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Abstract: We consider a plane problem of fracture mechanics for an isotropic medium with 

a periodic system of circular holes filled with absolutely rigid inclusions soldered along the 

contour and weakened by rectilinear cracks with interfacial bonds at the end zones 

collinear to the abscissa and ordinate axes of unequal length under transverse shear. The 

problem on equilibrium of isotropic composite medium with cohesive cracks is reduced to 

the solution of the system of nonlinear singular integro-differential equations with Cauchy 

type kernel. The tangential forces at the end zones of the cracks are found from the solution 

of this system of equations. The crack propagation condition is stated with regard to 

ultimate stretching of the material bonds. 
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1 Introduction 

At present, technical means, in the form of perforated elements are used in many 

fields of engineering. Therefore, development of strength analysis methods of 

perforated elements of machines and constructions is of great value. Investigation 

of these problems is important in connection with development of power 

engineering, chemical industry and other branches of engineering and also with 

wide use of periodic structure materials. 

By investigating the stress distribution in shear of the plane perpendicular to fibers 

(inclusions) orientation, one can get a good notion on typical stress distributions in 

the microstructure of reinforced materials. The solution of this problem opens new 

opportunities for mechanical properties forecasting of composite materials on 

given initial characteristics, for constituent components and in the form of 

microstructure. At the design stage of new machines and structures it is necessary 

to take into account the cases when, in components of the machines and/or 
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structures, there may appear cracks. A large amount of literature has been devoted 

to these problems (see review of the papers in [1, 2]). In a great majority of 

papers, the authors have considered only the Criffith’s cracks, i.e. the cracks with 

not interacting edges. In structurally-inhomogeneous materials, in availability of 

violated structure zones near the crack, a considerable part of the crack is drawn 

into the failure process. In this case the fracture zone may be considered as some 

end-zone adjoining to the crack with a material with partially violated interparticle 

couplings. Among the investigations of the last years we can note the papers [3-

11]. 

2 Formulation of the Problem 

Begin with an isotropic medium weakened by a system of circular holes of radii 

  )1(   and the centers at the points 

mP
m
   ,...)2,1,0( m , 2  

The circular holes of the medium are filled with absolutely rigid inclusions 

soldered along the contour. In [12] the investigations were limited to the 

consideration of Griffith’s cracks. In the present study, the isotropic medium is 

weakened with two periodic systems of rectilinear cohesive cracks collinear to the 

abscissa and ordinate axes of unequal length (Fig. 1). The crack faces outside of 

the end zones are free from external loads. The plane under consideration is 

subjected to transverse shear by the forces 

xy
 . It is required to determine the 

stress strain state in the isotropic medium according to boundary conditions on 

non-availability of elastic displacements, along the contour of circular holes and 

the external loads on the faces of periodic system of cracks outside end zones. 

 

Figure 1 

Calculation scheme of the problem on interaction of rigid inclusions and cohesive cracks 
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As the external load 

xy
  increases, there will arise concluding prefracture zones on 

the continuation of rectilinear cracks. The model bridged cracks at the end zones 

are used [13-21]. The crack’s end zones are modeled by the areas with weakened 

interparticle bonds in the medium material. Interaction of faces of these zones are 

modeled by introducing bonds with the given deformation diagram between the 

prefracture zone faces. The physical nature of such bonds and the sizes of the 

prefracture zones depend on the form of the material. 

When the external load 

xy
  acts on the composite body, in bonds connecting the 

faces of end prefracture zones, there arise tangential forces )(xq
x

 and )(yq
y

, 

respectively. These stresses are not known beforehand and should be defined. 

Due to the symmetry of boundary conditions and geometry of the domain D 

occupied with the material, the stresses are periodic functions with the main 

period  . 

