

4.2 Identifying Sessions

The goal would be to retrieve sessions from the previously cleaned data to

recognize application functions. This process has two phases. Firstly, a statistical

language model is built, then the bounds of sessions can be defined using the

language model [6].

4.2.1 Language Modeling

However, defining a timeout would be an obvious way to separate a query

sequence into sessions, it is not sufficient, as a timeout does not always indicate

the beginning of a new session. More accurate splitting could be given by

recognizing queries that frequently occur consecutively. For this purpose, a

language model is going to be used, which is a probability distribution over

arbitrary word sequences. By using a language model, the probability of a word

sequence can be estimated.

Let us formulate the analogy with the language modeling domain, then clarify the

previous statement formally. The identifiers of query templates can be regarded as

words, and sessions made from them as sentences of a language. A sequence of

sessions denotes the whole text. Let s = <q1, …, qn> be a session candidate

sequence, consisting of template identifiers. The probability whether s is a valid

sentence of the language can be defined using the chain rule.

 (1)

A type of language models is called n-gram, which assumes that the probability of

the n
th

 element of a sequence depends only on the previous n-1 elements. That is,

P(s) can be estimated as follows.

 (2)

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 12 –

The method works as follows. To train the language model, a long corpus is

needed, which is preferably separated into sentences. Then, the sentences are

separated to n-tuples of words, and also statistics are calculated. After that, the

probability of n-grams can be determined from their relative frequency, and the

probability of a sequence can be estimated using the equation above.

As training data for the model, session sequences are needed that describe patterns

between queries well. Initially, sentence boundaries are not known, therefore well-

separated training data is not available. Yet, login/logout of users or a predefined

timeout would help to find boundary points, thus more accurate result can be

achieved. This technique is called semi-supervised learning.

4.2.2 Neural Language Models

As n-gram models calculate probability by the number of query co-occurrences,

complex correlations unfortunately cannot be noticed. For the purpose, neural

language models can be used, which became popular in the field of language

modeling [8]. Often recurrent neural networks, especially LSTMs are chosen. The

task is to estimate the probability of a word based on a given context, which can

be considered as a multiclass classification problem. Defining the length of the

context (lc) is not trivial, as it depends on the observable patterns. The simplest

case is when lc = 1, that is, the probability of each word is calculated by the

previous word.

To train the model, 3-dimension input tensors are created with rank (batch size, lc,

1), furthermore the expected template identifier is defined for each input. Note

that the expected identifier should be one-hot encoded. The architecture consists

of an embedding layer, which maps positive identifiers to vectors, a hidden LSTM

layer, and finally a dense output layer with softmax activation function. Thus, for

a template identifier input sequence with length lc, a vector of probabilities is

given as output, which can be thought of as a probability distribution. The i
th

element of the vector is the probability that the i
th

 query template follows the input

context based on the learnt language. Thus, the probability of a given template can

be selected from this output vector. Note that if lc is greater than the minimal size

of a session, then a pseudo-identifier is needed to expand the size of the input

sequence according to the rank of the input tensor.

4.2.3 Determining Session Boundaries

At this point, a trained language model is given, which is able to estimate the

probability of arbitrary template sequences based on the foreshown training data.

The primary assumption is that the level of uncertainty is roughly constant in a

session, and it is measurable by empirical entropy [6]. Let SC be a sequence of

template identifiers. Then, the probability, which is noted by P(SC), can be

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 13 –

estimated by the trained language model. In this case, empirical entropy is defined

as follows.

𝐻(𝑆𝐶) = −
1

𝑛
∙ log 𝑃(𝑆𝐶) (3)

With this, moving along an observed template identifier sequence, an identifier is

added to SC in each step. In addition, the probability of the sequence is calculated

in each step. Thus, the entropy can also be defined, and when it changes more than

a predefined threshold, the start of a new session is found. Note that another

dataset is needed for this operation than for language model training.

With this method, a long, raw sequence of query template identifiers can be

separated into coherent subsequences, thus sessions can be retrieved that represent

higher-level tasks of users.

4.3 Session Clustering

During the previous step, some potentially equivalent sessions are identified.

Therefore, it would be desired to filter these duplicated sessions, and create groups

which consist of similar sessions. This is a two-phase operation.

