
Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 231 –

Dependable Peer-to-Peer SCADA

Architecture

Mihály Sági

University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića

6, 21000 Novi Sad, Serbia, sagi@uns.ac.rs

Ervin Varga

University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića

6, 21000 Novi Sad, Serbia, evarga@uns.ac.rs, e.varga@ieee.org

Abstract: SCADA solutions are under a high flux to shift their focus from process control of

a limited set of industrial plants to the control of large-scale system of systems. This is in

par with the recent proliferation of ubiquitous/pervasive computing paradigm mostly

embodied as Internet of Things (IoT). In a traditional setup, a whole system is only

partially covered by SCADA data points; therefore, complex simulation is required to fit

the missing measurements, hence, buttress decision support scenarios. This usually entails

a fully integrated and centralized approach, where SCADA infrastructure needs to hold

and distribute data, both collected and calculated. It leads to the increase of load on a

supporting real-time database, which hosts millions of data points. It is a challenge that a

traditional SCADA design (based on a shared memory database and competing processes),

cannot fulfill in real-time. This paper proposes an alternative approach of an architecture

and basic functionality of a SCADA system. The proposed architecture targets distributed

SCADA systems that can be used to supervise and control large-scale distributed industrial

or infrastructural systems. Strategic data organization and segmentation are introduced, so

that the acquired data can be efficiently distributed throughout the system. The proposed

architecture pushes forward a peer-to-peer node structuring scheme, where an autonomous

node supervises and controls only subsets of the system. Nodes collaborate to establish a

unified view of the entire system. The proof of the concept implementation has proven to be

able to manage significantly more data points in a distributed fashion than a centralized

variant.

Keywords: SCADA; smart city; distributed system; peer-to-peer architecture; smart grid

M. Sági et al. Dependable Peer-to-Peer SCADA Architecture

 – 232 –

1 Problem Statements and Objectives

As industrial processes became more complex and computing power became

cheaper and more robust, these processes started to be supervised and controlled

by programmable logic controllers (PLC) to induce more precision and reliability

into the process itself. With the growth of the industry and the complexity within

the industrial processes, the need for a larger scale process supervision and control

was needed, so SCADA systems were developed as a universal mean of access

local control modules such as PLCs. They soon became the most commonly used

industrial control systems. After the “automation revolution” in industrial systems,

SCADAs started being applied to infrastructural management systems as well

(e.g. electricity, gas, water, waste-water). Since infrastructure systems are of a

more complex nature than industrial systems, the move to this field introduced

new challenges into SCADA development. This paper will give a brief historic

overview of currently available solutions and will propose a solution for the newly

introduced challenges.

1.1 Current Work

SCADA systems were initially used in industrial processes that were located in a

single processing plant with well defined geographical boundaries. The

geographical and industrial process based limitations had many conveniences such

as limited number of sensors and actuators, no or slow expension of number of

sensors (telemetered data) over time. These systems usually had only a few

operator terminals that showed the overall state of the plant to the operators.

Decision support systems in manufacturing process were rare. [1] [2]

SCADA Server

Operator Terminals
RTUs

Historian DB Servers

Business
Application

Servers

Figure 1. Building Blocks of a Traditional Clustered SCADA System

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 233 –

One of the most popular SCADA designs was building multiple processes that

execute segments of the overall SCADA functionality (data processing,

communication, supervisory control, automated control procedures, historization,

decision support, etc.) (Figure 1). Such designs provided easy integration with the

SCADA real-time database and simple extension of basic SCADA functionalities

driven requirements specific for the controlled industrial process. Traces of such

an architecture are still found in some of the high-end SCADA solutions available

on the market.

Current developments in supervised systems generally go towards further merging

and increase in size, which has to be followed by the provision of adequate control

systems, both in size and acceptable performance. In addition, control

requirements are far more demanding than before, in order to run technological

processes in more precise and safer manner.

