
Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 25 –

A Template-based Model Transformation

Approach for Deriving Multi-Tenant SaaS

Applications

Kun Ma
1
, Bo Yang

2
, Ajith Abraham

3, 4

1
 Shandong Provincial Key Laboratory of Network Based Intelligent Computing,

University of Jinan, 250022 Jinan, China

e-mail: ise_mak@ujn.edu.cn

2
 Shandong Provincial Key Laboratory of Network Based Intelligent Computing,

University of Jinan, 250022 Jinan, China

E-mail: yangbo@ujn.edu.cn

3
 Machine Intelligence Research Labs, Scientific Network for Innovation and

Research Excellence, 98071 Auburn, USA

e-mail: ajith.abraham@ieee.org

4
 IT For Innovations, VSB - Technical University of Ostrava, Ostrava - Poruba,

Czech Republic

Abstract: Software-as-a-Service (SaaS) and Model-Driven Engineering (MDE) are two of

the most dominant software engineering paradigms nowadays. Multi-tenancy is the key to

successful SaaS. In this paper, we introduce a data middleware to customize the multi-

tenant database first. In addition, with the help of model transformation, it is possible to

generate SaaS applications from the models. However, most of the current model

transformation approaches do not fully support the requirements for model

synchronization, and they do not cater for the specific problems faced in the multi-tenancy.

Therefore, an effective and simple template-based model transformation and model

synchronization approach based on model evolution of MDE paradigms is fully integrated

for the development of SaaS multi-tenant applications. The proposed framework uses a

novel extensible business component model (xBC) to sufficiently describe both the

structural and behavioral properties of SaaS applications. The distribution and

uninterrupted running of the generated SaaS applications proves that our approach is

feasible and correct in practice.

Keywords: Software-as-a-Service; multi-tenancy; textual template evolution; model

transformation; model synchronization

mailto:ajith.abraham@ieee.org

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 26 –

1 Introduction

Model-Driven Engineering (MDE) is becoming the dominant software

engineering paradigm to specify, develop and maintain software systems, mainly

because it can raise the level of abstraction and automation in software

construction [1]. Some findings on experiences from using model-based

development in industry from the EA-MDE project indicate that 83% of our

questionnaire respondents think that MDE improved productivity and

maintainability [2]. The use of MDE has the following consequences for a

software development process [3]: 1) More time can be devoted to analyzing the

business; 2) The time needed to perform coding tasks is reduced; 3) Productivity is

improved as the time necessary for coding is reduced.

Software-as-a-Service (SaaS) is a software delivery on-demand model in which

software and its associated data are hosted centrally in the cloud. According to

International Data Corporation's (IDC) latest market report, SaaS will grow at a

26.4 percent compound annual growth rate (CAGR) through 2015[4]. As SaaS of

the cloud infrastructures is the future tendency of the IT industry, it is urgent to

research on the generation approach of SaaS applications. A recent survey of

organizations with experience using cloud applications and platforms reveals that

the most urgent need is how to tightly integrate it with other applications and how

to convert the legacy systems into SaaS applications [5].

Therefore, it is natural that we wonder how both paradigms, MDE and SaaS, can

be integrated and benefit from each other. Bruneliere et al. discuss two different

collaboration scenarios between MDE and SaaS [6]: 1) MDE for the cloud refers

to the use of MDE techniques to facilitate and (semi)automate the development of

SaaS applications. 2) MDE in the cloud involves using cloud infrastructure to

enable MDE in new and novel ways, corresponding to on-demand Modeling as a

Service (MaaS) initiative. Similar to SaaS, MaaS would allow the deployment and

on-demand execution of modeling and model-driven services over the Internet. In

accordance with scenario 1, we aim to identify opportunities for using MDE to

support the development of cloud-based SaaS multi-tenant applications. Therefore,

this paper proposes a transparent SaaS multi-tenant data middleware, which is

fully integrated with template-based model transformation approach and model

synchronization based on model evolution of MDE paradigms for the

development of SaaS multi-tenant applications.

