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Abstract: Emerging digital technologies enable capturing of a product’s digital footprint 

through continuous monitoring of its performance, usage, and working environment while 

using data acquired by its embedded sensors. However, it seems that product development 

(PD) teams, within engineering companies, have not yet embraced the usage of sensor data 

acquired by smart products (SPs) when conducting PD activities. This study discusses 

several challenges that hinder a broader utilization of SP's sensor data, within PD.  

In addition to the literature review, the discussion is supported with empirical data gathered 

through a qualitative exploratory case study conducted in a large engineering and 

manufacturing company. As a result, three challenges are outlined. First, it is challenging 

for the company's management and PD team to gain transparency over the benefits of sensor 

data utilization for PD. Second, solutions providing accessibility and visualization of 

gathered data should be tailored to the PD activities and teams, which requires a holistic 

understanding. Finally, it is suggested that new skills, roles and processes should be 

introduced, in order to enable SP's sensor data utilization, within PD activities. 

Keywords: smart product; sensor data; product development; digital twin; data-driven 

design 

1 Introduction 

Provision of the right amount of relevant information to the product development 

(PD) team throughout the entire PD process is one of the greatest challenges that 

engineering companies are facing [1]. Traditionally, the PD team would lose track 

of information related to the developed product once it enters the physical world 

and leaves the boundaries of the company [2]. Consequently, the PD team must 
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have employed various methods (for example, surveys, interviews, observations) to 

solicit feedback from customers and close this information gap [3]. Incorporation 

of sensors and connectivity components (transmission and communication elements 

such as gateways) into traditional products has offered new potentials for gaining 

insights into how the products are used on the market. As a result, a continuous 

collection of product's data captured by incorporated sensors and their transmission 

over the internet back to the PD team has become an emerging extension to 

traditional feedback solicitation methods [2]. 

Smart products (SP) accompanied with digital technologies such as digital twin, 

digital thread, and digital feedback loop enable capturing of products’ digital 

footprint by continuous monitoring of their conditions, usage, and working 

environment while utilizing data acquired by embedded sensors [4]. SPs consist of 

three essential groups of elements: physical (such as mechanical and electrical 

parts), smart (for example, sensors, microprocessors, data storage, and software), 

and connectivity components (such as protocols enabling wired or wireless 

connections) [5]. The data are captured by smart components and transmitted over 

the internet by means of connectivity components. Linking the captured sensor data 

and other product data with a physical SP throughout the entire lifecycle establishes 

SP’s digital counterpart, i.e. digital twin [6]. The continuous, seamless stream of 

real-time or historical data captured by SP's sensors and other product data available 

from enterprise business systems (such as repair, history or sales data) that feeds the 

digital twin is often referred to as a digital thread [7], [8]. A digital thread gathers 

and transfers data related to a product throughout its lifecycle, thus connecting each 

stage of a product lifecycle management (PLM) process [6]. Integration of flows of 

product data and information within a company allows the closure of a digital 

feedback loop [9], which may lead to product reengineering or redesign and thus 

affect the company's entire product portfolio [10]. 

The growing number of SPs implementations has been noticed in various 

engineering industries - from automotive and aerospace to consumer goods [10], 

[11]. Nevertheless, it seems that PD teams within engineering companies have not 

yet embraced the utilization of sensor data acquired by SPs when conducting PD 

activities [2]. It has been argued that such a status is due to a lack of transparency 

on the potential benefits and applicable guidelines for systematic adoption of SP's 

sensor data utilization in PD activities [12]. The presented study aims to outline key 

challenges that a company must overcome in order to utilize SP’s sensor data for 

the purpose of new product design or product redesign. As such, the presented study 

lays the groundwork for the further studies that may offer comprehensive guidelines 

for implementation of SP’s sensor data utilization within PD activities of a specific 

engineering company. An initial step of the conducted study was a literature review 

which enabled an understanding of the state of the art in research on SP’s sensor 

data utilization within PD activities. As a result, an overview of the related work is 

presented in Section 2, including the recognized research gaps. The methodology 

of the conducted study is described in Section 3. The empirical data were gathered 
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through a qualitative exploratory case study conducted in the large engineering and 

manufacturing company. Empirical data gained through the case study are 

presented in Section 4. This is followed by a discussion of the challenges derived 

both from the literature review and the conducted case study within Section 5. 