This is particularly obvious in infrastructural SCADA applications (from power

distribution, through oil, gas and water transport and distribution systems to even

smart cities), that requires integrated control system with acquisition of process

data that is placed to the centralized real-time database with several million data

points. [3]

In these systems, the decision support is integrated with the SCADA so the real-

time database stores telemetered SCADA data together with derived values (e.g.

calculations, estimations, predictions, simulations, etc.). The SCADA is expected

to feed data to decision support components, treat the collected derived data in the

same manner as the telemetered and to distribute all data to client (operator or

business) applications. In addition, the scale of such systems introduces a need for

multiple client application. Even though contemporary computers scaled through

time, the bottleneck when applying traditional SCADA architectures to industrial

systems is the communication infrastructures, that is far more complex and

expensive to change or upgrade. Additionally, infrastructural systems usually are

geographically scattered, they have a large number of sensing and actuating points

(up to several million) and the configuration is changing (mostly growing) over

time. Such systems also rely on complex decision support and tens of operator and

maintenance terminals. [4]

The challenges coming from infrastructural systems were the main driving force

of the design of a new SCADA architecture. However, with the advances in both

hardware and software over time, there are additional requirements important for

its applicability of contemporary SCADA systems: extensive and elaborate

SCADA model, reusability, extensiblity, easy adaptation to user demands, cross-

platform and secured operation. [5] [6] [7]

Contemporary SCADA systems on the modern market need to support the

handling of millions of data points (part telemetered, part derived) in a networked,

real-time environment. Data acquisition and primary data processing is always

done in a centralized fashion due to architectural limitations, and then the

M. Sági et al. Dependable Peer-to-Peer SCADA Architecture

 – 234 –

concentrated values in the real-time database counting several million data points

are distributed to achieve high-availability. The complex operations in the

decision support systems are also performed where the data acquisition is taking

place. An example is, an infrastructural system where SCADAs are being

introduced are Distribution Management System implementations for power

distributions, where it is a usual market requirement that the SCADA handles

more than 10 million data points in real-time. To achieve high availability,

multiple copies of the SCADA software is running and data replication

mechanism is used. Due to the size of the database and the need that the data

needs to be transferred as quickly as possible to the backup SCADA system, the

communication subsystem must be optimized to the highest level. [7] [16]

Other contemporary approaches include WEB based SCADA systems. [8] Such

systems leverage the network infrastructure already available and while they are

easier to implement than “traditional” SCADA systems, the required level of

security and real-time operation capability are not achievable for big systems

under supervision. [9] [10]

1.2 Proposal

Core requirements for a SCADA system (regardless if industrial or infrastructure)

are real-time operation, reliability and high availability. The minimum response

time is defined by the supervised system and is measured in seconds. Other

requirements that are mandatory for SCADA systems are reliability availability as

for most of the real-time systems.

The architecture presented in this paper relies on a distributed storage system that

provides data distribution with configurable bandwidth and performance ratio

where the communication between SCADA nodes can be optimized per needs.

[14] The data distribution is built into the real-time database enabling the

distribution of telemetry and decision support subroutines.

The paper describes the architecture and basic functionality of a SCADA system

developed in line with this concept, providing efficient real-time execution of

complex supervisory and control procedures in a distributed environment.

The proposed architecture can be classified as a third generation SCADA

architecture. The SCADA core is based on an earlier study [11], where a

monolithic architecture is used. Basic principles are inherited and the architecture

is upgraded to adopt the “modern”, networked nature.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 235 –

Operator Terminals

RTUs

Historian DB Servers

Business
Application

Servers

SCADA Node

SCADA Node

SCADA Node

SCADA Node

Figure 2

Proposed Peer-to-Peer Structured SCADA System

Since the proposed architecture is considered to be of a generic purpose, so it can

drive all infrastructural decision support systems found in a smart city, the most

complex and response critical infrastructure is taken as a target. The new

architecture must be fit to feed a power system. Based on the research of Kang L.

and Yang L. [4] the acquisition and control tasks are being parallelized throughout

homogenous SCADA nodes.

Dietrich B. et al. [12] confirmed the usability of the object-oriented paradigm as a

tool to reach full extensibility and customizability even in real-time application,

thus it is adopted as the core concept of the new SCADA.

Ramdan F [8] and Qiang Z [13] show, that multi tier SCADA systems can be

designed and preserve the full functionality of conventional SCADAs.

2 System Architecture

Taken into consideration the distributed nature of most common infrastructural

management systems, a target SCADA should be distributed with homogenous

M. Sági et al. Dependable Peer-to-Peer SCADA Architecture

 – 236 –

nodes that can execute field communication and that can share data with all other

“interested” nodes.

