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Abstract: In this paper system properties of generalized linear time varying (LTV) systems 
are discussed where, in addition to the control, its certain derivatives also appear both in 
the dynamics and the observation equation. Developing an adequate version of the Cauchy 
formula, a necessary and suffiecient condition for complete reachability of generalized LTV 
systems is obtained in terms of a generalized Gram matrix. Starting from the expansion of 
coefficient functions in the corresponding Lie algebra basis, we derive an appropriate 
condition of persistent excitation. The latter leeds to a general condition of complete 
reachability in terms of quasi-polynomials of the solution of the Wei-Norman equation and 
differential polynomials of the coefficient functions of the generalized LTV system. Also 
applying the well-known duality theory of LTV systems, other basic system properties such 
as controllability, reconstructability and observability can be also treated. 
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systems; Matrix Lie algebra, persistent excitation 

1 Introduction 

Definition 1   We call 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t A t x t B t u t

y t C t x t D t u t

 
 


 (1) 

a classical linear time varying system in canonic form, where functions 

: [0, ] , : [0, ]

: [0, ] , : [0, ] ,

n n n kA T B T

l n l kC T D T

  

  

 

 
 

are continuous on a fixed interval [0, ]T . 
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Remark 1   R. Kalman solved all fundamental problems of such systems (see [9]). 
He proved the duality both of reachability and observability and of controllability 
and reconstructability. He also showed the equivalence of reachability-
controllability and observability-reconstructability condition pairs for continuous 
time systems of (1). Therefore we are interested in only one system property, 
reachability. 

Consider the initial value problem 

 ( ) ( ) ( ), ( )x t A t x t x I   (2) 

in 
n n . If the coefficient matrix is continuous, then it has a unique solution 

( , ) n nt t      

defined on the whole interval [0, ]T , which is continuously differentiable as a two 

variable function of ( , )t  , and ( , )t   is invertible for all pairs ( , )t  . Consider 

the solution ( , )t t   to the initial value problem 

( ) ( ) ( ), ( )Y t Y t A t Y I    

defined on the whole interval [0, ]T . Then 

 
  

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , ) ( , ) ( ) ( , ) 0,

d
t t t t t t

dt

t A t t t A t t

     

   

        

      

 
 

that is, ( , ) ( , )t t I     which implies ( , )t     1),( t  in 
n . Moreover, 

1( , ) ( ,0) ( ,0)t t       because 1( ,0) ( ,0)t t     is a solution to the 

equation ( ) ( ) ( )x t A t x t  and 1( ,0) ( ,0) I     . Interchanging t  and  , 

1( , ) ( ,0) ( ,0) ( ,0) ( ,0),t t t          

that is, 

 
1

( , ) ( ,0) ( ,0) ( ,0) ( ,0) ( )

( ,0) ( ,0) ( ) ( , ) ( ), ( , ) .

d d
t t t A t

dt dt

t A t t A t I

  

   

       

      

 

Therefore 

1( , ) ( , ).t t     

Definition 2   We call 
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Re
0

[0, ] ( , ) ( ) ( ) ( , )
T

aG T T t B t B t T t dt     

the reachability Kalman-Gram matrix. 

Theorem 1   (Kalman's reachability theorem) The system (1) is reachable from 
state 0  if and only if the reachability Kalman-Gram matrix is invertible, or 
equivalently, positive definite. 

Remark 2   A similar theorem holds for controllability. The controllability 
Kalman-Gram matrix is defined by 

0

[0, ] (0, ) ( ) ( ) (0, ) .
T

CG T t B t B t t dt     

If we define the dual system of (1) as 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

x t A t x t C t u t

y t B t x t D t u t

 

 

 

 


 (1*) 

then the input in (1*) could be denoted by y and the output by u, indicating the 
exchange of their roles. 

Theorem 2   (Kalman's duality theorem) (1) is controllable if and only if (1*) is 
reconstructable, and (1) is reachable if and only if (1*) is observable. 

