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Abstract: SCADA solutions are under a high flux to shift their focus from process control of 

a limited set of industrial plants to the control of large-scale system of systems. This is in 

par with the recent proliferation of ubiquitous/pervasive computing paradigm mostly 

embodied as Internet of Things (IoT). In a traditional setup, a whole system is only 

partially covered by SCADA data points; therefore, complex simulation is required to fit 

the missing measurements, hence, buttress decision support scenarios. This usually entails 

a fully integrated and centralized approach, where SCADA infrastructure needs to hold 

and distribute data, both collected and calculated. It leads to the increase of load on a 

supporting real-time database, which hosts millions of data points. It is a challenge that a 

traditional SCADA design (based on a shared memory database and competing processes), 

cannot fulfill in real-time. This paper proposes an alternative approach of an architecture 

and basic functionality of a SCADA system. The proposed architecture targets distributed 

SCADA systems that can be used to supervise and control large-scale distributed industrial 

or infrastructural systems. Strategic data organization and segmentation are introduced, so 

that the acquired data can be efficiently distributed throughout the system. The proposed 

architecture pushes forward a peer-to-peer node structuring scheme, where an autonomous 

node supervises and controls only subsets of the system. Nodes collaborate to establish a 

unified view of the entire system. The proof of the concept implementation has proven to be 

able to manage significantly more data points in a distributed fashion than a centralized 

variant. 
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1 Problem Statements and Objectives 

As industrial processes became more complex and computing power became 

cheaper and more robust, these processes started to be supervised and controlled 

by programmable logic controllers (PLC) to induce more precision and reliability 

into the process itself. With the growth of the industry and the complexity within 

the industrial processes, the need for a larger scale process supervision and control 

was needed, so SCADA systems were developed as a universal mean of access 

local control modules such as PLCs. They soon became the most commonly used 

industrial control systems. After the “automation revolution” in industrial systems, 

SCADAs started being applied to infrastructural management systems as well 

(e.g. electricity, gas, water, waste-water). Since infrastructure systems are of a 

more complex nature than industrial systems, the move to this field introduced 

new challenges into SCADA development. This paper will give a brief historic 

overview of currently available solutions and will propose a solution for the newly 

introduced challenges. 

1.1 Current Work 

SCADA systems were initially used in industrial processes that were located in a 

single processing plant with well defined geographical boundaries. The 

geographical and industrial process based limitations had many conveniences such 

as limited number of sensors and actuators, no or slow expension of number of 

sensors (telemetered data) over time. These systems usually had only a few 

operator terminals that showed the overall state of the plant to the operators. 

Decision support systems in manufacturing process were rare. [1] [2] 
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Figure 1. Building Blocks of a Traditional Clustered SCADA System 
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One of the most popular SCADA designs was building multiple processes that 

execute segments of the overall SCADA functionality (data processing, 

communication, supervisory control, automated control procedures, historization, 

decision support, etc.) (Figure 1). Such designs provided easy integration with the 

SCADA real-time database and simple extension of basic SCADA functionalities 

driven requirements specific for the controlled industrial process. Traces of such 

an architecture are still found in some of the high-end SCADA solutions available 

on the market. 

Current developments in supervised systems generally go towards further merging 

and increase in size, which has to be followed by the provision of adequate control 

systems, both in size and acceptable performance. In addition, control 

requirements are far more demanding than before, in order to run technological 

processes in more precise and safer manner. 

This is particularly obvious in infrastructural SCADA applications (from power 

distribution, through oil, gas and water transport and distribution systems to even 

smart cities), that requires integrated control system with acquisition of process 

data that is placed to the centralized real-time database with several million data 

points. [3] 

In these systems, the decision support is integrated with the SCADA so the real-

time database stores telemetered SCADA data together with derived values (e.g. 

calculations, estimations, predictions, simulations, etc.). The SCADA is expected 

to feed data to decision support components, treat the collected derived data in the 

same manner as the telemetered and to distribute all data to client (operator or 

business) applications. In addition, the scale of such systems introduces a need for 

multiple client application. Even though contemporary computers scaled through 

time, the bottleneck when applying traditional SCADA architectures to industrial 

systems is the communication infrastructures, that is far more complex and 

expensive to change or upgrade. Additionally, infrastructural systems usually are 

geographically scattered, they have a large number of sensing and actuating points 