The rest of the paper is organized as follows. Section 2 discusses the background

and related work. In Section 3, an extensible business component model (xBC) is

presented to describe SaaS multi-tenant business and database to the fullest. The

architecture of multi-tenant data middleware and xBC is discussed in detail. In

Section 4, a template-based model transformation approach that supports model

synchronization is presented to generate the SaaS application. Conclusions are

provided in the last Section.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 27 –

2 Related Works

The major problem of SaaS modeling lies in the customization of the data and

business.

2.1 Multi-tenant Data Model

An important requirement for SaaS applications is the support of multiple tenants

[7]. Data architecture is an area in which the optimal degree of isolation for a SaaS

application can vary significantly depending on technical and business

considerations. An overview of approaches for data management in a multi-tenant

deployment can be found in [8] and [9]. The paper categorizes existing approaches

of shared applications and briefly explains them in Figure 1, each of which lies at

a different location in the continuum between isolation and sharing. 1) Separate

schema with shared application involves housing multiple tenants in the same

database, with each tenant having its own set of tables, which are grouped into a

schema created specifically for the tenant. Unfortunately, this approach tends to

lead to higher costs for maintaining equipment, backing up tenant data and

restoring data in the event of a failure. The number of tenants that can be housed

on a given database server is limited by the number of schemas that the server can

support. 2) Shared schema with shared application involves using the same

database and the same set of tables to host multiple tenants' data. A given table can

include records from multiple tenants stored in any order; a Tenant ID column

associates every record with the appropriate tenant. The shared schema approach

has the lowest hardware and backup costs. However, this approach may incur

additional development effort in the area of security, to ensure that tenants can

never access other tenants' data. Compared with the two approaches, we lead to

improvements in the relational database, and propose multi-tenant data

middleware.

tenant tenant tenant

application

database

tenant tenant tenant

application

c 1) Separate Schema c 2) Shared Schema

schema1 schema2 schema1

Figure 1

The common SaaS multi-tenant data models

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 28 –

2.2 SaaS Application Modeling

Several researchers have proposed using variability modeling techniques from

software product line engineering in the context of service-based systems. Chang

et al. address the problem that the variability of business processes and services is

not explicitly modeled, which hinders implementing adaptive service-based

systems [10]. They extend the XML schemas of service description languages in

order to cater for variability. Liu et al. propose a new modeling method for

constructing SaaS Service using extended Web Services Conversation Language

(WSCL) [11]. Wang et al. propose a service community model based on

eXtensible Markup Language (XML) for a bilateral SaaS mode which is

abstracted from a real project of the nationwide service network for sharing

science and technology information [12]. Although these approaches propose

explicitly documenting variability, they do not cater for the specific problems

faced in the SaaS context (e.g., multi-tenancy). Motivated by these problems, the

extensible business component model (xBC), based on the extension of the

Unified Modeling Language (UML) profiles, is abstracted from SaaS applications

to describe the multi-tenant business to the utmost.

2.3 Model Transformation Approach in Support of Model

Synchronization

Model transformations are essential in the process of MDE [13]. The development

of a software system is an iterative process with frequent modifications to the

involved models according to the user requirements [14]. As a consequence, an

effective and simple model transformation methodology that supports model

synchronization is needed urgently. However, most of the current model

transformation approaches have some limits, such as fully incremental support for

model synchronization. Additionally, the behavior of the SaaS application cannot

be modeled in detail, in which case it is easier to write source code manually. This

means that the mixture often leads to a wide range of inconsistencies [15].

Therefore, this information should be kept during the model transformation, and

several possibilities exist to develop model transformations for the sake of model

synchronization. An overview of model transformation and synchronization

systems can be found in [16]. As outlined in the introduction, MDE requires a

bidirectional solution which preserves model contents when synchronizing as

much as possible. However, many available model transformation approaches

only support classical one-way batch-oriented transformations [17]. This basic

feature updating existing target models based on changes in the source models is

also referred to as change propagation in the Query/View/Transformation (QVT)

final adopted specification [17]. The QVT implementation [18] is only

unidirectional but partly incremental. Other existing TGG-based approaches also

do not provide a comparable automatic and computational incremental solution

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 29 –

(for a detailed discussion see [19] and [20]). Compared to these approaches, our

approach of model transformation that supports model synchronization is based on

model evolution. This approach of model synchronization will only take the

storage space of model repositories rather than extra space. Only the models with

changed version number need a subsequent model transformation. This method is

named source incrementality, which is simple and useful for working with large

scale source models. In this way, model synchronization is a special and partial

model transformation. This is a good way to minimize the amount of source that

needs to be reexamined by a transformation when the source is changed.