Remark 3   Since the dual of the dual system is the original system, (1) is 
observable if and only if (1*) is reachable, moreover (1) is reconstructable if and 
only if (1*) is controllable. 

The observability Kalman-Gram matrix is 

0
0

[0, ] ( , ) ( ) ( ) ( , ) ,
T

G T T t C t C t T t dt
     

and reconstructability is equivalent to the invertability (or positive definiteness) of 
the reconstructability Kalman-Gram matrix 

Re
0

[0, ] (0, ) ( ) ( ) (0, ) .
T

G T t C t C t t dt     

In the following we investigate the reachability of the generalisation of system (1). 

Definition 3  A system will be called generalised linear time varying system in 
canonic form where all functions are assumed to sufficiently smooth: 
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( )

0

( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

J
j

j
j

J
j

j
j

x t A t x t B t u

y t C t x t D t u





 

 






 (3) 

Several publications (see for example [4], [6], [7]) deal with the system (1). Based 
on the above we focus on the general canonic system (3), especially the theoretical 
construction of the persistent excitation condition, which plays an important role 
in the existence of a Kalman-like rank condition for linear time-varying systems. 

First we recall some basics on Lie algebras. 

Definition 4   Let L  be a vector space over   endowed with a multiplication-like 
operation, the so-called Lie multiplication or Lie bracket: If 1 2,l l L then 

1 2[ , ]l l L , 1 1 2[ , ]l l l  and 2 1 2[ ],l l l  are linear mappings and 

1) [ , ] 0l l   for all l L  

2) 1 2 2 1[ , ] [ , ] 0l l l l    for all  1 2,l l L , 

3) 1 2 3 2 3 1 3 1 2,[ , ] ,[ , ] ,[ , ] 0[ ] [ ] [ ]l l l l l l l l l    for all 1 2 3, ,l l l L . 

endowed with a Lie multiplication is called a Lie algebra. 

Remark 4   In the above definition 

condition 2   means anticommutativity 1 2 2 1[ , ] [ , ]l l l l  , and 

condition 3   measures non-associativity. 

Indeed, 

1 2 3 2 3 1 3 1 2

1 2 3 2 3 1

,[ , ] ,[ , ] ,[ , ]

[ , ], ,[ , ] ,

[ ] [ ] [ ]
[ ] [ ]

l l l l l l l l l

l l l l l l

   


 

because if 2 3 1,[ , ] 0[ ]l l l   then the remaining equation 

1 2 3 1 2 3,[ , ] [ , ],[ ] [ ]l l l l l l  

means associativity. 

Examples 

1) Let n nL   . If we define [ , ]A B AB BA   then  ,[ , ]n n    is a Lie 

algebra. 

2) Let n   be an open set and consider the vector space ( )A  of analytic 

functions  f:    n . Let the Lie bracket be defined by 
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 [ , ]( ) ( ) ( ) ( ) ( ).f g x f x g x g x f x    (4) 

Then we obtain the Lie algebra  ( ),[ , ]A    . 

3) Similarly define the real vector space of infinite times differentiable functions 
( )C   on an open set n   and define the Lie multiplication as in (4). 

Then we obtain the Lie algebra  ( ),[ , ]C    . 

Definition 5   Consider system (3). The sub-Lie-algebra  , ,[ , ]n nL L    

generated by 

 ( ) : [0, ] n nA t t T     

is defined as the smallest Lie-algebra for which  ( ) : [0, ]A t t T L   holds. 

Remarks 5 

Such a sub-Lie-algebra exists because the set of the containing sub-Lie-algebras is 
non-empty, n n  is an element, and the intersection of these is the minimal sub-

Lie-algebra generated by  ( )A t . 

Since n n  has finite dimension ( 2n ), the sub-Lie-algebra n nL    is also finite 
dimensional. 