(up to several million) and the configuration is changing (mostly growing) over 

time. Such systems also rely on complex decision support and tens of operator and 

maintenance terminals. [4] 

The challenges coming from infrastructural systems were the main driving force 

of the design of a new SCADA architecture. However, with the advances in both 

hardware and software over time, there are additional requirements important for 

its applicability of contemporary SCADA systems: extensive and elaborate 

SCADA model, reusability, extensiblity, easy adaptation to user demands, cross-

platform and secured operation. [5] [6] [7] 

Contemporary SCADA systems on the modern market need to support the 

handling of millions of data points (part telemetered, part derived) in a networked, 

real-time environment. Data acquisition and primary data processing is always 

done in a centralized fashion due to architectural limitations, and then the 
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concentrated values in the real-time database counting several million data points 

are distributed to achieve high-availability. The complex operations in the 

decision support systems are also performed where the data acquisition is taking 

place. An example is, an infrastructural system where SCADAs are being 

introduced are Distribution Management System implementations for power 

distributions, where it is a usual market requirement that the SCADA handles 

more than 10 million data points in real-time. To achieve high availability, 

multiple copies of the SCADA software is running and data replication 

mechanism is used. Due to the size of the database and the need that the data 

needs to be transferred as quickly as possible to the backup SCADA system, the 

communication subsystem must be optimized to the highest level. [7] [16] 

Other contemporary approaches include WEB based SCADA systems. [8] Such 

systems leverage the network infrastructure already available and while they are 

easier to implement than “traditional” SCADA systems, the required level of 

security and real-time operation capability are not achievable for big systems 

under supervision. [9] [10] 

1.2 Proposal 

Core requirements for a SCADA system (regardless if industrial or infrastructure) 

are real-time operation, reliability and high availability. The minimum response 

time is defined by the supervised system and is measured in seconds. Other 

requirements that are mandatory for SCADA systems are reliability availability as 

for most of the real-time systems. 

The architecture presented in this paper relies on a distributed storage system that 

provides data distribution with configurable bandwidth and performance ratio 

where the communication between SCADA nodes can be optimized per needs. 

[14] The data distribution is built into the real-time database enabling the 

distribution of telemetry and decision support subroutines. 

The paper describes the architecture and basic functionality of a SCADA system 

developed in line with this concept, providing efficient real-time execution of 

complex supervisory and control procedures in a distributed environment. 

The proposed architecture can be classified as a third generation SCADA 

architecture. The SCADA core is based on an earlier study [11], where a 

monolithic architecture is used. Basic principles are inherited and the architecture 

is upgraded to adopt the “modern”, networked nature.  
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Figure 2 

Proposed Peer-to-Peer Structured SCADA System 

Since the proposed architecture is considered to be of a generic purpose, so it can 

drive all infrastructural decision support systems found in a smart city, the most 

complex and response critical infrastructure is taken as a target. The new 

architecture must be fit to feed a power system. Based on the research of Kang L. 

and Yang L. [4] the acquisition and control tasks are being parallelized throughout 

homogenous SCADA nodes. 

Dietrich B. et al. [12] confirmed the usability of the object-oriented paradigm as a 

tool to reach full extensibility and customizability even in real-time application, 

thus it is adopted as the core concept of the new SCADA. 

Ramdan F [8] and Qiang Z [13] show, that multi tier SCADA systems can be 

designed and preserve the full functionality of conventional SCADAs. 

2 System Architecture 

Taken into consideration the distributed nature of most common infrastructural 

management systems, a target SCADA should be distributed with homogenous 
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nodes that can execute field communication and that can share data with all other 

“interested” nodes. 

Each node is responsible for handling operations regarding the subset of telemetry 

equipment it is directly connected to through a computer network (e.g. 

ethernet)All other operations are ignored by the operation logic of the note, but is 

stored and distributed for redundancy purposes. 