3 Extensible Business Component Model in Support

of Multi-Tenancy

The important features of SaaS applications are multi-tenant data and business

customization.

Net I/O

Net I/O

tenant1 tenant2 tenantn

Application

Abstract Data Model

(JDBC Proxy)

pre(TenantID)∪ Mapping(tenantID(userID), sql)∪ post(TenantID)

SQL Request Router

Data Middleware

<userID, sql>

HTTP Request

Master Slave1 Slave2

write read read

replicationreplication

Data Cloud Node

NoSQL Mirror
write

read

Multi-tenant Mapping

< tenantID(userID), sql>

Interceptor and parser

Figure 2

Multi-tenant Data Middleware

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 30 –

3.1 A Transparent Multi-Tenant Data Model

In this section, we propose a data middleware to customize the multi-tenant

database. The architecture of data middleware shown in Figure 2 is comprised of

the Abstract Data Model, the JDBC Interceptor and parser, the SQL Request

Router and the Data Cloud Node.

3.1.1 Abstract Data Model

The Abstract Data Model acts as database JDBC proxy without the storage of

any data for the sake of smooth transition. It is transparent to the application,

owning the same set of tables and views as the physical database. Therefore, the

application can connect to the abstract data model without any modification. All

the application lifecycle management procedures (upgrade or patch) may remain

as they are. The abstract data model provides the logical data isolation for the

tenants with higher demand on security.

3.1.2 The JDBC Interceptor and Parser

The JDBC Interceptor and parser is used to intercept the SQL and formulate

the new SQL to the Abstract Data Model. The new SQL is transformed from the

original SQL and tenant information. The interceptor process is denoted as

sql(u)  pre(TenantID)∪Mapping(tenantID(userID), sql)∪post(TenantID),

where pre(TenantID) is the pre personalized operation, post(TenantID) means the

post personalized operation, and Mapping is the transformation function. The

current tenant account is added to the Request Session with some minor

modifications.

3.1.3 The SQL Request Router

The SQL Request Router sends the SQL request to different nodes of data cloud

on average. One of the more powerful features is the ability to do "Read/Write

Splitting". The read request is assigned to the slave node, while the write request

is assigned to the master node. Database replication enables data from the master

to be replicated to one or more slaves.

Replication is based on the master server keeping track of all changes to its

databases (change of structure, updates, deletes, and so on) in its binary log. The

binary log serves as a written record of all events that modify the database

structure or content (data) from the moment the server is started. Typically,

SELECT statements are not recorded because they modify neither the database

structure nor content. The binary log is the collection of SQL statements after the

dump operation.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 31 –

3.2 Tenant Expression

Expression is a dynamic value, which is substituted when running. Common types

of expressions are constants, session variables, the return value of static function

and the requested variables. The tenant expression is also provided to obtain the

current tenant information from the context of Web request. The syntax of tenant

expression is shown in Table 1, which is used in extensible business component

models to describe the personalized business.

Table 1

Tenant expression

Name Definition

$T{tenant.tenantID} ID of current tenant

$T{tenant.userID} ID of current user

$T{tenant.loginName} Login name of current tenant

3.3 Extensible Business Component Model-supported Multi-

Tenancy

A model is a 2-tuple: model:=(name, attributes), where attributes is a set of

properties of this model, denoted as attributes={x|x Attribute}. The property of a

model is defined as Attribute :=(name, type, default), which includes a lifetime

identifier, its type and the default value. We use m(s)/f to denote a model m of the

system s in the formalism f. The formalism of a model is usually called a

metamodel. The instance of a model is called an object. Meta(o,m)=true means

that model o is the instance of metamodel m.