Let LAAA I ,,, 21   be a basis of L . In this basis 

1

( ) ( ) ,
I

i i
i

A t a t A


   

and the Lie bracket [ , ]i jA A L  

1

[ , ] .
I

k
i j ij k

k

A A A


   

Since [ , ] ( )i iX A X AdA X  is a linear mapping on the vector space L  (which 

is also a Lie algebra), the matrix representation of iAdA  in the basis 1 2, , , IA A A  

can be expressed with the help of the numbers k
ij . 

Let jj

I

j
AxX

1
 . Then 

1 1

[ , ] , ,
I I

h
i i j j j ij h

j j h

A X A x A x A
 

   
     

  
    
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j
h

ij
j

x  is the hth component of the matrix-vector product 

1 1 1
11 2

2 2 2
21 2

1 2

i i iI

i i iI
i

I I I
Ii i iI

x

x

x

     
          
        




   


x  

and because of the the correspondences ,i iAdA X X x x , i  is the 

representation of the matrix iAdA  in the basis 1 2, ,..., lA A A L . 

According to the Cauchy formula the solution to system with initial condition 
(0)x   is 

0

( ) ( ,0) ( , ) ( ) ( ) ,
t

x t t t B u d         

and similarly in the case of the generalized system (3) in canonic form: 

 

0

( ) ( ,0) ( , ) ( ) ( ) .
t

j
j

j

x t t t B u d    
 

     
 
  

For systems with constant coefficients the basic solutions ( , )t   are the solutions 

to 

( ) ( ), ( )x t Ax t x I   

i.e., 

( , ) exp ( ).t A t     

Moreover, if the system's structure matrix ( )A t  has the form ( ) ( )A t a t A  then 

the basic solutions are  ( , ) exp
t

t A a s ds


   . 

In the case of system (3) 

( )

1

( ) ( ) ( ) ( )j
i i j

i j

x t a t A x B t u t


    

the basic solutions take the form 

1 1 2 2( , ) exp ( , ) exp ( , ) exp ( , ).I It A g t A g t A g t       
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Again, we assume that  1 2, , , IA A A   is a basis in the Lie algebra L generated by 

( )A t  and also that matrix IxI
i   is the representation of iAdA . Then the 

existence of the above representation is guaranteed by the Wei-Norman theorem. 

Wei-Norman Theorem 

Let ( ) ( , ) kt g t    be a solution to the so-called Wei-Norman nonlinear 

differential equation 

 
 1 1 2 2 1 1

1
exp exp exp

( ) 0

I

i i ii
i

E  

 

 


       
 



a 
 (5) 

where vector a is composed from functions ai and Eii is the (0,-1) matrix with 
single 1 entry at the ith diagonal element. 

Then 

1 2( , ) exp ( , )exp ( , ) exp ( , ).It A g t A g t A g t       

Remarks 6   The solution locally exists, because the initial condition ( ) 0    

implies that the matrix to be inverted at 0   is the identity, which is invertible, 
thus also invertible in an appropriate neighbourhood of  , and so  can be made 
explicit. 

It is well-known (cf. [3]) that 

  
1

0

exp ( , ) ( , )
n

j
i i ij i i

j

A g t q g t A 




   (6) 

is a polynomial of iA  with maximal degree 1n  , a quasipolynomial of ( , )ig t   

that is, a polynomial of ( , )ig t  , sin ( , )l ig t  , cos ( , )l ig t   and exponential of 

( , )l ig t  , where l  are the real parts and ,l l   are the imaginary parts of the 

eigenvalues of iA . (The basic results can be found in the classical monographs of 

matrix theory and ordinary differential equations, such as [3]). 