Finally, conclusions and avenues for further work are drawn in Section 6. 

2 Literature Review 

Several factors, which are often considered in the approaches to technology 

adoption and implementation within companies (e.g. [5], [10], [12]–[14]), are 

presented within the literature review. The following factors have been identified 

as crucial for the utilization of SP’s sensor data in PD activities: perceived benefits, 

infrastructural requirements, and organizational factors. Each of these factors is 

described in detail in the corresponding subsection (2.1 – 2.3). Related work is 

summarized in subsection 2.4, while research gaps are outlined in subsection 2.5. 

2.1 Perceived Benefits of SP's Sensor Data Utilization 

Benefits resulting from information and communication technology (ICT)  adoption 

can be classified into four types: strategic, informational, transactional, and 

transformational [13]. Strategic benefits affect a company’s market competence. 

For example, a strategic benefit may be a provision of new services by utilizing SP's 

sensor data as an asset, thus expanding the company's portfolio and creating a 

competitive advantage [10]. The informational benefits offer faster and easier 

extraction of information, deduction of knowledge, and enhancement of 

communication, which in return may result in improved decision-making in PD 

activities across PD stages (for example, to support a make-or-buy decision based 

on a component’s reliability). Further, the transactional benefits refer to the support 

of the company’s operations management. For instance, a shorter duration of PD 

activities such as product quality assessment (PQA) which consequently leads to 

faster introduction of the product to the market. The transformational benefits are 

those resulting from the organizational changes due to technology adoption efforts 

[13], [15]. For instance, improved data analysis capabilities of a PD team as a result 

of an introduction of new roles. According to the available literature, these benefits 

stem from utilizing SP's sensor data to support PD, with the key infrastructural 

elements as prerequisites. The key infrastructural elements are explained in 

subsection 2.2. 

Potential benefits of SP’s sensor data utilization have been explored across various 

domains and industries [16], as presented in Table 1. For instance, Jones et al. [16] 

offer a general overview of SP’s sensor data utilization potential, while highlighting 

the need for the contextualization of the suggested benefits and implementation 

challenges faced by particular industry [16]. Wanasinghe et al. [17] provided such 
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an overview of SP’s sensor data utilization contextualized for the oil and gas 

industry, and Naticchia et al. [18] for the construction industry. However, when 

considering related studies in engineering industries, it can be noticed that a very 

few of them offer validation of the indicated benefits (e.g. [19], [20]). Hence, only 

potential of SP's sensor data utilisation has been indicated in the majority of the 

reviewed studies. 

2.2 Infrastructural Requirements 

The following infrastructural elements have been outlined in the relevant literature 

(e.g. [5], [10], [21]) as prerequisites for employment of sensor data acquired by SPs 

to support PD: data sourcing, data transmission and communication, data storage, 

and data exploitation. Based on their sources, data can be divided into internal and 

external ones. External data is any data that exists outside of the company and is 

either publicly available or owned by a third party [21]. Internal data refers to 

private or proprietary data that the company owns and controls [21]. This data is 

further divided into enterprise data (generated while executing everyday business 

activities) and sensor data (acquired by SPs) [5]. Data transmission and 

communication elements encompass network technologies such as gateways (e.g. 

Wi-Fi router), protocols (e.g. Bluetooth, or MQTT), and data security approaches 

(e.g. firewalls, and encryption) [22]. Data storage elements refer to database 

systems that enable aggregation, normalization, and management of real-time and 

historical product data. Data exploitation elements enable data analysis and 

visualization [10], [22]. As presented in Table 1, the infrastructural elements are 

often considered in the related studies on SP’s sensor data utilization. Moreover, the 

primary aim of the majority of the reviewed studies is a development or 

customization of these elements for specific use cases (e.g. [23]). 