Client terminals are also connected to nodes. Each client receives data and is able 

to execute commands for its area of responsibility (AOR) that is configurable 

Commands and telemetry data that is outside of the nodes AOR is stored for 

redundancy purposes. 
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Figure 3 

Simplifyed System Architecture 

With such an architecture, the traditional monolithic SCADA is broken up into 

SCADA nodes. Since clients are not aware of the communication between these 

nodes, they are not aware of infrastructure or hierarchy change within thin the 

SCADA itself (Figure 3). 

Data processing and conversion from the inner model to an industry specific 

model is also done in a distributed fashion. Once the data enters the system from 

the field equipment, it is immediately processed and then distributed. To allow the 

distribution of this task once the configuration changes and new field equipment is 

added to the system, the node that is least loaded will connect to the new 

equipment. On a node failure, all connected external devices are re-routed to 

other, healthy nodes. Load for each of the nodes is calculated based on the number 
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of expected value changes in one second incoming from the connected field 

equipment. 
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Figure 4 

Sequence diagram of basic SCADA operations 

The figure above (Figure 4) shows the sequence of major SCADA use cases: 

supervisory control and data acquisition. The sequence for both operations is 

decomposed on the domain specific part (colored green) that needs to be done in 

every SCADA system, no matter what architecture it has. These operations are: 

primary (front-end) and secondary (back-end) processing and data, and input 

validations. The architecture specific part of the sequence diagram (colored red) 

represents the additional steps (time) that is the overhead the distributed 

architecture includes. 

During a configuration change it is of high importance that the entire cluster 

works on the same configuration. Configuration changes are distributed as 
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changes in a distributed version control system ensuring the fulfillment of the 

above-mentioned requirement. [15] 
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Figure 5 

Components of a SCADA Node 

A key required feature for the distributed data stores analyzed for this paper was 

an embedded VCS (Versioning Control System) support that allows versioning of 

the system configuration. The Configuration Manager component controls the 

configuration version using the VCS interface of the DDS. 

The VCS that is embedded into the distributed data storage that the SCADA nodes 

are built on top of, enables that the configuration can be changed from any of the 

nodes the configuration manager client software connects to, as long as the 

operator using the software has sufficient privileges for the AOR the configuration 

change is intended for. Once the operator changes the configuration on one node, 

the changes are propagated through the DDS and trigger the configuration 

manager component to apply the changes to the SCADA core. 

The internal SCADA model is designed to support one real-time, and multiple 

history/simulation data contexts and are accessible to all authorized users. Each 

context supports loading of different configuration version, current or any valid 

previous configurations.  

Each node in the system, in spite of different roles it may play, always executes a 

single software executable, which holds the real-time database and performs the 

data acquisition, control and communication tasks. Since decision support routines 

need to be handled in the same (real-time) manner as telemetry, there is no need to 

differentiate them. A node is based on a common software infrastructure 

implemented within a core library, and a set of additional dynamic libraries 

implementing process variables, various protocols, etc. that are distributed with 
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the configuration (Figure 5). Each library implements or extends an entity (class) 

using the predefined API. Using OOP paradigm, it is easy to extend or replace any 

of the classes, or add completely new. 

Addressing entities within the system uses a simple, but effective schema where 

four logical sections of one unique global key are assigned to each entity: context, 

node and variable names is unique, providing a primary key to each for every 

configurable component in the system: 

● Context – unique identifier of the context where the entity is available. 

Default 0 is the identifyer of the real-time context. When a real-time 

entity is copied to a simulation context only this portion of the primary 

key is changed. 

● Node – unique identifier of the node owning the entity. Only nodes with 

this ID are making true changes in the entity (from the field or decision 

support routines). The rest of the nodes get these entities using data 

distribution. 

● Type– entity type set from all the available types in the system 

configuration. The system has a pre-defined set of entity types, but can be 

extended to achieve customizability. 

● Sequence – a simple ordinal number within the owning node. 

To run the solution only two libraries are needed besides the executable – 

Bootstrapper and Core. With highly modular architecture, the rest of the libraries 

providing support for various industrial protocols, decision support or 

customizability are not the crucial. Thus, the system can function without them in 

a “store-and-forward” mode when only stores partial configuration and real-time 

data for redundancy purposes. [14] 

Bootstrapper is the coordinator of the local node (initialization / de-initialization, 

configuration loading / unloading, starting / stopping routines, etc.). It is 

composed of two essential components: 

● Communication manager – interface to the SCADA administrator to reach 

the configuration manager to take actions on a node. 