Extensible business component model (xBC) is proposed to describe the SaaS

business to the greatest extent. The metamodel of xBC is divided into three

different layers, shown in Figure 3: business process, business object and business

presentation. A separation of design concerns into distinct model layers has

several advantages, such as ease of maintenance, orientation to the viewpoint, and

the ability to select specialized tools and techniques for specific concerns.

3.3.1 The Business Process Model

The business process model describes the basic business logic of an SaaS

application, including create, read, update and delete (CRUD) business,

compound CRUD business and user defined special business. Generally, clicking

the button or hyperlink of SaaS applications in the user interface triggers the

specific business process. The input of the SaaS application is often a user's form.

The submission of a Web form is always triggered by a button [21]. The derived

models of business process contain database-related manipulation, Uniform

Resource Locator (URL), code blocks and so on. Database-related manipulation is

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 32 –

a direct operation of the database, such as Structured Query Language (SQL)

statements and stored procedure; URL means a navigation of a Web page, such as

an HTML page and JSP. Not all the business behavior can be represented in

models. Some business processes are easy to describe by the source codes.

Therefore, we propose a novel derived code model named CodeBlock which uses

dependency injection [22] and method interception [22] techniques to embed

source codes into models.

Business logic BP is defined as the instance of metamodel BusinessProcessLogic,

satisfying Meta(BP, BusinessProcessLogic)=true. BP is denoted as BP := ((name,

String, ""), {(parameters, String[0..*], null), (returntype, String, "")}).

Figure 3

Metamodel of Extensible Business Component Model (xBC)

3.3.2 The Business Object Model

The business object model describes the organization of the business concepts

managed by the SaaS application, which include MObject, MAttribute, MAButton,

Reference, and so on. In order to refine the details of business objects, it is divided

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 33 –

into business object model MObject and the attribute model of the business object

MAttribute. In the context of SaaS modeling, MObject defines the name, the

description of a business object, table mappings (i.e. corresponding to the table of

the relational database), and the query condition (i.e. the value range of business

data represented by the instance of MObject). MAttribute describes the property of

the business object, including the name, description, column (i.e. corresponding to

the key of the table of the relational database), and so on. The most important

property of MAttribute is the reference and storage way. Reference is made up of

reference type and reference value. Reference type can be further broken into

primitive data type and special reference type. Primitive data type is the data type

identified by the system, such as string, integer, Universally Unique Identifiers

(UUID) and stringdate. While the value of special reference type can be button

(user-defined button), or enum (enumerated data type). These references require

reference value, which is additional information for the reference type. Reference

value is a series of concrete enumerated values or a list of data for the data type

enum, and reference value is the name of the business process model for the data

type button. The derived model MAButton is the bridge between the business

process model and the business object model, which represents a special

MAttribute. The property storageway of MAttribute presents the data storing,

whether in sparse table so as to solve the SaaS "null schema" problem.

Business object is defined as 2-tuple, which is the instance of business object

model. It is denoted as BO :=(mobject, mattributes), where mobject is an instance

of MObject, and mattributes is a set of instances of MAttributes.

3.3.3 The Business Presentation Model

The business presentation models contain the details of the graphic appearance of

SaaS applications. It is composed of MFrame, MCard, MElement and MVButton.

MFrame is the entrance to present business data for users. The instance of

MFrame is related only to a main MCard and some other detail MCards. Users

navigate the business data represented with MFrame after clicking the link of the

system menu. The property where of MFrame means the value range of business

data in the Web User Interface (UI). MCard is the thinning of MFrame for the

sake of the maintenance of a business object. The instance of MCard is related to

several MElements. The business of MCard is often the CRUD and other

compound database business. MElement is the smallest unit of business

presentation models, which may be the presentation of the business data. The

important property of MElement is isVisibleUpdate, isVisibleView and

isQueryCondition. When isVisibleUpdate is true, the MElement is a storage

element. And the business data represented by MElement can be modified in the

maintenance interface; when isVisibleView is true, the MElement is a presentation

element. The business data represented by MElement can be only displayed in the

Web UI; when isQueryCondition is true, it is as a query condition in the query

area. These are known as storage MElement, presentation MElement and query

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 34 –

MElement, respectively. User-defined button MVButton is also a kind of

MElement, and its specific business is defined in the property referenceValue of

related MAButton. In order to support tenant customization, the property

tenantList of MElement means the tenant list which allows the displaying of this

element. Only the tenancy in the list can see the impression of MElement.