2.3 Organizational Factors 

Gaining a comprehensive understanding of product data management and ways of 

product information exchange between individuals on the level of the entire 

organization is a demanding task [1] since product data and information are used in 

various departments and product lifecycle stages [24]. However, product data 

management and information exchange must be considered when developing data 

management and exploitation solutions [1]. Utilization of sensor data with the goal 

of supporting PD introduces the need for new skills of current or an introduction of 

new PD stakeholders (as well as the staff to provide these skills) [5], [13]. Finding 

and employing the qualified personnel with overarching set of needed skills is a 

challenging task itself [12]. Further, utilization of SP’s sensor data asks for a change 

of organizational processes and management of new information flows [25]. Still, 

organizational factors are usually not considered in the studies of SP’s sensor data 

utilization within engineering industries, as seen in Table 1. 
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Table 1 

Studies of SP’s sensor data utilization 

Paper Industry PL stage PD activity or use case Technical system IR OF BV 

[3] Engineering PD Not specified Rotary spindle    

[26] Engineering PD Decision support Centrifugal pump    

[27] Engineering PD Geometry assurance Not specified    

[28] Engineering PD (design) Geometry assurance Assembly factory    

[25] Construction Maintenance Asset management Bridge, highway    

[29] Engineering PD (design) Performance simulation Water pump    

[30] Engineering Entire PL Product validity Not specified    

[31] Engineering PD Virtual testing JET divertor    

[32] Engineering PD (design, 

manufacturing) 
Geometrical variation 

management Not specified    

[24] Engineering Manufacturing 
Product quality and 

production efficiency 

improvement 

Welding production 

line    

[33] Engineering Manufacturing Process simulation, 

control, and analysis Cutting tool    

[34] Engineering Maintenance 
Root cause analysis, 

product quality 

monitoring 
Not specified    

[19] Engineering PD (design) Virtual design 

evaluation Factory    

[35] Manufacturing Manufacturing Coordination accuracy Aircraft    

[9] Engineering PD (design) Aerodynamic 

performance Aircraft    

[36] Engineering PD Virtual simulation Not specified    

[37] Engineering 
PD (design), 

manufacturing, 

service 
Not specified Bicycle, drive shaft, 

power transformer    

[20] Engineering PD Decision making during 

rapid design 
Manufacturing 

system    

[23] Automotive PD (design) Not specified Wiring harness    

[38] Steel Entire PL Not specified Not specified    

[39] Engineering Entire PL Not specified Welding production 

line    

[2] Engineering PD (design) 
Task clarification, 

conceptualization, 

verification 
Bicycle    

[18] Construction Maintenance Facility management Building    

[40] Engineering Not specified Monitoring the machine 

operation Harvester    

[41] Engineering 
PD (design), 

manufacturing, 

maintenance, EOL 
Virtual verification Espresso machine, 

3D printer    

IR – Infrastructural requirements; OF – Organizational factors; BV – Benefits validation  

2.4 Studies of SP’s Sensor Data Utilization in PD Activities 

The majority of the related studies report on utilizing SP’s sensor data in the later 

stages of the product lifecycle (e.g. usage and maintenance [24]). As a consequence, 

knowledge gaps remain for several product lifecycle stages – PD being one of them. 

From the information-processing perspective, PD represents an interlinked 

sequence of information processing activities which translate information about 

market needs and technological opportunities into information assets for production 

[42]. Still, only a few efforts have been devoted to the support of initial stages of 
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PD (planning, concept development, and design) by utilizing SP’s sensor data (e.g. 

[2]). 

Studies situated in PD stages of product lifecycle often use the digital twin concept 

as a high-fidelity virtual model for virtual simulation (e.g. [36]), verification (e.g. 

[43]), product quality monitoring (e.g. [34]), and enhancement of manufacturing 

processes (e.g. [35]). The primary purpose of a digital twin, beside the highly 

realistic representation, is usually the automation of various processes (i.e. 

transactional benefits). In addition, related work on using SP's sensor data in PD 

activities is usually tailored for a specific use case (e.g. virtual verification of an 

espresso machine and a 3D printer [43]). As a result, the findings and suggestions 

identified across the related literature are not directly applicable in a different 

context. 

The second set of research studies focuses on the management of sensor data 

acquired by SPs through a concept of the digital thread. These studies propose 

frameworks and approaches for supporting engineering activities by extending 

PLM systems with elements for sensor data incorporation and utilization (e.g. [44]). 