The boundary conditions of the problem have the form 

0 ivu   on the contours of circular holes (1) 

And on the crack faces 

0
xyy

i   collinear to the abscissa axis (2) 

0
xyx

i   collinear to the ordinate axis  

For the faces of end prefrature zones  

)(xiqi
xxyy

    collinear to the abscissa axis (3) 

)(yiqi
yxyx

    collinear to the ordinate axis 

The basic relations of the stated problem should be complemented with the 

relationships connecting the shear of prefracture zone faces and forces in the 

bonds. Without loss of generality, we will represent these equations in the form 

)())(,()0,()0,( xqxqxCxuxu
xx

   (4) 

)())(,(),0(),0( yqyqyCyvyv
yy

    

where the functions ))(,( xqxC
x

 and ))(,( yqyC
y

 are effective compliances of the 

bonds, )(  uu  is the shear of the faces of end prefracture zones collinear to 

abscissa axes; )(   vv  is the shear of the faces of end prefracture zones collinear 

to ordinate axis. 

To determine the ultimate quantity of the external load under which the crack 

propagation occurs, the problem statement should be complemented with crack 
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propagation condition (criterion). In place of such a condition we take [22] a 

deformational fracture criterion (critical shear of prefracture zone faces) on the 

faces of end prefrature zones 

c
uu

II
     collinear to the abscissa axis (5) 

c
vv

II
     collinear to the ordinate axis  

where 
cII

  is the crack resistance characteristics of the medium material. 

3 The Method of the Boundary-Value Problem 

Solution 

In order to solve the problem in a natural way we combine the method worked out 

by solving the periodic elastic problem [2] with the method [23] for constructing 

in the explicit form the Kolosov-Muskhelishvili potentials, corresponding to 

unknown tangential displacements along cracks with the end zones. We represent 

the stresses and displacements [24] by the Kolosov-Muskheleshvili potentials 

)(z  and )(z  

)(Re4 z
yx

 , )()( zz  , )()( zz   )( iyxz   (6) 

 )()(22 zzzi
xyxy

   

)()()()(2 zzzzivu     

where  43  for plane strain, )1()3(    for plane stress state;   and 

  is a shear modulus and the Poisson’s ratio, respectively. Based around formulas 

(6) and boundary conditions on the contours of circular holes and on the surfaces 

of cracks with end zones, the problem is reduced to definition of two analytic 

functions )(z  and )(z  in domain D from the boundary conditions (t and t1 are 

the affices of the points of the crack surfaces with end zones collinear to abscissa 

and ordinate axes, respectively) 

  0)()()()( 2   ie  (7) 

)()()()()( tfttttt
x

  (8) 

)()()()()(
111111
tfttttt

y
   

where   mei   ,...)2,1,0( m ; 



Acta Polytechnica Hungarica Vol. 11, No. 5, 2014 

 – 165 – 



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





zones end scrack' of faces on the         )(
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)(
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1 tiq
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tf
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The problem statement simultaneously covers the cases of rigid inclusions 

)(    and free holes )1(  . We look for the solution of boundary value 

problem (7)-(8) in the form 

)()()()(
321

zzzz  , )()()()(
321

zzzz   (9) 

dtzttgz
L

)(cot)(
2

1
)(

1

1
  




 (10) 

dtzttg
z

z
L

)(sin)(
2

)(
1

2

21
 










  

11112
)(cot)(

2
)(

2

dtzittg
i

z
L

  




  

 









2

11

2

11112
)(sin)2()(cot2)(

2
)(

L

dtzitiztzittg
i

z













  















0

)2(22

223
)!12(

)(
)(

k

kk

kxy
k

z
iiz


  (11) 


























0

)12(22

22
0

)2(22

223
)!12(

)(

)!12(

)(
)(

k

kk

k
k

kk

kxy
k

zS
i

k

z
iiz





   

where 

2

2

2

3

1
sin)( 

























 












 zz ;  













m
mmm

m

PP

z

Pz

P
zS

12

)(
')(

2
, the 

prime of the sum sign indicates that the subscript m=0 is excluded from the 

summation; the integrals in (10) are taken on the line    laalL ,,
1

 , 

   rbbrL ,,
2

 ; g(t) and g(t1) are the desired functions characterizing the 

shear of crack faces with end zones 

 )0,()0,(
1

2
)( xuxu

dx

di
xg  







   on L1 (12) 