The business presentation object is defined as 2-tuple, which is the instance of

business presentation model. It is denoted as VO :=(mcard, melements), where

Meta(mcard, MCard)=true, and melements is a set of instances of MElement. The

Web UI object is denoted as UI :=(mframe, vos), where mframe is the instance of

MFrame and vos is a set of VOs.

The business presentation object is used to define the graphic UI of the business

data represented by the business object model. Therefore, several basic properties

of MCard and MElement of VOs are generated from the properties of MObject and

MAtttibute of BOs, denoted as m1(s)/BOm2(s)/VO，where BO xBC，VO

xBC. This generation is an assistant tool for modeling the details of the business

presentation models, which are described in binary relation. As mentioned before,

a binary relation that is specified by using a set comprehension predicate P, e.g., in

R = {<a, b>)|P(a, b)}. The values of the properties of VOs are generated from

MOs according to the transformation rule r1 and r2, shown in Figure 4, which is

further defined in the first-order predicate logic of binary relation. The rule r1

generates MCards, while the rule r2 generates MElements. The assistant tool

executes the mapping rules in order implicitly.

dom r1={bo|boBO}, where BO xBC

ran r1={vo|voVO}, where VO xBC

r1={< bo, vo >)|

(∀bo∈BO∧∃ vo∈VO∧vo.mcard.attributes.name="C_"+bo.mobject.attributes.name ∧

vo.mcard.attributes.description=bo.mobject.attributes.description)}

dom r2={ma|mabo.mattributes}, where boBO, BO xBC

ran r2={e|evo.melements}, where voVO, VO xBC

r2={<ma, e>)| (∀ma∈BO bo.MA∧boBO∧∃ e∈vo.elements∧voVO

e.attributes.name="E_"+ma.attributes.name∧e.attributes.tips=ma.attributes.description ∧

e.attributes.length=ma.attributes.length∧e.attributes.defaultValue=ma.attributes.defaultValue∧

(∀ma.attributes.referenceType=button∧∃ evo.elements∧e.attributes.defaultValue=’’

e.attributes.isQueryCondition=false∧e.attributes.format=’’)∧

(∀ma.attributes.referenceType=integer∧∃

evo.elements∧e.attributes.defaultValue=0∧e.attributes.format=’^-?\d+$’)∧

(∀ma.attributes.referenceType=string∧∃ evo.elements∧e.attributes.defaultValue=’’)∧

(∀ma.attributes.referenceType=stringdate∧∃

evo.elements∧e.attributes.defaultValue=’’∧e.attributes.format =’yyyyMMdd’))}

Figure 4

Model transformation rule from business object model to business presentation model

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 35 –

3.4 Version Control in Extensible Business Component Model

As mentioned, models are the primary artifact of the software development

process in MDE. These models are typically developed by distributed

environments consisting of teams at different organizations and locations. These

teams usually build multiple overlapping models which represent different aspects

of the same systems. In addition, models undergo a complex evolution during their

life cycles. As a consequence, one of the techniques used to support model

management activities is the version control of models. However, present-day

MDE tools offer only limited support for the version control of models.

Traditional version control systems are based on the copy-modify-merge approach

[23], which is not fully exploited in MDE since current implementations lack

model-orientation.

In contrast, we use Java Content Repository (JCR) [24] as the storage of models.