Substituting (6) into the exponential product we obtain 

  1 2
1 2( , ) ( , ) ,In n n

It Q t A A A    n
n

g  

where Qn  is a quasipolynomial of  1 2( , ) ( , ), ( , ), , ( , )It g t g t g t    g  (a certain 

product of quasipolynomials  ( , )ij ig g t  . 
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2 Reachability of the Canonic System 

Lemma 1   Consider the final states of the generalized linear system with time-
varying coefficients (3) and with the initial condition (0) 0x  . Then with 

appropriate integer constants C, 

  ˆ( ) ( )
,

ˆ0 | |0

( ) ( , ) ( ) ( ) ( ) .
T J

j
j

j j j

x T T t C A t B t u t dt
   

  
        

 


 
 

 

Here we apply the following notation: 

for integers  1 20 , , ,     , 1 21 , , ,     , 

1 2 1 2( , , , ), ( , , , ),           

| | | |x   , 

       1 2
1 2

( )( ) ( )( ) ( ) ( ) ( ) ( )A t A t A t A t



    

 . 

Proof    By the Cauchy formula, 

 ( )

0

( ) ( , ) ( ) ( ) .
T

j
j

j

x T T t B t u t dt
 

   
 
  (7) 

If the highest order derivative of u  that appears is ( ) ( )Ju t  then we assume that for 

all 0,1, 2, , 1j J   the boundary conditions ( ) (0) 0ju  , ( ) ( ) 0ju T   hold. This 

assumption does not affect the subspace of the reachable final states in n . 

 

 

 

( )
0

10 0

1
0 0

10

( 1)
0

1 0 0

1 1
20 0

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) [ ( , ) ( ) ( )]

( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ,

T T
j

j
j

T
j T

j
j

T T
j

j
j

T T

j

x T T t B t u t dt T t B t u t dt

T t B u t dt T t B t u t

d
T t B t u t dt T t B t u t dt

dt

T t A t B t B t u t dt T t













    

    

    

    

 



 

  ( 1)) ( ) ( ) ( ) ( ) .( ) j
j jA t B t B t u t dt

 

Repeating this for the last term we obtain the equations of the next step: 



Acta Polytechnica Hungarica Vol. 11, No. 3, 2014 

 – 209 – 

( 1) ( 2)
0

2 20

2 2
30 0

( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )

( )

( ) ( )

( ) [ ]
( ) ( )

T
j j T

j j j j
j j

T T

j j
j

T t A t B t B t u t dt T t A t B t B t u t

d d
T t A t B t B t u t dt T t A t B t B t

dt dt

 

 

 



      

     

 

 

 

 

( 2) 2
2 2 2

0

2 ( 2)

3 0

( ) ( , ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) .

T
j

T
j

j j j j
j

u t dt T t A t B t A t B t A t B t B t u t dt

T t A t B t A t B t A t B t B t u t dt







       

      




 

Again, integrating by parts in the last term, we have a similar equation: 

2 ( 2)

3 0

3 2
3 3 3 3 3

0

3 3

3

4 0

( , ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) 3 ( ) ( ) 3 ( ) ( )

3 ( ) ( ) ( ) ( )

( , ) ( ) (

( )
(

)
(

T
j

j j j j
j

T

T

j
j

T t A t B t A t B t A t B t B t u t dt

T t A t B t A t A t B t A t A t B t A t B t A t B t

A t B t B t u t dt

T t A t B







      

          

   

 





 2

( 3)

) 3 ( ) ( ) 2 ( ) (( )) ( )

3 ( ) ( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( ) ( ) .)
j j

j
j j j j j

t A t B t A t A t B t

A t B t A t A t B t A t B t A t B t B t u t dt





  

         

After the jth step, no derivative of u(t) appears in the integral. Then (applying the 
above notation) 

0 1 1

0 0

2
2 2 2

0

3
3

0

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

( , ) ( ) 2 ( ) ( ) ( ) ( ) ( )( )

( )
( )
(

T T

T

T

x T T t B t u T dt T t A t B t B t u t dt

T t A t A t B t A t B t B t u t dt

T t A t A t A t A t A t B t

     

       

     

 





 

 