 ),0(),0(
1

2
)(

1
yvyv

dy

d
yg  







   on L2  
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To relations (9)-(12) we should add additional conditions following from the 

physical sense of the problem 

0)( 




a

l

dttg ,  0)( 
l

a

dttg  (13) 

0)(
111






b

r

dttg ,  0)(
111


r

b

dttg   

Refer to the dependences to which the coefficients of equations (9)-(11) should 

satisfy. From the anti-symmetry conditions for the coordinate axes we find 

0Im 
k

 ,  0Im 
k

    (k=1,2,...)  

From the condition of constancy of the principal vector of all forces acting on the 

arch, connecting two congruent points in D it follows that 

2

2

2

0
24




    

It is easy to see that the functions (9)-(11) under condition (13) determine the class 

of problems with periodic distribution of stresses. 

The unknown functions g(x), g1(y) and the constants
k2

  and 
k2

  should be 

defined from boundary conditions (7) and (8). Subject to the periodicity 

conditions, the system of boundary conditions (7) is replaced by one functional 

equation, for example on the contour  ie , the system of conditions (8) by the 

boundary  conditions on L1 and L2. 

To compose the equations with respect to the coefficients
k2

  and 
k2

  of the 

functions )(
3

z  and )(
3

z  we represent boundary conditions (7) in the form 

  )()()()()()()()(
2121

2

3333
  iiffe i   (14) 

   ieiff 2

111121
)()()()()()(   (15) 

   iei 2

222221
)()()()()()(    

For the functions )()(
21
 iff   and )()(

21
 i  we will assume that they 

expand on    in Fourier series. By anti-symmetry, these series have the form  







k

ik

k
eAiff  2

221
)()( ,  0Re

2


k
A  (16) 

 



 



2

0

2

212
)()(

2

1
deiffA ik

k
  ,...)2,1,0( k   
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





k

ik

k
eBi  2

221
)()( ,  0Re

2


k
B   

 



 



2

0

2

212
)()(

2

1
deiB ik

k
   ,...)2,1,0( k   

Substituting to these series relation (12) and changing the integration order, after 

calculation of integrals by means of residue we find 


1

)()(
2

1
2

L

kk
dttftgA


 

)()1()(
0

ttf  ,  tt



 cot)(    

)(
2

)( )2(

2

2
ttf 


  

)(
)!32(

1
)(

)!2(

)12(
)( )22(22)2(2

2
t

k
t

k

k
tf kkkk

k







      ,...)3,2( k  

)(
)!2(

)( )2(2

2
t

k
tf kk

k






    ,...)2,1( k  


2

112112
)()(

2 L

kk
dtittg

i
B 


 

 )()()1(
2

1
)(

1110
ititit   ,  )(cot)(

11
itit




    

 )()(2)(
2

)(
1111

)2(

2

12
ititititit 


    

 )()(
)!22(

2
)(

)!2(

)21(
)(

1

)12(

11

)22(

22

1

)2(

2

12
itititk

k
it

k

k
it kk

k

k

k

k











 





   ,...)2,1( k   

)(
)!2(

)(
1

)2(

2

12
it

k
it k

k



 


  ,...)2,1( k   

Substituting to the left side of boundary condition (14) instead of )(
3
 , )(

3
 , 

)(
3
  and )(

3
  their expansion in Laurent series in the vicinity of 0z , and to 

the right side of (14) the Fourier series (16) and comparing the coefficients at the 

same degrees of ie  we get two infinite system of algebraic equations with respect 

to the coefficients 
k2

  and 
k2

  
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The coefficients 
k2

  are determined by the relation 
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Requiring that functions (9)-(11) should satisfy the boundary condition on the 

faces of the crack with end zone L1, we get a singular integral equation with 

respect to g(x) 