A content repository, shown in Figure 5, consists of one or more workspaces, each

of which contains a tree of items. An item is either a node or a property. Each

node may have zero or more child nodes and zero or more child properties. There

is a single root node per workspace which has no parent. All other nodes have one

parent. The model may be considered as a node, and the property of the model

may be considered as a property. The JCR 2.1 (JSR-333) [24] specification

provides simple and independent versioning or full versioning of a node in the

repository. A versioning repository has, in addition to one or more workspaces, a

special version storage area. A new version is added to the version history of a

versionable node when one of its workspace instances is checked-in. The model

stored in the repository can be restored to a previous version, which is useful when

developers have made some fatal mistake in modeling the system. There are two

basic operations of nodes. To create a new version of a versionable node, the

application calls checkin. In order to alter a versionable node, the node must be

checked out. There are some open source tools fully conforming to the

implementation of the JCR specification, such as Jackrabbit and ModeShape
1
.

node

property

A

B C

[root]

a b

version storage

check in

check out

Figure 5

Java Content Repository

1
 Apache Jackrabbit and ModeShape are a JCR implementation that provides access to

content stored in many different kinds of systems, which can be downloaded from

http://jackrabbit.apache.org and http://www.jboss.org/modeshape respectively.

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 36 –

4 Template-based Model Transformation in Support

of Model Synchronization

4.1 Template Engine

4.1.1 Template Data Model

The basic structure of template data model is a tree shown in Figure 6. The root

node is the Web UI object. All the data models of SaaS applications save in the

model repository.

…

ui:UI

vo:VO vo:VO

pagesize where…

e:MElement … e:MElement

isMainView …

mframe:MFrame

name type mcard:MCard

name type

isVisibleView isVisibleUpdate……

name type

isSameView

attributes

attributes attributes

tenantList

Figure 6

Template data model of xBC

4.1.2 Syntax and Semantics of Template

A template is a series of template statements. The set of transformation rules from

xBC to codes is denoted as F=∑templatei. The model transformation rule of the

textual template evolution is based on all the template statements.

A template statement is defined as 4-tuple: TemplateStatement:=<Text,

Interpolation, Tag, Comment>. The text is static text and it will keep constant

after model transformation; the interpolation is used to insert the value of the

expression converted to text, which is the dynamic content of templates. The

format of interpolations is ${expression}; the tag introduces some evolution

mechanism to satisfy the requirements for the specific application field, such as

macro, iteration, condition and function statements. Also the tag can execute some

directives. In fact there are two types of directives: predefined directives and user-

defined directives. User-defined directives are extensions of directives. Some

directives have been implemented, such as Macro, Conditional directives, List

directives and Function; the comment will be ignored and not be written to the

output.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 37 –

4.1.3 Template Component

The main ideas of the template reuse are to divide the templates into parts of the

components, and each component can generate the relatively independent target

framework. Therefore, a pluggable template called plugin, which is a series of

templates, generates code based on some open source libraries (Such as SQL,

Spring, Hibernate, MyBatis, Struts, JSF, Web Service, etc.).

4.2 Model Transformation from Extensible Business

Component Models to Codes

Aiming to obtain software corresponding to this business system, we can use the

architecture composed of Business Component (BC) and Business Process (BP).

The system is an integration of composition with many business processes, one of

which is connected with a series of business actions. All the BCs and BPs in the

runnable system can be generated from the templated-base model transformation

approach.

From the viewpoint of model transformation, the model mapping from xBCs to

codes is denoted as m1(s)/xBC  m2(s)/Code shown in Figure 7. From the

viewpoint of function, the model mapping is denoted as codes=models+textual

template.

mt(BO ->table/view)/textual template evolution

MObject MAttribute

MCard MElement

business

object

business

presentation

read

Metamodel of xBC textual template

conform

corresponding

m(s)/BO
BusinessProcess

business

process

write

refer

read

read

table/view

JSP
codes

Business
codes

write

write

table/view

mt(BO ->JSP)/textual template evolution
JSP codesm(s)/VO

mt(BP ->business codes)/textual template evolution
business codesm(s)/BP

static text

interpolation

tag

comment

textual template evolution

conform

Figure 7

Transformation process between xBCs and codes

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 38 –

4.3 Model Synchronization Based on Model Evolution

Source models involved in model synchronization may face with the

modifications shown in Table 2. The modifications in the three circumstances are

identified based on the version number. All the version numbers of models

involved in model synchronization are recorded. In the next model

synchronization, the version of involved models is needed to compare with the last

recorded version. If the model is not in the last recorded models, it is addition; if

the new version is greater than the past and it is not a new model, it indicates that

the model is updated after the last model synchronization; if one of the last

recorded models is not involved in the next model synchronization, it indicates

that the source model has been deleted. The model synchronization algorithm

PSM2CodeSync from xBC to Web JSP codes is shown in Figure 8.