The first step is to form session classes. Let s1 and s2 be identified sessions. They

belong to the same class if either of them is a subsequence of the other, or their

Jaccard similarity is sufficiently high (e.g. exceeds a threshold limit, which is near

1), furthermore long-running queries should come from the same templates. High

Jaccard similarity means that they share almost the same query templates. Let the

representant element of the class be the longest session, which usually has the

largest execution time as well. This step is inspired to correct minor, a few queries

long sliding errors occurred during the identification phase, and to reduce the

complexity of the next step. As it can be observed, the number of session

representants to maintain is significantly reduced after this step, and converges to

the number of task-types issued by users. The algorithm is the following. Initially,

each session belongs to a separate class. Then, by using pairwise comparison, the

condition of joining is checked. If it is true, the classes should be joined together.

For this approach, the actual location of each session should be tracked. As

pairwise comparisons are used, the method finishes in O(n
2
) time, where n means

the number of sessions.

As queries often arrive by a program logic, several similar sessions may be found

among class representants. For example, let s1 = <1, 1, 2, 3, 4> and s2 = <1, 1, 1,

2, 1, 4>, sessions represented by template identifiers. They can be considered

similar, because clues of program logic are present. The number of the first

elements are probably originated from a loop, and the cause of the difference

between the second last identifiers may be a conditional statement. Let us call this

program logic based similarity. This value can be measured by the Needleman-

Wunsch algorithm [6, 7], which is a common method in bioinformatics. The goal

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 14 –

is to find the most exact matching between two sequences based on a score to

maximalize. The scoring system is defined as follows. Matches are rewarded by 3

points, mismatches and insertion/deletion actions worth less (e.g. 1) points, thus

sessions with more mismatches can be considered less similar. It is easily

discernible that mismatches and insertion/deletion actions mean loops and

branches.

The final output score is then defined as the weighted sum of points. The number

of matches (nMatches), loops (nLoops) and branches (nBranches) are also

considered during the score calculation. To construct a similarity measure (noted

by PLS), this value should be normalized. For this, the highest reachable score is

used.

𝑃𝐿𝑆(𝑠1, 𝑠2) =
3 ∗ 𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠(𝑠1, 𝑠2) + 𝑛𝐿𝑜𝑜𝑝𝑠(𝑠1, 𝑠2) + 𝑛𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠(𝑠1, 𝑠2)

3 ∗max {|𝑠1|,|𝑠2|}
 (4)

The borders of the function values and other similarity properties are easily

verifiable.

0 ≤ 𝑃𝐿𝑆(𝑠1, 𝑠2) ≤ 1 (5)

By using program logic similarity and Jaccard similarity (noted by JS), a distance

function is defined to group session classes.

𝑑𝑆𝐶(𝑠𝑐𝑖 , 𝑠𝑐𝑗) = 1 − 𝜀1 ∙ 𝐽𝑆(𝑠𝑐𝑖 , 𝑠𝑐𝑗) − 𝜀2 ∙ 𝑃𝐿𝑆(𝑠𝑐𝑖 , 𝑠𝑐𝑗) (6)

ε weights should be determined to sum up to 1. Since weighted similarity

measures are subtracted from 1, dSC is trivially a distance function.

Finally, an appropriate clustering algorithm should be picked. Methods that need

the number of clusters as a parameter are certainly not suitable for this problem, as

it cannot even be estimated in general. Furthermore, the algorithm should not

reckon a session class as noise, just because it does not have enough neighbours to

form a new group.

Regarding these aspects, using hierarchical, agglomerative clustering is

reasonable. Initially, each session class forms a cluster, then by calculating the

distance between them, some of them are merged. The procedure stops when there

is only one cluster left. An appropriate clustering can be obtained by stopping

earlier, using stopping criteria.

To put it into practice, besides the distance function between session classes, a

distance function between clusters and stopping criteria is needed. Two possible

options are identified to define distance between clusters, by reducting to

elementwise distance. One of them is the centroid method, but choosing a central

element is not trivial, as there is only a relative distance measure is defined

between session classes. Therefore, single linkage method is chosen, which means

the distance of the closest elements. Let C1 = {sc11,…,sc1m} and C2={sc21,…,sc2n}

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 15 –

be clusters of session classes. Then, Dmin is defined as follows, based on dSC

distance.