2
3 3 3

( ) ( )
,

0 | |0

3 ( ) 3 ( ) ( ) 3 ( ) ( )

( , ) ( ) ( ) ( ) ,

( ) )
T J

j
j

j j j

A t A t B t A t B B u t dt

T t C A t B t u t dt
   

       

 

  
        

 







 

 

 

which was to be proved. ■ 
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Definition 8   The reachability Kalman-Gram matrix for generalised systems is 
defined as 

 

 

Re

( ) ( )
,

0 | |0

( ) ( )
,

0 | |

[0, ]

( , ) ( ) ( )

( ) ( ) ( , ) .

a

T J
j

j
j j j

Tr
J

j Tr
j

j j j

G T

T t C A t B t

C A t B t T t dt

   

   



  
       

  
       

 

 










 

 


 

 

 

Theorem 3   The general linear time-varying system on the interval [0, ]T  is 

completely reachable if and only if the Kalman-Gram matrix Re [0, ]aG T  is 

invertible, or equivalently, positive definite. 

Proof   Based on our first lemma (Lemma 1) the proof is similar to the case of 
classical time-varying linear systems. 

Starting from the expansion of coefficient functions in the corresponding Lie 
algebra basis, we derive an appropriate condition of persistent excitation. The 
latter leeds to a general condition of complete reachability in terms of quasi-
polynomials of the solution of the Wei-Norman equation and differential 
polynomials of the coefficient functions of the generalized LTV system. Also 
applying the well-known duality theory of LTV systems, other basic system 
properties such as controllability, reconstructability and observability can be also 
treated. 

Let L  be the Lie algebra generated by  ( ) : [0, ] n nA t t T     and let 

1 2, , , IA A A L  be a basis. In this basis 

1

( ) ( ) .
I

i i
i

A t a t A


   

Similarly, for the matrices 0 1( ), ( ), , ( )JB t B t B t , if 

 0 1( ), ( ), , ( ) : [0, ] n k
JV V B t B t B t t T R     

is the subspace of the vector space n k  spanned by ( )jB t  then a basis 

1 2, , ,
I

B B B  can be chosen in V  such that 

1

( ) ( ) .
I

j ji i
i

B t b t B


 


 


 

Now ( , )T t  can be written as a polynomial of 1 2, , , IA A A , a quasi-polynomial 

of the solutions 1 2, , , Ig g g  to the Wei-Norman equation [8], and the kernel 
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function    ( )
,

0 | |
( ) ( )

J
j

j
j j j

C A t B t
   

   
 






 

 
 in the integral form of ( )x T  can be 

written as a polynomial of 1 2, , , IA A A  and 1 2, , ,
I

B B B  and a differential 

polynomial of ( )ia t  and ˆ ( )
ji

b t  (with integer coefficients and first degree 
i

Bˆ ). 

Exchanging adjacent terms, the powers of Ai can be arranged in the natural order 
(having the form 1 2

1 2, , , Im m m
IA A A , where all mi satisfy 0 i im n  , or 0 m n  ) 

using the equations 
1 2 2 1 1 21

I

i i i i i i h
h

A A A A A


     and i
iii

i

n
i ACA

ˆ
ˆ

0ˆ
  assuming 

that the characteristic polynomial of Ai has the form 
1

ˆ
0

n
n i

iii
C 




  . 

Then we have 

 

1 2

ˆ

ˆ ˆ1 2 ,
ˆ 0 0

[ ) [ )[ )
1

( )

( , ), ( ), ( ), , ( ) ( ) .

I

TI
m m m

I i i
i

J

x T A A A B P

T t t t t u t dt

  

 

      m
0 m n

g a b b





 

Here  [ ) [ )
ˆ,

( , ), ( ), , ( ),ji
P T t t b t  

m
g a  are quasi-polynomials of 

1 2( , ), ( , ), , ( , )Ig T t g T t g T t  and differential polynomials of 

ˆ ˆ ˆ1 11 12 21 1 21 2
( ), , ( ), and ( ), ( ), , ( ), ( ), , ( ), , ( ), ( ), , ( ),I J JI I JI

a t a t b t b t b t b t b t b t b t b t    
and the following notation is used 

 

 

[ )

[ )

( , ', '',..., ),

( , ', '',..., ),

a a a a

b b b b













a

b
 

where ,  are arbitrary (but finite) nonnegative integers. 