● Configuration manager – runs both the initialization and de-initialization 

process of the local SCADA node core on configuration version change. 

The core of the system is a communication engine that does the telemetry data 

acquisition and command dispatching based on the node configuration. All data 

reaching a node is treated the same way regardless if it is acquired directly from 

an RTU or through standardized industrial protocol or is distributed by the DDS 

itself. It also provides a means for local and remote user interfaces for system 

supervision and control. 
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4 Proof of the Concept Implementation 

Key difference in the currently described architecture, compared to the traditional 

solutions, is the introduction of a high-level program model of the physical 

process based on catalogues and process variables (Figure 6). [16] 

        Catalogs

SCADA System

    Process Variable ID Context Node Type Sequence

Device Types Object Types Messages Engineering Units

SCADA Node

        Communications Model

Port Channel Protocol Group

        Process Model

Analog Input Analog Output Digital Device Counter

PID Regulator Automatic Procedure Object

 

Figure 6 

Process model and real-time database organization 

Catalogs define set of application-specific values and data-types, referenced later 

by configured entities. As an example, digital devices catalog defines types of 

used control modules (e.g. on-off valve with two limit switches), including legal 

set of states and commands associated to the module.  

Process variables as described in the process model section on Figure 6, are 

divided into levels by their complexity, represent various measuring and actuating 

equipment and attributes in the physical process itself. The current state or value 

of the process variable is always expressed in its engineering unit (EU) value, or 

through the associated state/command pair if the variable is digital in its nature. 

There are conversion capabilities provided so that external values can be 

converted to the internal data types. 

To achieve extensibility and customizability, each type of process variables is, 

following OOP paradigm, providing a convenient way to extend or modify 

original definition or functionality according to the application-specific 

requirements. 
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4.1 Tools Used to Build the Solution 

Real-time software is often built in C++ to leverage the performance this 

programming language provides and to us the object-oriented paradigm for easier 

implementation of the high level design. As one of the requirements set for the 

solution is cross-platform operation, the aforementioned programming language is 

also fits that need. 

For the distributed storage system, two solutions were analyzed, the IBM Cloud 

Object Storage and IPFS [15]. After a detailed analysis of both solutions, IPFS 

was chosen as a platform to build the SCADA system on top of. [17] 

To unify the C++ libraries that Visual Studio C++ compiler and G++ provide, 

Boost library is used. 

Conclusions and Future Work 

This paper analyzes the bottlenecks of centralized SCADA architectures when 

used on large scale CIS. In addition, it presents a possible architecture of a 

distributed industrial grade SCADA system that fulfills the demands of a smart 

city and/or smart grid, such as distribution of the data, processing and control, 

system scalability, real time efficiency and cross-platform operation. 

The proposed architecture enables homogenization of the SCADA nodes that can 

be arbitrarily extended and configured due to the high modularity of the new 

concept. With these characteristics, both SCADA operators and business 

information system applications are enabled to connect to any node and acquire 

the data they demand, or control the process supervised by the node.  

This architecture also provides the capability of having an arbitrary number of 

nodes in a system to share processing and storage of data. With a distributed data 

store as the basis of a SCADA system, requirements for high availability can be 

reached without additional mechanisms (e.g. replication). Both configuration and 

real-time data is shared across the system as soon as changes occur.  

Configuration versioning as an integral part of the majority of distributed data 

stores, adds value to this solution since without a need of additional applications 

or components, version control of the configuration is achieved. 

Further research can be done on an efficient way of managing the configuration of 

a distributed SCADA system using the proposed architecture and also measuring 

the performance and scalability of the solution as well as the minimum system 

requirements. 

Some of the additional topics that need to be answered before reaching a 

commercially viable architecture are: separation of configuration and real-time 

data, determining the impact of persisting all changes in a normal work of the 

system. 
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As presented on Figure 3 and mentioned in Section 5, the current work relies on 

3rd party implementation of distributed data storage system with proven history. 

This DDS is not optimized for real-time operation and some SCADA specific 

needs, once a stable system is built on top of this library, additional improvements 

will be needed on the DDS itself to minimize the overhead that the proposed 

architecture introduces to the SCADA system. 
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