)()()(cot)(
1

1

xfxHdtzttg
x
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Similarly, satisfying the boundary condition on the line L2 after some 

transformations we get one more singular integral equation with respect to the 

desired function g1(y) 
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Systems (17) and (18) together with singular integral equations (19) and (20) are 

the main resolving equations of the problem and allow to define the functions 

g(x), g1(y) and the coefficients 
k2

 , 
k2

 . 

4 Method of Numerical Solution and Analysis 

Using the expansion of the functions z



cot , z



2sh  in the main strip of 

periods, and also using the substitution of variables, after some transformations we 

will reduce the singular integral equations to the standard form. Using the 

quadrature formulas [23, 25], we reduce main resolving equations (17), (18), (19), 

(20) to the totality of two infinite system of linear algebraic equation and to two 

finite algebraic systems with respect to approximate values )(0
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The right side of the obtained systems contains the unknown stresses )(
mx

q   and 

)(
my

q   at the nodal points, belonging to prefracture zones. Using the obtained 

solution, we represent of equation (12) in the form 
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These equations help to determine the traction at the bonds of the end zones of 

cracks. For constructing missing equations conditions (23) should be fulfilled at 

the nodal points. We use the finite differences method. And as a result we get two 

more systems from M1 and M2 equations in order to determine approximate values 
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Mm  . Since, in the perforated 

body the stresses are finite, the solution of singular integral equations should be 

sought in the class of universally bounded functions. Consequently, to system 

(21)-(22) we should add the conditions of stress bounded environment at the crack 

vertices 
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The obtained systems of equations (17), (18), (21)-(24) completely define the 

solution of the problem. For numerical realization of the stated method the 

calculations were performed. Each of the infinite system of equations were 

reduced to five equations. In numerical calculations 30M  that corresponds to 

portioning of integration interval into 30 Chebyshev nodes. Since the sizes of the 

end zones are unknown, the resolving algebraic system of equations (17)-(18); 

(21)-(24) of the problem is nonlinear even for linear-elastic bonds. For its solution 

the sequential approximations method is used [25]. The essence of this method is 

solving the algebraic system for some definite values of end zones sizes with 

respect to the remaining unknowns. The remaining unknowns enter the resolving 

system linearly. The accepted values of the end zone sizes and the appropriate 

values of the remaining unknowns will not satisfy, generally speaking, the stress 

bounded conditions at the crack vertices. Therefore, choosing the values of end 

zone sizes, we will repeat calculations until the stress bounded conditions of (24) 

will be satisfied with the given accuracy. In the case of nonlinear law of 

deformation of bonds, for determination of tangential forces at the end prefracture 

zones, the iteration algorithm similar to the method of elastic solutions [26] was 

used. It is assumed that the law of deformation of inter-particle bonds at the end 

prefracture zone is linear for 
*

)( uuu    and 
*

)( vvv   . The first step of 

iterative calculation process is to solve the systems of equations for linear-elastic 

bonds. The next iterations are fulfilled only in the case when the inequality 

*
)( uuu    or 

*
)( vvv    holds on the part of the end prefracture zone. For 

such iterations, the system of equations at each approximation is solved for quasi-

linear bonds with effective compliance changing along the end zone forces and 

dependent on the quantity of forces in bonds that was calculated at the preceding 

step. Calculation of effective compliance is conducted as in definition of the 

secant modulus in the method of variables of elasticity parameters [27]. The 

sequential approximations process finishes when the forces along the end zone, 

obtained on two sequential iterations do not differ at all. The nonlinear part of the 

curve of bonds deformation was approximated by the nonlinear dependence 

whose ascending section corresponded to deformation of bonds 

))(0(
*

uuu    with their maximal traction of bonds. For 
*

)( uuu    the 
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deformation law was described by nonlinear dependence determined by the points 

),(
**
u  and ),(

cc
 , for 

*
 

c
 an ascending linear dependence hold (linear 

strengthening corresponding to elastico-plastic deformation of bonds). 