This implies that the reachable subspace of the general system on [0,T] must be a 
subset of the image space 

 1 2
ˆ1 2Im , ,Im m m

I i
A A A B       

which is similar to the case of classical canonical systems. 

The reachability subspace is extended because the derivatives can also be inputs, 
therefore let 

0 0 ( ); [0, ] ,{ } n kV V B t t T      

0 1( ), ( ), , ( ); [0, ]{ } n k
J JV V B t B t B t t T      



S. Molnár On the Reachability of Time Varying Linear Systems 

 – 212 – 

be the subspaces generated by the corresponding ( )JB t matrices. Choose a basis 

of JV  such that the first 0̂I  elements form a basis of 0V : 

 
 

0

0 0 0

ˆ0 1 2

ˆ ˆ ˆ ˆ1 2 1 2

, , , ,

, , , , , , ,
J

I

J I I I I

V V B B B

V V B B B B B B 







 
 

From this it is obvious that for the general system, the image of the corresponding 
generalized Kalman-matrices (briefly Kalman matrices in the following) contains 
the image of the general Kalman matrices of the classical system. 

From the proofs for the classical system one can deduce the persistent excitation 
condition which guarantees that the reachability subspace of the general system 
coincides with the image of the image of the general Kalman-matrix of the 
system. 

Suppose that   is a vector in the image space of the Kalman-matrix, 

 1 2
ˆgen 1 2, ,Im m m

I iK A A A B       . 

genK  does not equal the reachable subspace of the general system over [0, ]T  if 

and only if there exists 0  , genIm( )K  , such that , ( ) 0x T    for all 

possible inputs u(t). 

This means 

 

      

1 2

1 1

ˆ
[ ) [ )

ˆ ˆ1 2 ,
ˆ 0 0

ˆ
[ ) [ )

ˆ ˆ1 1,
ˆ 00

0 , ( )

, ( , ), ( ), , , ( )

( , ) ( ) , ( ) .

I

I I

TI
m m m

jI i i
i

T I
m m mT T T T

j I Ii i
i

x T

A A A B P T t t u t dt

P T t t A A A B u t dt







 



 




   

 



  

 

m
0 m n

m
0 m n

g a b

g a b

  

  

 

 

 

By the classical Lagrange lemma, if the above holds for every "nice", e.g. 
continuous function u then 

 
 

     1 1

ˆ
[ ) [ )

ˆ,
ˆ 0

ˆ1 1

( , ), ( ), , ,

0
I I

I

ji
i

m m mT T T T
I I i

P g T t t

A A A B 

 

  

 

  m
0 m n

a b 



 (8) 
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The analytic functions  exp ,cos ,sing g g     in the quasi-polynomials ˆ, iPm  can 

be replaced by new variables g exp g  , ˆ cosg g , sing g . The 

corresponding differential equations are: 

 

exp , and

ˆ sin ,

ˆcos .

g g g gg

g g g gg

g g g gg

  

  

  

 

   

 

  
  

  
.

 (9) 

To make these differential equations explicit consider the Wei-Norman 
differential equation 

1 1 2 2 1 1
1

exp exp exp , (0) .
I

i i ii
i

g g g E 


 
      

 
 g a g 0  

The exponential products are exponents in the multiplication table of the Lie 
algebra 1 2 1, , , I    (the Christoffel symbols). Again, we can introduce the 

non-polynomial terms exp ,cos ,sing g g    as new variables, which means 

adding more differential equations of the type (9) that are polynomial. Thus the 
Wei-Norman equation becomes polynomial but non-explicit. 