Table 2

Classification of modifications

Name Definition

add Source model is added

delete Source model is deleted

update
The property of source model is

changed

Function PSM2CodeSync
Input: ui:UI

Output: codes

// justify whether need code generation

if(isNewModel(ui)){

PSM2Code(ui);
}elseif (isDeletedOperation(ui)){

deleteGeneratedCodes(ui);

}else if(modelDetection(ui)){
 PSM2Code(ui);

}

Function PSM2Code

Input: mframe:MFrame
Output: codes

generateCode("query", ui);
generateCode("insert", ui);

generateCode("update", ui);

generateCode("detail", ui);
recordCurrentVersion (ui);//record the last version of models

Function generateCode
Input: templateName, ui:UI

Output: codes
helper.processText();

helper.processInterpolation();

helper.processTag();
helper.processComment();//textual template evolution

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 39 –

Function modelDetection
Input: ui: UI

Output: true or false

if(versionChange(ui.mframe)) return true;
for each VO vo in ui.vos {

 if(versionChange(vo.mcard)) return true;
if(versionChange(mcard.mobject)) return true;

 for each MElement melement in vo.melements {

if(versionChange(melement)) return true;
if(versionChange(melement.mattribute)) return true;

if(versionChange(melement.mattribute.referencevalue)) return true;
}}

return false;

Figure 8

Model synchronization algorithm between xBCs and codes

Conclusions

This study was aimed at investigating the model transformation approach to

generate SaaS applications. The main contributions of the study are outlined

below:

1) A data middleware of a multi-tenant database is presented. As this approach is

transparent to the application, the applications of tenants can share this data model

without any modification. The abstract data model provides the logic isolation of

different tenants. The master/slave database in the data cloud is a kind of

horizontal scalability to improve the performance of data.

2) In this paper, a novel Extensible business Component model named xBC is

proposed for describing both the structural and behavioral properties of generic

SaaS applications. The tenant expression, the property storageWay of MAttribute,

and the property tenantList of MElement are presented to support multi-tenancy of

SaaS applications. Its architecture of metamodel and extension mechanism is

discussed in detail. In addition, we use versioning nodes of JCR as the storage of

models. The model stored in the repository can be restored to a previous version

according to the version number.

3) Additionally, our approach for model transformation that supports model

synchronization based on model evolution is presented. This model transformation

approach is based on the textual template evolution, and this model

synchronization approach will only take up the storage space of model repositories

rather than some extra space. Only the changed models need a subsequent model

transformation. That is a good way to minimize the amount of source that needs to

be reexamined by a transformation when the source is changed.

Acknowledgement

This work was supported by the National Natural Science Foundation of China

under Contract Numbers 60873089 and 60903176, the Provincial Natural Science

K. Ma et al. A Template-based Model Transformation Approach for Deriving Multi-Tenant SaaS Applications

 – 40 –

Foundation for Outstanding Young Scholars of Shandong under Contract

Numbers JQ200820, the Program for New Century Excellent Talents in University

under Contract Numbers NCET-10-0863 and the Science and Technology

Development Program of Shandong Province under Contract Number

2011GGX10116.

References

[1] Sánchez, P., Moreira, A., Fuentes, L., Araújo, J., Magno, J.: Model-driven

Development for Early Aspects, Information and Software Technology 52

(2010) 249-273

[2] Gao, X., Li, Z.: Business Process Modeling and Analysis Using UML and

Polychromatic Sets, Production Planning and Control 17 (2006) 780-791

[3] Whittle, J., Service Model-Driven Development: A Practical Approach.