In order to determine the limit equilibrium state of the medium under which the 

crack propagates, we use condition (5). Using the obtained solution, by the 

conditions defining the ultimate external load we find the followings: 

cyy
dqdqdC

II
)())(,(   (25) 

cxx
dqdqdC

II
)())(,(   

Here d  and *d  are the coordinates of the points at the foundation of the end 

prefracture zones, respectively. The length of the end zone, tractions in bonds and 

shear of opposite faces of end prefracture zone from the loading parameter 

xy
  

were found as a result of numerical calculation. The dependence of relative length 

of the end prefracture zone /)(
1*
lll   on dimensionless value of the external 

load 
*

/ 

xy
 for different values of the radius of holes (curves 1-4): 1 – 2,0 ;  2 

– 3,0x ; 3 – 4,0 ; 4 – 5,0  are represented in Fig. 2. 

 

Figure 2 

Dependence of relative length of the end prefracture zone /)( 1* lll   on dimensionless value of 

the external load */ 
xy  for different values of the radius of holes (curves 1-4): 1 – 2,0 ;  2 – 

3,0 ; 3 – 4,0 ; 4 – 5,0  

The dependence of tractions in the bonds 


xyx
q /  in relative size of 

*
l  for different 

values of the radius of holes; 5,02,0   (curves 1-4) are cited in Fig. 3. 

The joint solution of the algebraic system and condition (25) enables (for the 

given characteristic of material crack resistance) to define the critical quantity of 
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the external load, the sizes of end zones of the cracks for the limit-equilibrium 

state under which the crack propagates. 

 

Figure 3 

Traction distribution in bonds 
xyxq /  from the relative size *l  of the end zone for different values of 

the radius of the holes 5,02,0   (curves 1-4) 

On the base of the obtained numerical results, the graphs of dependence of critical 

load 
*

* / 
xy

 for the distance  aa
*

 for the both ends of cracks collinear to 

the abscissa axis (curve 1 corresponds to the left end) for 3.0  are structured 

in Fig. 4. 

 

Figure 4 

Dependence of critical load xxy  /   on the distance  aa  for the both ends of the cracks, 

collinear to the abscissa axis (curve 1 corresponds to the left end) for 3,0  
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The dependence of critical load a*  when the crack length all 
*

changes is 

represented in Fig. 5. For 3.0 , 05.0* a  

 

Figure 5 

Dependence of critical load a  when the crack’s length all *  changes, for 3.0 , 05.0* a  

Conclusions 

The analysis of the limit equilibrium state of a body with periodic system of rigid 

inclusions and rectilinear cracks, with interfacial bonds at the end zones under 

transverse shear, is reduced to a simultaneous parametric investigation of 

resolving algebraic system (17), (18), (21), (22)-(24) and deformation criterion of 

fracture (25) under different laws of deformations of interparticle bonds of the 

material, elastic constants and geometric characteristics of a perforated body. The 

traction in bonds and shear of the crack surfaces are determined directly from the 

solution of the obtained algebraic systems. 

The model of the cohesive crack allows us to investigate the main regularities of 

traction distributions in bonds under different deformation laws; to analyze the 

limit equilibrium of the crack with end prefracture zone, with regard to 

deformational condition of fracture; to estimate the critical external load and 

material’s crack resistance. The obtained relations enable to investigate the limit 

equilibrium state of the medium with a periodic system of circular holes filled 

with absolutely rigid inclusions soldered along the contour and weakened with 

bridged rectilinear cracks at the end zones collinear to abscissa and ordinate axes 

of unequal length under transverse shear. 
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