Each node is responsible for handling operations regarding the subset of telemetry

equipment it is directly connected to through a computer network (e.g.

ethernet)All other operations are ignored by the operation logic of the note, but is

stored and distributed for redundancy purposes.

Client terminals are also connected to nodes. Each client receives data and is able

to execute commands for its area of responsibility (AOR) that is configurable

Commands and telemetry data that is outside of the nodes AOR is stored for

redundancy purposes.

Client

Client

SCADA
Node

SCADA
Node

SCADA
Node

SCADA
Node

Field Equipment

Field Equipment

Figure 3

Simplifyed System Architecture

With such an architecture, the traditional monolithic SCADA is broken up into

SCADA nodes. Since clients are not aware of the communication between these

nodes, they are not aware of infrastructure or hierarchy change within thin the

SCADA itself (Figure 3).

Data processing and conversion from the inner model to an industry specific

model is also done in a distributed fashion. Once the data enters the system from

the field equipment, it is immediately processed and then distributed. To allow the

distribution of this task once the configuration changes and new field equipment is

added to the system, the node that is least loaded will connect to the new

equipment. On a node failure, all connected external devices are re-routed to

other, healthy nodes. Load for each of the nodes is calculated based on the number

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 237 –

of expected value changes in one second incoming from the connected field

equipment.

RTU SCADA Node OperatorSCADA Node

Peer – to – Peer SCADA

. . .

Operator issues command

Command forwarded to owner

Command dispatched

Response received

Resonse returned

Response to user command

Field value change

Dispatch to all Nodes

Present value to end user

Figure 4

Sequence diagram of basic SCADA operations

The figure above (Figure 4) shows the sequence of major SCADA use cases:

supervisory control and data acquisition. The sequence for both operations is

decomposed on the domain specific part (colored green) that needs to be done in

every SCADA system, no matter what architecture it has. These operations are:

primary (front-end) and secondary (back-end) processing and data, and input

validations. The architecture specific part of the sequence diagram (colored red)

represents the additional steps (time) that is the overhead the distributed

architecture includes.

During a configuration change it is of high importance that the entire cluster

works on the same configuration. Configuration changes are distributed as

M. Sági et al. Dependable Peer-to-Peer SCADA Architecture

 – 238 –

changes in a distributed version control system ensuring the fulfillment of the

above-mentioned requirement. [15]

<<datastore>>

Distributed Data Store

<<component>>

Configuration Manager

<<component>>

Bootstrapper

<<component>>

SCADA Core

Figure 5

Components of a SCADA Node

A key required feature for the distributed data stores analyzed for this paper was

an embedded VCS (Versioning Control System) support that allows versioning of

the system configuration. The Configuration Manager component controls the

configuration version using the VCS interface of the DDS.

The VCS that is embedded into the distributed data storage that the SCADA nodes

are built on top of, enables that the configuration can be changed from any of the

nodes the configuration manager client software connects to, as long as the

operator using the software has sufficient privileges for the AOR the configuration

change is intended for. Once the operator changes the configuration on one node,

the changes are propagated through the DDS and trigger the configuration

manager component to apply the changes to the SCADA core.

The internal SCADA model is designed to support one real-time, and multiple

history/simulation data contexts and are accessible to all authorized users. Each

context supports loading of different configuration version, current or any valid

previous configurations.

Each node in the system, in spite of different roles it may play, always executes a

single software executable, which holds the real-time database and performs the

data acquisition, control and communication tasks. Since decision support routines

need to be handled in the same (real-time) manner as telemetry, there is no need to

differentiate them. A node is based on a common software infrastructure

implemented within a core library, and a set of additional dynamic libraries

implementing process variables, various protocols, etc. that are distributed with

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 239 –

the configuration (Figure 5). Each library implements or extends an entity (class)

using the predefined API. Using OOP paradigm, it is easy to extend or replace any

of the classes, or add completely new.

Addressing entities within the system uses a simple, but effective schema where

four logical sections of one unique global key are assigned to each entity: context,

node and variable names is unique, providing a primary key to each for every

configurable component in the system:

● Context – unique identifier of the context where the entity is available.