London: Chapman & Hall; 2012

[4] Mahowald, R P.: Worldwide Software as a Service 2011–2015 Forecast

and 2010 Vendor Shares, International Data Corporation, USA, 2011

[5] Narasimhan, B., Nichols, R.: State of Cloud Applications and Platforms:

The Cloud Adopters' View, Computer 44 (2011) 24-28

[6] Brunelière, H., Cabot, J., Frédéric, J.: Combining Model-driven

Engineering and Cloud Computing, in Proceedings of 6
th

 European

Conference on Modelling Foundations and Applications, Paris, France,

June 15-18, 2010, pp. 1-2

[7] Guo, J., Sun, W., Huang, Y., Wang, Z., Gao, B.: A Framework for Native

Multi-Tenancy Application Development and Management, in Proceedings

of The 9
th

 IEEE International Conference on E-Commerce Technology and

the 4
th

 IEEE International Conference on Enterprise Computing, Tokyo,

Japan, July 23-26, 2007, pp. 551-558

[8] Jacobs, D., Aulbach, S.: Ruminations on Multi-Tenant Databases, BTW

103 (2007) 514-521

[9] Ma K., Chen, Z., Abraham, A., Yang, B., Sun, R.: A Transparent Data

Middleware in Support of Multi-Tenancy, in Proceedings of the 7
th

International Conference on Next Generation Web Services Practices,

Salamanca, Spain, October 19-21, 2011, pp. 1-5

[10] Chang, S. H., Kim, S. D.: A Variability Modeling Method for Adaptable

Services in Service-Oriented Computing, in Proceedings of the 11
th

International Software Product Line Conference, Kyoto, Japan, September

10-14, 2007, pp. 261-268

[11] Liu, Y., Zhang, B., Liu, G., Wang, D., Gao, Y.: Personalized Modeling for

SaaS Based on Extended WSCL, in Proceedings of the 2010 IEEE Asia-

Pacific Services Computing Conference, Hang Zhou, China, December 06-

10, 2010, pp. 355-362

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 41 –

[12] Wang, Z., Zhao, Z., Fang, J., Wang X.: A SaaS-Friendly Service

Community Model and Its Application in the Nationwide Service Network

for Sharing Science and Technology Information, Chinese Journal of

Computers 33 (2010) 2033-2043

[13] Mukerji, J., Miller, J.: The MDA Guide Version 1.0.1, Object Management

Group, USA, 2003

[14] Subramanyam, R., Weisstein, F. L., Krishnan, M. S.: User Participation in

Software Development Projects, Communications of the ACM 53 (2010)

137-141

[15] Egyed, A.: Automatically Detecting and Tracking Inconsistencies in

Software Design Models, IEEE Transactions on Software Engineering 37

(2011) 188-204

[16] Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation

Approaches, IBM System Journal 45 (2006) 621-645

[17] Object Management Group: Meta Object Facility (MOF) 2.0

Query/View/Transformation Final Adopted Specification 1.1, Object

Management Group, USA, 2011

[18] ikv++ technologies ag: medini QVT 1.7.0 (2011), http://projects.ikv.de/qvt/

[19] Giese, H., Wagner, R.: From Model Transformation to Incremental

Bidirectional Model Synchronization, Software and Systems Modeling 8

(2009) 21-43

[20] Ma, K., Yang, B., Chen, Z., Abraham, A.: A Relational Approach to Model

Transformation with QVT Relations Supporting Model Synchronization,

Journal of Universal Computer Science 17 (2011) 1863-1883

[21] Duggan, D., Service Oriented Architecture: Entities, Services, and

Resources. NJ.: Wiley-IEEE Computer Society; 2012

[22] Tanter, É., Toledo, R., Pothier, G., Noyéb, J.: Flexible Metaprogramming

and AOP in Java, Software and Systems Modeling 72 (2008) 22-30

[23] Collins-Sussman, B., Fitzpatrick, B. W., Pilato, C. M., Version Control

with Subversion for Subversion 1.6: The Official Guide And Reference

Manual. NY.: Soho Press; 2010

[24] Nuescheler, D.: JSR 333: Content Repository for Java Technology API

Version 2.1 Early Draft Review, Java Community Process, USA, 2011