𝐷min(𝐶1, 𝐶2) = min {𝑑𝑆𝐶(𝑠𝑐1𝑖 , 𝑠𝑐2𝑗)| 𝑖 ∈ [1. . 𝑚], 𝑗 ∈ [1. . 𝑛]} (7)

Note that as 0 ≤ dSC(a,b) ≤ 1 for all a and b session class, 0 ≤ Dmin(A,B) ≤ 1 is also

true for all clusters of session classes.

Using this function, distance-based stopping criteria can be also defined. The

algorithm should stop when no more clusters are found near each other. Nearness

is bounded by an ε3 threshold.

5 User Clustering

If patterns are observable on the user level, it is desired to create user groups

based on their behavior. The behavior is characterized by the distribution of the

executed session types. Therefore. an n-dimensional vector is defined for each

recognized user, where n is the number of recognized session clusters. The i
th

element means the number of observed sessions which belong to the i
th

session

cluster. By dividing these values by the total count, ratios are obtained. These

ratios are useful to determine the probability that an incoming template belongs to

the given session group. Thus, a discrete probability distribution is defined for

each user. Based on the similarity of the corresponding distribution, users can be

categorized. Several methods can be found to define similarity between

distributions. One of them is Hellinger-distance, which is defined using

Bhattacharyya-coefficient [9]. Let p1 and p2probability mass functions of different

discrete distributions. Then, Hellinger-distance is defined as follows.

𝐻(𝑝1, 𝑝2) = √1 − 𝐵𝐶(𝑝1, 𝑝2), 𝑤ℎ𝑒𝑟𝑒 𝐵𝐶(𝑝1, 𝑝2) = ∑ √𝑝1(𝑖) ∙ 𝑝2(𝑖)𝑛
𝑖=1 (8)

Since conditions are similar to clustering of session classes, hierarchical,

agglomerative clustering is appropriate by using distance metric H here as well.

Nearness is bounded by an ε4 threshold.

6 Predicting Workload Patterns

The most important part of a self-tuning database system is the forecasting

component, which predicts future behavior by recent recognitions. The concrete

property to forecast depends on the chosen optimizable value and the method used

during optimization. In QueryBot 5000 [4], a prediction model is created for each

query template cluster, which predicts the amount of arriving queries for a given

time interval ahead, based on recently collected arrival rates.

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 16 –

Similarly, it might be necessary to gain information about future queries for

automatical index maintenance, e.g. how many of them will be executed and by

which users. To utilize usage pattern similarity of users, let us create prediction

models by user clusters. Then, the estimation of three potential properties could

help answer the previous questions.

 Arrival rates, as in QueryBot 5000 [4]. In this case, an assumption should

be made that the distribution of sessions is roughly constant in a group,

as it is not predicted.

 The probability distribution of executed queries. Nonetheless, by picking

this property, information about arrival rates is not available. Thus, a

quite strong restriction should be introduced, namely, the number of

executed queries cannot change significantly. Obviously, it is not true in

general.

 The frequency distribution of executed queries. By combining the two

properties above, information can be obtained about both distribution and

quantity of sessions. Hence, this property may be the most practical

choice.

Presence of patterns in the values is essential for proper forecasting, e.g.

increasing or decreasing trends, cyclic behavior, periodically slow increasing then

fast decreasing, etc. [4], otherwise reasonable and meaningful predictions cannot

be given. However, unfortunately a general method to recognize all kinds of

patterns universally does not exist, an ensemble model can be constructed [3, 4],

which is a combination of prediction models to recognize as many patterns as

possible.

As an example, let us briefly consider how may a prediction model be constructed

to identify and forecast cyclic patterns of arrival rates and frequency distributions.

For this purpose, just like for language modeling, LSTM is an appropriate choice

[4]. For simplicity, let us give a solution for arrival rate prediction at first, then it

is going to be generalized for frequency distributions easily.

Training data can be actually interpreted as parts of time series, linearly mapped to

[0..1] interval. For the normalization, a maximal arrival rate value is required,

which may be the largest value observed during the learning phase (session and

user recognition), or a theoretical value, received as a parameter. Then, the

sequence is split to its k+1 long subsequences. Finding the proper value of k

depends on the length of the context which affects the k+1
th

value. The model is

then trained by the subsequences, by choosing an appropriate nb batch size. For

these, 3D input tensors are constructed with rank (nb, k, nf). In case of arrival

rates, nf = 1, but for frequency distributions nf equals to the number of session

clusters.