Nevertheless, data utilization is often enabled through individual applications (e.g. 

for geometry assurances [28]) while only few efforts have been devoted to their 

implementation within enterprise business systems. The existing studies have been 

set in the construction industry context (e.g. [12]), whereas the recognized issues 

remain unaddressed for PD within engineering companies. 

2.5 Research Gaps 

It is here argued that the requirements for achieving the benefits (informational, 

transactional, and transformational) of SP's sensor data utilization in each PD stage 

and for different types of PD activities are not yet fully understood. The available 

literature does not offer guidance on which data exploitation elements (e.g. data 

analysis and visualization applications) are suitable for the specific activities within 

the PD stages. The majority of literature aims at the development of digital twins as 

high-fidelity virtual models. However, it is not clear whether such a solution would 

be appropriate or needed for data utilization across the entire PD. The alternative 

solution might be tailoring of data analysis and visualization elements for various 

types of activities within PD stages. Further, a vast number of studies are conducted 

in controlled environments such as factories, while only a few studies attempted to 

examine consumer products outside of the company, as part of the usage lifecycle 

stage. The conducted literature review suggests that scholars mostly tend to study 

potentials of emerging digital technologies rather than providing transparency on 

how these technologies may already support PD activities and which levels of 

fidelity are suitable for achieving benefits in each of them. Consequently, utilization 

of SP's sensor data which does not necessarily require high-fidelity models has been 

poorly studied in the literature. 
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3 Research Methodology 

The empirical part of the research draws on a qualitative exploratory case study 

conducted in a large engineering and manufacturing company – a global provider 

of products, systems, and services for the construction industry. The case study was 

of the opportunistic nature, with three primary goals: 

(1) Provide a transparency on the status of infrastructural elements and 

organizational factors within the company 

(2) Based on the status and current PD practice, suggest several PD activities 

for which SP’s sensor data utilization may be beneficial 

(3) Explore and describe the challenges standing in the way of SP's sensor 

data utilization to support PD 

The case study results (presented in Section 4) and extracted challenges (listed and 

discussed in Section 5) are based on the empirical data gathered using several 

methods – interviews, analysis of documentation, and a pilot study. These data 

gathering methods are further described in subsection 3.1. The case study design 

has followed the methodology proposed by Yin (2003). 

3.1 Data Gathering Methods 

In the related studies (e.g. [46]), information behavior of PD teams was researched 

utilizing both direct (e.g. interviews, questionnaires, work sampling) and indirect 

(e.g. observations) research methods to specify information needs and requirements 

regarding the specific tasks and activities which the teams conduct. Following the 

suggestions on multi-method approach and multiple data sources in case study 

research [45], a combination of data collection methods was utilized. The employed 

methodology consisted of semi-structured and unstructured interviews, an analysis 

of personal, workgroup, and organization documentation, and a pilot study. 

Empirical data collected using the methods within the large engineering company 

as the unit of analysis [45] yielded the insights listed in Table 2. These insights were 

intended to provide empirical data on the preliminary propositions for research [45] 

which were derived from the literature review (as presented in section 2). It is 

suggested that several infrastructural requirements and organizational factors must 

be addressed to allow for an employment of sensor data acquired by SPs in a way 

that will benefit PD within a large engineering company. Hence, gathered data was 

intended to provide insights on the status of the infrastuctural elements (subsection 

3.3.), organizational factors (subsection 3.1), and current PD practice (subsection 

3.2) within the company. Based on these insights, the pilot study was defined, as 

explained in subsection 3.4. 
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Table 2 

Overview of data collection methods and insights 

Insights Data collection methods 

Organizational structure (stakeholders related to PD and 

SPs topic)  

Unstructured interviews                                      

Analysis of documentation 

Enterprise business systems (productive systems and 

digital twin/thread solutions) 

Unstructured interviews 

Analysis of documentation 

PD process and team organization (stages and activities 

of the PD process, involved stakeholders) 

Semi-structured interviews 

Unstructured interviews 

Analysis of documentation  

Data and information flow (data and information PD 

stakeholders seek, use, and pass on) 