Default 0 is the identifyer of the real-time context. When a real-time

entity is copied to a simulation context only this portion of the primary

key is changed.

● Node – unique identifier of the node owning the entity. Only nodes with

this ID are making true changes in the entity (from the field or decision

support routines). The rest of the nodes get these entities using data

distribution.

● Type– entity type set from all the available types in the system

configuration. The system has a pre-defined set of entity types, but can be

extended to achieve customizability.

● Sequence – a simple ordinal number within the owning node.

To run the solution only two libraries are needed besides the executable –

Bootstrapper and Core. With highly modular architecture, the rest of the libraries

providing support for various industrial protocols, decision support or

customizability are not the crucial. Thus, the system can function without them in

a “store-and-forward” mode when only stores partial configuration and real-time

data for redundancy purposes. [14]

Bootstrapper is the coordinator of the local node (initialization / de-initialization,

configuration loading / unloading, starting / stopping routines, etc.). It is

composed of two essential components:

● Communication manager – interface to the SCADA administrator to reach

the configuration manager to take actions on a node.

● Configuration manager – runs both the initialization and de-initialization

process of the local SCADA node core on configuration version change.

The core of the system is a communication engine that does the telemetry data

acquisition and command dispatching based on the node configuration. All data

reaching a node is treated the same way regardless if it is acquired directly from

an RTU or through standardized industrial protocol or is distributed by the DDS

itself. It also provides a means for local and remote user interfaces for system

supervision and control.

M. Sági et al. Dependable Peer-to-Peer SCADA Architecture

 – 240 –

4 Proof of the Concept Implementation

Key difference in the currently described architecture, compared to the traditional

solutions, is the introduction of a high-level program model of the physical

process based on catalogues and process variables (Figure 6). [16]

 Catalogs

SCADA System

 Process Variable ID Context Node Type Sequence

Device Types Object Types Messages Engineering Units

SCADA Node

 Communications Model

Port Channel Protocol Group

 Process Model

Analog Input Analog Output Digital Device Counter

PID Regulator Automatic Procedure Object

Figure 6

Process model and real-time database organization

Catalogs define set of application-specific values and data-types, referenced later

by configured entities. As an example, digital devices catalog defines types of

used control modules (e.g. on-off valve with two limit switches), including legal

set of states and commands associated to the module.

Process variables as described in the process model section on Figure 6, are

divided into levels by their complexity, represent various measuring and actuating

equipment and attributes in the physical process itself. The current state or value

of the process variable is always expressed in its engineering unit (EU) value, or

through the associated state/command pair if the variable is digital in its nature.

There are conversion capabilities provided so that external values can be

converted to the internal data types.

To achieve extensibility and customizability, each type of process variables is,

following OOP paradigm, providing a convenient way to extend or modify

original definition or functionality according to the application-specific

requirements.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 241 –

4.1 Tools Used to Build the Solution

Real-time software is often built in C++ to leverage the performance this

programming language provides and to us the object-oriented paradigm for easier

implementation of the high level design. As one of the requirements set for the

solution is cross-platform operation, the aforementioned programming language is

also fits that need.

For the distributed storage system, two solutions were analyzed, the IBM Cloud

Object Storage and IPFS [15]. After a detailed analysis of both solutions, IPFS

was chosen as a platform to build the SCADA system on top of. [17]

To unify the C++ libraries that Visual Studio C++ compiler and G++ provide,

Boost library is used.

Conclusions and Future Work

This paper analyzes the bottlenecks of centralized SCADA architectures when

used on large scale CIS. In addition, it presents a possible architecture of a

distributed industrial grade SCADA system that fulfills the demands of a smart

city and/or smart grid, such as distribution of the data, processing and control,

system scalability, real time efficiency and cross-platform operation.

The proposed architecture enables homogenization of the SCADA nodes that can

be arbitrarily extended and configured due to the high modularity of the new

concept. With these characteristics, both SCADA operators and business

information system applications are enabled to connect to any node and acquire

the data they demand, or control the process supervised by the node.

This architecture also provides the capability of having an arbitrary number of

nodes in a system to share processing and storage of data. With a distributed data

store as the basis of a SCADA system, requirements for high availability can be

reached without additional mechanisms (e.g. replication). Both configuration and

real-time data is shared across the system as soon as changes occur.