The architecture of the neural network is the following. As a hidden layer, two

LSTMs are used. The activation function of the dense output layer is sigmoid,

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 17 –

therefore the output for a k-long sequence is a value, the predicted next element of

the time series. In case of frequency distributions, this value is a vector, which

represents the next, expected distribution of the following time unit. Since

predictions should be usually made for multiple time units, the single forecasting

method should be called continuously by utilizing the previously predicted value.

Note that groupwise model training can happen in parallel, even on separate

processors, as these tasks do not depend on each other.

7 Live Phase

At this point, clustered users, their typical sessions, and a prediction for each user

group are available. To generate helper structures, several already existing

solution can be found [10, 11]. Nevertheless, it is practical to select significant

queries that raise execution time the most as an input for the recommender system.

Significant queries can be selected by defining a threshold, or by retrieving

queries that run longer than the corresponding time slice. Before the final

deployment, every index to be materialized should be checked whether it is

consistent with predefined function priorities.

After model training, predictions and recommendations are generated periodically

during the live phase of the system. Moreover, recognitions should be maintained

based on continuously arriving query logs, as new queries, sessions, or even users

may appear, or already existing ones disappear. They may change clusters, thus

prediction models should be retrained.

8 Evaluation

A prototype has been created for demonstration and experimental purposes. The

main goal is to compare and evaluate n-gram and neural network-based language

models, by finding the minimal corpus size for training, and evaluating their

session recognition ability. The advantage over already existing solutions is also

demonstrated. Time complexity and the number of maintained models is

specifically measured and compared to the most developed open source solution,

Peloton [3]. Free parameters are also selected via example executions.

8.1 Experimental Setup

However, an appropriate workload history is indispensable for the evaluation,

producing such history manually is quite infeasible. Thus, a program has been

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 18 –

created to generate workloads, by connecting to a test database, then executing

transactions that follow a predefined pattern. Query logging should be enabled to

retrieve the required data.

The concrete database schema, fitting data and transactions are received from the

OLTPBenchmark project [12], which provides a framework for database

performance testing. CH-benCHmark, which is built upon TPC-C standard,

consists of OLTP and OLAP transactions, so it suits our needs. Furthermore, since

a workload for several hours or days may be needed, rescaling should be done to

transform the workload to a longer time interval. Generated workloads can be

found in Table 1.

Table 1

Generated workloads for the evaluation

 test1.log test2.log

Experiment 1 1 000 queries a few seconds long history,

4 transactions

Experiment 2 10 000 queries a few seconds long history,

4 transactions

Experiment 3 15 000 queries a few seconds long history,

4 transactions

Experiment 4 43 000 queries a few seconds long history,

4 transactions

Experiment 5 10 000 queries 4 hours long history with

periodic patterns,

26 000 queries

Experiment 6 10 000 queries 6.5 hours long history with

periodic patterns,

52 000 queries

Training queries for language models are in test1.log files, and test2.log files

contain queries for session recognition and forecasting. With experiment 1, 2 and

3, the length of the corpus is determined, so that language models can identify

session bounds sufficiently. With the other experiments, the execution time and

dimensionality reduction are measured.

For the evaluation, a local PostgeSQL server was used, on an average PC

configuration with 8 GB RAM and 4 cores. For logging, auto_explain option is set

to true.

8.2 Determining Corpus Size

Firstly, let us identify the corpus size that is sufficient for the language models to

recognize session bounds well. Beforehand, n for the n-gram model should be

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 19 –

defined. Let us choose n = 5, as training does not take too much time with this

choice for large data, but a quite exact result is achievable.

At the first experiment, test1.log contains 1000 out of the 43000 queries, scaled to

1 day. Recognition of the neural language model is not exact, as initially 6 clusters

were identified, because it has needlessly split sessions at multiple points. After

the fine-tuning of the epoch number and the size of the LSTM layer, the number

of clusters became 5, by less splitting. Although the 5-gram model identified 4

session clusters, it also split sessions at undesired points, just like the neural

model.

During the second experiment, language models were trained with 10000 queries.

The results were similar to the first experiment, but the loss function (mean

squared error) of the neural model began to take its appropriate form.