Semi-structured interviews 

Analysis of documentation  

Data and information management (IT solutions PD 

stakeholders utilize) 

Unstructured interviews 

Analysis of documentation 

In this study, semi-structured interviews were conducted with five PD team 

members (project lead, product manager, technical project lead, development 

engineer, quality engineer) from one of the company's business units. The team 

members were selected so that they are associated to a range of activities in different 

stages of PD. These interviews typically lasted around one hour and were based on 

open-ended questions, structured in a way to provide insights related to current PD 

practice and additional product data/information requirements. Namely, to gain 

insights into the organization of the PD process, stages in which it is divided, typical 

activities it incorporates, and stakeholders that execute them. Besides, PD 

stakeholders were asked to describe usual activities they perform, their 

responsibilities, types of data and information they seek, use or pass to their 

counterparts in PD projects. The examples of the questions are "Which data do you 

use while executing PD activities and how do you gather them?" and "Which 

activities do you think sensor data acquired by SPs would be beneficial for?". After 

the first, semi-structured series of interviews, the PD team members were visited 

several times to further clarify gathered information via unstructured interviews, 

which usually lasted between 30 and 90 minutes. Furthermore, the case study 

encompassed interviews with subject-matter experts (for example, test engineers), 

which typically lasted between 30 and 60 minutes. All the interviews were 

documented in writing. Selection of subject-matter experts was guided by the 

instructions and suggestions of the company personnel, depending on the subject in 

the focus of the discussion. In total, 29 company personnel related to PD and/or SPs 

from a variety of functional areas (e.g. business units, IT, research and technology), 

hierarchical levels (e.g. head of data science and architecture, head of IT 

architecture, head of development, global process manager), and with different roles 

(e.g. data scientist, group manager, PD methods coach) participated in the study. 

In addition to the interviews, the interviewed PD stakeholders provided the 

researchers with the project documentation (such as requirement master document, 

quality reports and test descriptions). Additional information needed for 
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understanding the broader context of the case were extracted from the company's 

internal dedicated wiki pages (e.g., the information about the status of the 

infrastructural elements and related ongoing projects). 

As a part of the case study, the pilot study was defined and conducted to further 

explore the possibilities of SP’s sensor data utilization in the company’s PD 

activities. The primary aim was to outline and describe the PD activities for which 

the utilization of the SP’s sensor data may be beneficial. Besides, the pilot study 

was a valuable first-hand experience that provided the researchers additional 

insights on challenges of SP’s sensor data adoption and implementation within the 

company. 

3.1 Company Description 

On a high level, the organization of the company is divided into nine business units 

and the global support functional business areas (such as IT, corporate development, 

and human resources). Seven business units are focused primarily on developing 

and managing hardware products – primarily tools and consumables for 

construction industry. Additional two business units are responsible for the 

development and management of the company’s service portfolio (e.g. asset 

management). Within each of the core business areas, several departments carry out 

support business functions such as technology development or quality and process 

management. The strategic focus of the observed company has recently been 

translated from being the global leader in providing hardware products solely to 

providing comprehensive solutions accompanying hardware, software, and services 

for the construction industry. Various initiatives in different business areas have 

been introduced - for instance, smart factories in plants, building information 

modelling in the area responsible for services, and SPs in engineering. The ongoing 

projects at the company, concerning the SPs and accompanying data they can 

collect through sensors, are aiming for the continuous wireless data collection.  

The ongoing projects concerning the SPs are focused on the development of new 

services for customers and end-users of the products (e.g. asset management). 

However, none of the ongoing projects is focused on the internal users of sensor 

data acquired by the SPs, such as the PD team. Consequently, understanding of the 

benefits that integration of newly available sensor data might bring in PD is still 

unclear. 

3.2 Product Data Management 

The management of product-related data has been enabled as a collection of 

individual software solutions. Majority of the solutions is under the responsibility 

of a dedicated group within the company's IT department. Division into the groups 

is based on the product lifecycle stage they support (e.g. product development or 

usage and maintenance). For example, IBM Jazz® is used (mostly by the project 

lead and technical project lead) at the beginning of the PD process for the purpose 
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of requirements input. In the concept development, system-level design, and detail 

design stages, Siemens NX® is used by development engineers as a CAD solution. 