Configuration versioning as an integral part of the majority of distributed data

stores, adds value to this solution since without a need of additional applications

or components, version control of the configuration is achieved.

Further research can be done on an efficient way of managing the configuration of

a distributed SCADA system using the proposed architecture and also measuring

the performance and scalability of the solution as well as the minimum system

requirements.

Some of the additional topics that need to be answered before reaching a

commercially viable architecture are: separation of configuration and real-time

data, determining the impact of persisting all changes in a normal work of the

system.

M. Sági et al. Dependable Peer-to-Peer SCADA Architecture

 – 242 –

As presented on Figure 3 and mentioned in Section 5, the current work relies on

3rd party implementation of distributed data storage system with proven history.

This DDS is not optimized for real-time operation and some SCADA specific

needs, once a stable system is built on top of this library, additional improvements

will be needed on the DDS itself to minimize the overhead that the proposed

architecture introduces to the SCADA system.

References

[1] D. Bailey and E. Wright, “Practical SCADA for Industry”, Elsevier, 2003

[2] S. Lishev, R. Popov and A. Georgiev, “Laboratory SCADA Systems – the

State of Art and the Challenges,” Balkan Journal of Electrical & Computer

Engineering, Vol. 3, No. 3, p. 164, 2015

[3] J. M. Black, C. Rawie and M. Mattson, “High-Performance SCADA

System Provides an Integrated Information System,” in Water Environment

Federation, Anaheim, California, USA, 2000

[4] L. Kang and L. Yang, “A Distributed and Parallell Computing Framwork

for SCADA Application in Power System,” in International Conference on

Electrical and Control Engineering, Tuxtla Gutierrez, Mexico, 2010

[5] O. Rysavy, J. Rab, P. Halfar and M. Sveda, “A Formal Authorization

Framework for Networked SCADA Systems,” in 19th IEEE International

Conference and Workshops on Engineering of Computer-Based Systems,

Novi Sad, Serbia, 2012

[6] l. Yang, X. Geng and X. Cao, “A Supervisory Control and Data Acquisition

Network Security Attack Recognition Method Based on Multi-Agent,”

Journal of Computational and Theoretical Nanoscience, Vol. 13, No. 4, pp.

2504-2511, 2016

[7] S. Ju, J. Lee, J. Park and J. Lee, “Secure Concept of SCADA

Communication for Offshore Wind Energy,” in Advances in Parallel and

Distributed Computing and Ubiquitous Services, Springer, 2016, pp. 91-97

[8] R. Fan, L. Cheded and O. Toker, “Designing a SCADA system powered by

Java and XML,” Computing and Control Engineering, Vol. 16, No. 5, pp.

31-39, 2005

[9] D. Li, Y. Serizawa and M. Kiuchi, “Concept design for a Web-based

supervisory control and data-acquisition (SCADA) system,” IEEE/PES

Transmission and Distribution Conference and Exhibition, Vol. 1, pp. 32-

36, 2002

[10] M. Shahidehpour and Y. Wang, Control in Electric Power Systems,

Hoboken, New Jersey: Wiley-Interscience, 2003

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 243 –

[11] B. Atlagic, D. Kukolj, V. Kovacevic and M. Popovic, “Application

development environment of an integrated SCADA system,” in The IEEE

Region 8 EUROCON 2003. Computer as a Tool, Ljubljana, 2003

[12] D. Beck, H. Brand, C. Karagiannis and C. Rauth, “A new approach to

object oriented programming for real-time targets,” in 14th IEEE-NPSS

Real Time Conference, Stockholm, Sweden, 2005

[13] Z. Qiang and C. Danyan, “The Research to Power SCADA Based on J2EE

Framework,” in WASE International Conference on Information

Engineering, Taiyuan, China, 2009

[14] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright and K.

Ramchandran, “Network Coding for Distributed Storage Systems” in IEEE

Transactions On Information Theory, Vol. 56, No. 9, pp. 4539-4551, 2010

[15] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System (DRAFT

3)”, Whitepaper, https://ipfs.io

[16] S. McCrady, “Designing SCADA Application Software”, Elsevier, 2013

[17] A. Patil et al, “Cloud Object Storage as a Service: IBM Cloud Object

Storage from Theory to Practice”, IBM Corp, 2017