Table 2

Summary of the evaluation results

 5-gram model Neural model

Experiment 1 4 session clusters, but

undesired splits

initially 6, then 5 session clusters,

undesired splits

Experiment 2 4 session clusters, but

undesired splits

5 session clusters, less undesired

splits

Experiment 3 4 session clusters, proper

session recognition

5 session clusters, identifying

more correlations, form of loss

function is correct

Experiment 4 4 session clusters, proper

session recognition

4 session clusters, proper session

recognition

Experiment 5 model training: 1637 ms

recognition: 2907 ms

clustering: 5825 ms

4527 recognizedsessions,

105 session classes,

23 clusters

model training: 58043 ms

recognition: 38100 ms

clustering: 10565 ms

3232 recognizedsessions,

82 session classes,

40 clusters

Experiment 6 model training: 1324 ms

recognition: 3523 ms

clustering: 5018ms

9122 recognizedsessions,

114 session classes,

21 clusters,

2 user groups

model training: 62927 ms

recognition: 65481 ms

clustering: 6867 ms

6447 recognizedsessions,

109 session classes,

41 clusters,

2 user groups

The 5-gram model recognized properly session bounds during the third

experiment, hence a workload of 10000-15000 queries is necessary for corpus.

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 20 –

The neural model still identified 5 clusters, but the form of the loss function

became correct. Based on the results of the fourth experiment, at least 40000-

45000 queries are needed as a corpus to train the neural model, thus 4 clusters are

identified. The fifth and sixth experiment cover two general cases, where

particularly dimensionality reduction and execution time were inspected.

It is clearly visible that the 5-gram model often splits workloads for more sessions

than the neural model, which can recognize more complex correlations. The

neural model identifies more clusters by utilizing inter-transactional patterns, than

the 5-gram model, which rather splits workloads along executed transactions.

Figure 1

Loss function over the iteration count of experiment 3

8.3 Dimensionality Reduction and Execution Time

Workloads that have similar characteristics (e.g. cyclic behavior pattern, 2 user

groups) and consist of 52000 queries, are split to 9122 sessions by the 5-gram

model, and 6447 sessions by the neural model. QueryBot 5000 [4] templatizes

incoming queries, then groups them by column access similarity, thus 334

templates are retrieved. The 5-gram and neural models construct 21 and 41 session

clusters, respectively. Based on the clusters, user groups are created, then

forecasting models are built. In contrast, QueryBot 5000 identifies 107 template

clusters, and assumes that the top 5 largest clusters cover important patterns,

therefore, prediction models are built only for them. It may be a strong

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 21 –

assumption, furthermore in this case, more models are created, thus space and

time complexity is larger. Summarized results can be seen in Table 2.

Figure 2

Comparing query number reduction on a logarithmic scale

Session recognition is the first subtask which may have significant execution time.

As seen above in the presented approach, it is a two-phase process, which has the

same goal as grouping query templates by the cosine similarity of their global

arrival rate pattern histories, as seen in Peloton [3] and QueryBot 5000 [4]. Thus,

the execution time of these subtasks should be compared.

Table 3

Comparison of execution times, 52 000 queries

 QueryBot 5000 5-gram model Neural model

Preparing 8 162 ms

(templatizing)

1 324 ms

(model training)

62 927 ms

(model training)

3 523 ms

(session recognition)

65 481 ms

(session recognition)

Clustering 46 425 ms 5 018 ms (session) 6 867 ms (session)

1 551 ms (user) 1 423 ms (user)

Total ≈ 54.5 sec ≈ 11.4 sec ≈ 136.5 sec

As we can see, the time complexity of QueryBot 5000 is larger than the 5-gram

model, but the neural model performed much worse because of slower model

training. As it can be seen in Table 2, the time cost of 5-gram model training and

session recognition did not increase significantly because of larger data size. In the

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 22 –

case of the neural model, these phases have the most notable time complexity, but

the time needed for clustering seems roughly constant.

By modifying the test data that is provided by the authors of QueryBot 5000 to

contain similar sessions, it is verifiable that it does not recognize program logic

similarities, and such sessions are going to be placed into different groups. On the

other hand, by running experiment 5 and 6, it is shown that the demonstrated

session-based method is able to recognize such similarities.

8.4 Evaluation Summary

Let us summarize the results of the evaluation above. It has been recognized that

Peloton [3] and QueryBot 5000 [4] which are regarded as the most developed

open-source, noncommercial self-tuning solutions available, cannot recognize

similarity based on program logic. Thus, potentially similar user tasks are

arranged to different clusters. This problem is eliminated by the session-based

approach, and two language model implementations were compared. By

comparing identified sessions and execution times, it became clear that neural

models can also recognize inter-transactional patterns, but its cost is the notably

slower training.