The equation can be made explicit in the original derivatives g : 

1

1 1 2 2 1 1
1

exp exp exp ,
I

i i ii
i

g g g g E



 


 
     
 
  a  

and equations (9) also become explicit with fractional denominators: 

1 1 2 2 1 1
1

det exp exp exp .
I

i i ii
i

g g g E 


 
    

 
   

Multiplying the system of explicit equations by these, in the end we obtain an 

implicit polynomial differential equation with variables , , ,


g g g g , where each 

equation contains only one derivative, that is, a regular differential equation which 
can be made explicit in the derivatives (with fractional right hand sides). 

Thus the quasi-polynomials  [ ) [ ) [ )[ )
ˆ 1 2, ( , ), ( ), ( ), ( ), , ( )IiP T t t t t t   m g a b b b  can 

be replaced by polynomials 

 [ ) [ ) [ )[ )
, 1 2ˆ( , ), ( , ), ( , ), ( , ), ( ), ( ), ( ), , ( )i IP T t T t g T t g T t t t t t   m g g a b b b  

of variables ˆ, , ,


g g g g  and differential polynomials of functions ( )ta  

0 1( ), ( ), , ( )Jt t tb b b . 
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Denote the variables ˆ, , ,


g g g g  by 1 2( , , , )Nx x x x  and by 1 2( , , , )Ku u u u , 

and rewrite the above implicit polynomial differential equation as 

( , , , , ) 0.F  x x u ü  

We also rewrite equation (8) using  ,x u  

     1 1
ˆ, ˆ1 1

ˆ 0

( , , , , , ) 0.
I I

I m m mT T T T
bm i I I i

i

P A A A B 


  

      
0 m n

x x u u u  

Define the output equation 

       1 1
ˆ, ˆ1 1

ˆ 0

( , , , , ) , , , , .
I I

I
m m mT T T T

I I i
i

y P A A A B G u u 


  

      m i

0 m n

x u u x  

Thus we have an input-output system 

 
 , , , , , , 0

( , , , , , ),

F

G







  
 

x x u u

y x u u
    

which is polynomial and implicit in the derivatives x , with the regularity 
condition ( , , , , ü, , ) 0xF     x x u u . Here u are the inputs, x are the states and y 

are the outputs. Consider another representation with possibly different states but 
with the same inputs and outputs 

 
 , , , , , , 0

( , , , , , ).

F

y G









  

 

x x u u

x u u
    

Let    and    be input-output systems. We call them equivalent if for every 

input-output pair ( , )u y , has a solution x  if and only if  has a solution x . In this 

case the two systems 

 

behave in the same way.   and   can be written more briefly also allowing the 

derivatives of the outputs y  

 ( , , , , , , , , , , ) 0,J       x x u u u y y y  (10) 

and 

( , , , , , , , , , , ) 0.J       x x u u u y y y  
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Diop [1] proved the existence of a finite purely algebraic algorithm which gives 
differential polynomials 

ˆ( , , , , , , , , )

ˆ ( , , , , , , , , )

J

G





    
    

u u u y y y

u u u y y y
 

such that the system (10) is equivalent to the input-output system u y  defined 

by the implicit equation and the non-equality condition 

 
ˆ( , , , , , , , , ) 0

ˆ ( , , , , , , , , ) 0.

J

G









    
    

u u u y y y

u u u y y y
 (11) 

The latter has no state variable x  thus we can call the Diop algorithm a state 
elimination algorithm. 

Definition 9   (10) and (11) define equivalent input-output systems if for any 
input-output pair ( , )u y , (10) has a solution with respect to the state x , i.e. the 

triple ( , , )x u y  is a solution to (10) if ( , )u y  is a solution to the polynomial 

equation 

ˆ( , , , , , , , , ) 0J      u u u y y y  

and 

ˆ ( , , , , , , , , ) 0G      u u u y y y  

holds. 