Furthermore, SAP Engineering Control Center® serves as the product data 

management and integration platform between engineering design data (e.g. CAD 

models and drawings, material maser data, and bills of material data) and other 

product-related enterprise data (such as repair or sales data). It supports 

development engineers starting from the system-level design stage and enables 

communication of design data with stakeholders from production, manufacturing, 

and sourcing. 

3.3 Key Infrastructural Elements 

Figure 1 presents the key infrastructural elements often prescribed by the literature 

(e.g. [5]) and adopted specifically for the observed company. Hence, Figure 1 

provides transparency on infrastructural elements which are implemented within 

the company and these which are yet to be defined to allow the full utilization of 

SP’s sensor data. Grey boxes in Figure 1 present solutions that are already available 

within the observed company. Orange boxes present elements for which solutions 

are not yet defined in the context of the observed company. The presented elements 

are further elaborated in the remainder of the section. 

3.3.1 Data Sourcing 

Data sources described in this subsection are these providing internal data since the 

interviewed PD team highlighted this type of data as commonly used when 

executing PD activities. Most of the internal data is enterprise data, generated while 

executing everyday business activities. They are available through various 

enterprise business systems (e.g. product data management or customer relationship 

management). Repair data, sales data, and complaints have been identified (during 

the case study) as the common data types used in the execution of PD activities. 

Availability of sensor data acquired by SPs directly depends on the amount and type 

of sensors incorporated into the products. At the company level, sensor data are 

divided into operational (for example, torques, displacements, machine condition, 

usage of features) and environmental data (for instance, location, ambient 

temperature, moisture level). Sensor data available for the SP in the focus of the 

pilot study is described in Section 4. 

3.3.2 Data Transmission and Communication 

The nature of communication between SPs and the company is bi-directional. 

Sensors incorporated into SPs are read out and the data is transmitted via Bluetooth 

or NFC to a gateway (such as mobile phone or a router), which sends them through 

the Internet of Things (IoT) stack to the cloud if an internet connection is available. 

The IoT stack is seen as a black box intended to connect the SPs with the cloud 

using the set of communication protocols and providers (such as HTTPs or MQTT). 
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The other direction of the communication considers software updates and additional 

options such as locking the device or setting the name of the user on the product 

screen. 

3.3.3 Data Storage 

Two separated databases are used to store the company’s data. The center of the 

company’s enterprise business systems is SAP S/4 HANA®, where enterprise data 

are stored. On top of that, SAP Business Warehouse is used as a permanent 

repository for reporting, analyzing, and interpreting business data stored in SAP S/4 

HANA®. SAP HANA Cloud Platform® is used as a cloud solution. A storage 

solution for the integration of data coming from different sources in multiple 

formats (i.e. common data environment) was missing at the time of conducting the 

case study. As a result, only the manual joint exploitation of data stored across 

different databases was possible. 

 

Figure 1  

The key infrastructural elements for SP’s sensor and enterprise data utilization, based on [5] 
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3.3.4 Data Exploitation 

During the PD projects, the stakeholders receive and transmit product data and 

information from and to project counterparts in different forms; mostly documents, 

spreadsheets, and presentation slides using MS Office® tools with add-ins such as 

SAP BusinessObjects® and think-cell®. The project documentation is stored 

digitally on SharePoint®. Reporting is mostly done through a Microsoft Excel® add-

in which enables processing of data stored in the company’s main database using 

predefined queries. The report specifications and queries are defined by dedicated 

experts from the business area, while their IT counterparts define the data model. 

Any additional analysis is done manually by an individual PD stakeholder (usually 

employing Microsoft Excel® and think-cell®) or with support of experts within a 

business or IT area. Sensor data acquired by SPs is available via a web application 

as the user interface. It enables data filtering by customer, product type, specific 

product, or selected period. Provided data is available in the format of the Microsoft 

Excel® spreadsheet. The interviewed PD stakeholders outlined that they are missing 

an IT solution which would allow the joint management, analysis, and visualization 

of product-related data. 