Several free parameters have been left undefined in the demonstrated method,

which were selected empirically during the evaluation. The summary of these

parameters and their suggested values can be found in Table 4.

Table 4

Suggested values of free parameters

Parameter Value Description

ε1 0.3
The weight of Jaccard-

similarity

ε2 0.7
The weight of program logic

similarity

ε3 0.2

The maximal distance of a

new element from a session

group

ε4 0.2

The threshold of Hellinger-

distance for users in the

same group

Conclusions

In this paper, a session-based approach was presented for autonomous database

tuning, to let self-tuning systems take upper-level application requirements into

consideration. In contrast with available solutions, the concept of session was

made explicit, as it is an important notion for such systems. Because of this,

sessions with minor differences due to program logic can be recognized as similar

Acta Polytechnica Hungarica Vol. 17, No. 1, 2020

 – 23 –

much easier. For session recognition, details of a neural language model were

specified, based on n-gram models. It was shown in practice that the neural model

performs much slower due to the model training than the 5-gram model, but it did

recognize inter-transactional, more complex patterns.

A method to characterize users and construct groups was elaborated, then for each

user group a way to define appropriate forecasting models was presented, thus two

properties of future workloads became predictable.

Further research would be beneficial to determine the correct training data size of

the language models in general, as it can be different for each application.

Experimenting with LSTM language models would be also practical. By building

deep, more complex architectures, exciting results could be achieveable.

Actually, identifying sessions and clustering users is useful not solely for database

tuning, but query recommender systems as well. When queries are manually

written, it is desired to get automatic help, such as autocomplete or prediction of

the next query, based on observed habits of the user group.

Acknowledgement

The project has been supported by the European Union, co-financed by the

European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, M. Ziauddin:

AutomaticSQL Tuning in Oracle 10g, Proceedings of the 30
th

 International

Conferenceon Very Large Databases, 2004, pp. 1098-1109

[2] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, M.

Syamala:Database Tuning Advisor for Microsoft SQL Server 2005,

Proceedings of the 30
th

 International Conference on Very Large Databases

(VLDB) 2004, pp.1110-1121

[3] A. Pavlo, G. Angulo et al.: Self-Driving Database Management Systems,

CIDR2017, Conference on Innovative Data Systems Research, Vol. 10,

2017, pp. 781-792

[4] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, G. J. Gordon:

Query-based workload forecasting for self-driving database management

systems, Proceedings of the 2018 International Conference on Management

of Data, ACM, 2018, pp. 631-645

[5] G. Kul, D. T. A. Luong, T. Xie, V. Chandola, O. Kennedy, S.

Upadhyaya:Similarity Metrics for SQL Query Clustering, IEEE

Transactions on Knowledgeand Data Engineering, Vol. 30, 2018, pp. 2408-

2420

K. Mózsi et al. A Session-based Approach to Autonomous Database Tuning

 – 24 –

[6] Q. Yao, A. An, X. Huang: Finding and Analyzing Database User

Sessions,Database Systems for Advanced Applications 2005, 2005, pp.

851-862

[7] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia: Similarity

Measuresfor OLAP Sessions, Knowledge and Information Systems (KAIS)

Vol. 32, 2014, pp. 463-489

[8] M. Sundermeyer, R. Schlüter, H. Ney: LSTM neural networks for language

modeling, Thirteenth annual conference of the international speech

communicationassociation, 2012

[9] K. G. Derpanis: The Bhattacharyya Measure. Mendeley Computer, 1(4)

2008, pp. 1990-1992

[10] K.-U. Sattler, M. Luehring, K. Schmidt, E. Schallehn: Autonomous

Management of Soft Indexes, Data Engineering Workshop, 2007 IEEE 23
rd

International Conference on. IEEE, 2007, pp. 450-458

[11] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis: On-line index

selection for shifting workloads. ICDEW ’07 Proceedings of the 2007 IEEE

23
rd

International Conference on Data Engineering Workshop, 2007, pp.

459-468

[12] D. E. Difallah, A. Pavlo, C. Curino, P. Cudre-Mauroux: OLTP-Bench:

Anextensible testbed for benchmarking relational databases, Proceedings of

theVLDB Endowment, Vol. 7, 2013, pp. 277-288