Remark 7   We get this latter result by dividing by a differential polynomial in 
each step of the algorithm, and since the divisor obviously cannot be 0, this must 
be assumed. Their products form the differential polynomials 
ˆ ( , , , , , , , , )G     u u u y y y . If this product 0  then neither of its factors can be 0 . 

Now returning to the original input-output system )( , taking the "input" 

0 1( , , , , )J u a b b b  ordered continuously in a row, we have 

0 1 0 1

0 1 0 1

, , ( , , , , ), ( , , , , ), , 0,

, ( , , , , ), ( , , , , ), , 0.

( )
( )

j j

j j

F

G









     

    

x x a b b b a b b b

x a b b b a b b b
 

Substituting the input-output pair 0 1( , , , , ),0( )Ja b b b  into the state eliminated 

system obtained from system )( , the equivalence of the systems yields the 

equation and non-equality 



S. Molnár On the Reachability of Time Varying Linear Systems 

 – 216 – 

 
 
 

0 1 0 1

0 1 0 1

ˆ ( , , , , ), ( , , , , ), ,0,0,0, , 0

ˆ ( , , , , ), ( , , , , ), ,0,0,0, , 0

J J

J J

J

G









     

     

a b b b a b b b

a b b b a b b b
 (12) 

which give a sufficient condition that for all inputs u , the end state ( )x T  is 

orthogonal to the given vector 

  1 2
1 2Im , , .Im m m

jIA A A B      (13) 

Definition 10   We say that the time-variant coefficients 0 1, , , , Ja b b b  

persistently excite the system if the subspace of the reachable states coincides with 
the image space of the generalized Kalman-matrix, i.e., it is the largest possible 
subspace. According to our equations, if the coefficients satisfy the conditions 
(12) then state   must be 0 . 

The most interesting special case is when the image space of the generalized 
Kalman-matrix is the whole space n . Then the coefficients 0 1, , , , Ja b b b  

persistently stimulate the system if and only if the system is totally reachable on 
the interval [0, ]T . 

Thus if the coefficients do not persistently excite the system then 

 
 

0 1 0 1

0 1 0 1

ˆ ( , , , , ), ( , , , , ), ,0,0,0,0, , 0

ˆ ( , , , , ), ( , , , , ), ,0,0,0,0, , 0

0

J J

J J

J

G













     

     

a b b b a b b b

a b b b a b b b  

can be solved. Regarding the equation as an implicit function of  , it can be 

solved for  , 

  0 1 0 1
ˆ ( , , , , ), ( , , , , ), , .J Jf     a b b b a b b b  (14) 

Writing this into the two non-equalities we have that the condition of "persistent 
non-excitation" is the paralel fulfillment of the two non-equalities: 

 
0 1 0 1

0 1 0 1

0 1 0 1

ˆ0 ( , , , , ), ( , , , , ), ,0,0, ,

ˆ ( , , , , ), ( , , , , ),

ˆ0 ( , , , , ), ( , , , , )

(

)

J J

J J

J J

G

f

f





     

    

    

a b b b a b b b

a b b b a b b b

a b b b a b b b

 

Negation of these statements gives the condition for persistent excitation 
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 
0 1 0 1

0 1 0 1

ˆ0 ( , , , , ), ( , , , , ), ,0,0, ,

ˆ ( , , , , ), ( , , , , ),

J J

J J

G

f

      
    

a b b b a b b b

a b b b a b b b
 

or 

0 1 0 1
ˆ0 ( , , , , ), ( , , , , ) .( )J Jf     a b b b a b b b  

Returning to the solvability of the implicit function of   we can obtain (14). 

Again Diop's elimination theorem (algorithm) can be applied. Regard the vector 
  as a state that can be eliminated. For this we would need a state equation, a 

dynamics as a differential equation for  . But since   is a constant the dynamics 

is simply 0 . 
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