3.4 Pilot Study Description 

The pilot study was set in the context of an incremental PD project – development 

of a new generation of an SP existing on the market. The product in the focus of the 

pilot study was a professional drilling tool for hand-held and rig-based coring.  

It was selected among other products because a new (third) generation, which 

incorporates smart and connectivity components, was in the launch preparation 

stage at the beginning of the case study. 

Available architecture of the system for using the drilling tool’s sensor data is 

presented in Figure 2. The drilling tool sends the captured data via Bluetooth to the 

user's mobile phone (with an installed application) which acts as a gateway.  

The mobile phone transmits real-time data to the cloud when the internet connection 

is available. The MQTT is used as a communication protocol that allows 

identification and communication from the drilling tool to the cloud. Sensor data 

stored to the cloud are available to the PD team through the company-specific web 

application. If the internet connection is not available, the data are captured and 

stored locally. In such case, the sensor data are transmitted to the cloud once the 

internet connection is established and they are available to the PD team as historical 

data through the same company-specific web application. 

 

Figure 2 

Available architecture of the system for using the drilling tool’s sensor data 
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The sensors embedded in the drilling tool provide environmental data (such as a 

temperature, current real-world time and date) and usage data (such as motor 

running time, drilling mechanism usage time, applied pressure, gear usage, slip 

clutch usage, pre-drill mode usage, orientation). As a part of the pilot study, a mock-

up solution of an application for data exploitation and analysis was suggested.  

An interface showing information that may be extracted from the abovementioned 

data is presented in Figure 3. 

 

Figure 3 

Drilling tool status overview 

The following section describes the utilization of these available drilling tool’s 

sensor data in specific PD activities of the observed company. 

4 Results 

The suggested PD activities, which may particularly benefit from the utilization of 

sensor data acquired by the observed SP, are related to the PQA, requirements 

validation and testing. In the current PD practice, the interviewed PD team utilizes 

historical sensor data acquired by the previous product generations when 

conducting these activities. Hence, the PD team has an articulated need for product 

data acquired by sensors when assessing product quality as well as validating and 

testing product requirements. However, as the project manager highlighted, the 

sensor data available from the previous product generations have been extracted 

manually from the small percentage of traditional products that came into the repair 

center (approximately 10%). As a result, the team has not been able to conduct 

statistically rigorous data analysis, which would provide them insights regarding 
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the behavior and usage of the entire product generation. Besides, these data are 

unstructured (without a standardized meaning, unit of a measure, and integrity 

rules), aggregated (without a timestamp), and there is no common data model that 

would allow for data analytics or mapping with other data types. Consequently, only 

several attributes (primarily product runtime or a lifetime of particular components) 

have been used in the PD activities - mostly for the analysis of the repair data and 

the quality issues. Considering the additional capabilities of the new product 

generation (as described in subsection 3.4), the PD team wanted to know how sensor 

data acquired by the SP can benefit the execution of PD activities. As the design 

engineer suggested, it was assumed that sensor data from the majority of the SPs on 

the market will be available to the PD team as historical data. 

4.1 Sensor Data Utilization for the PQA 

A typical PQA includes the identification of the predecessor products’ strengths and 

weaknesses as part of the planning stage of PD as well as the analysis of the product 

under development before it is finally introduced to the market (production ramp-

up stage). Implications for supporting the execution of PQA by utilizing SP's sensor 

data were discussed with the PD team's quality manager and the expert responsible 

for defining the quality report specifications. They highlighted that the availability 

of SP’s sensor data would provide quality managers with the additional reports on 

the product’s usage and, thus, enable a more thorough assessment of the product 

quality. Based on these data, quality managers may determine when and under 

which conditions a specific quality issue appeared (considering, for example, a gear 

split, a drilling orientation distribution, a temperature, and a runtime). As the quality 

manager accentuated, diagnostic analysis may enable investigation of the 

relationship between the defect type recognized by the repair technicians and the 

usage history. For instance, water entry problems are often related to an upward 

drilling orientation. Also, long activations of a slip clutch may indicate the user’s 

inexperience, thus defining a misuse as the cause of the defect (instead of a 

development or a manufacturing problem). Furthermore, if several attributes are 

taken into account, a pattern recognition could be yielded through predictive 

analytics. As a result, the quality manager may define quality improvement 

measures to avoid an unwanted behavior of the product (e.g. by suggesting 

requirements revision or addition) and a way it is operated by a user (for example, 

by providing the additional usage instructions). Besides, the quality of the product 

could be checked after a timespan defined as product lifetime in a design 

specification. Consequently, design specification may be changed for the next 

product generation. 
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4.2 Sensor Data Utilization for the Requirements Validating 

and Testing 

When defining product requirements, the PD team considers the customer 

requirements and market needs, analyses the technical feasibility and validity of 

requirements, and investigates the dependencies among the requirements.  

The interviewed product manager believes that the greater availability of 

information on product usage might lower the effort needed to investigate and 

question customers and end-users about the usage and behavior of the product.  

The development engineer added that special caution is needed regarding the 

erroneous reuse of obsolete requirements drawn from the predecessors’ PD projects 

or similar products on the market. 

The requirements and available SP's sensor data were mapped during the two 

dedicated meetings with the development engineer. The results showed that data 

captured by sensors embedded in the new generation of the product might provide 

insights for 54 out of the 267 (20%) defined requirements. The majority of 

requirements which might be addressed are in the form of explicit technical 

specifications. For example, sensor data provide information on the number of 

activations of the hole starting button, the display feedback button, and the switch. 

Thus, the number of expected activations of these buttons and the switch (in the 

requirements list) can be compared to the actual number of their activations. Newly 

gained insights might change specification value and thus affect product design and 

test conductance. For instance, it can be revealed that users do not use the buttons 

or the switch (and the functionalities activated by pressing on them) to the degree 

that would justify their production costs. The development engineer thinks that the 

newly gained information might redirect the attention of the PD team to these 

product features and guide the redesign of the product. Furthermore, the test 

engineer said that utilization of SP’s sensor data might support them in the 

execution of PD activities related to product testing. Namely, the change in the 

specification value directly affects test conditions since they are linked to the 

technical requirements. For example, the number of activations defined by the 

requirement affects both the time needed for the test engineer to conduct the 

dedicated in-house test of a component (such as prototype test in the design stage 

of a PD process) as well as that component’s cost. If the design specification states 

that the buttons and the switch must endure fewer user activations than it was 

previously thought, the testing of these parts in the design stage of the fourth product 

generation will be adjusted accordingly. 

5 Discussion 

Three challenges facing productive utilization of SP's sensor data in PD activities 

have been extracted and outlined based on the empirical data gathered during the 

case study. These challenges are: the perception of benefits, suitability of data 
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exploitation elements and any organizational changes. They are further discussed 

in the remainder of this section. 

5.1 Perceiving the Benefits 

The utilization of sensor data (captured during the usage stage of a product’s 

lifecycle) in PD activities is not a novelty itself neither in the academic literature 

nor the industrial practice [47]. SPs add to the value of sensor data through smart 

and connectivity components which enable real-time or postponed feedback from 

each product on the market when it is connected to the internet. Hence, the 

capabilities of smart and connectivity components incorporated in SPs dictate the 

types and the amount of data available for further analyses and visualizations. 

However, the primary intention of integrating the smart and connectivity 

components in products is usually not to support and enhance PD activities. Rather, 

these components are typically incorporated for different purposes and tailored for 

individual use cases that are not related to PD. For example, the observed 

company’s ongoing projects concerning the SPs and their sensor data are focused 

on the development of new services for customers and end-users of the products 

(such as asset management) rather than for the internal users of data such as the PD 

teams. Besides these components, the infrastructural elements must be defined and 

developed to enable digital twins, digital threads, and digital feedback loops within 

a company (for example, a common data environment and additional data analysis 

applications). The perceived value of technology adoption must be tangible to the 

company's management in order to assure their support in the definition and 

provision of key infrastructural elements. However, such persuasion is currently 

hindered due to the lack of empirical studies that investigate and validate the return 

of investment in the utilization of continuous stream of SP’s sensor data within PD 

activities. For example, in the case of the observed company, the PD team’s decision 

to incorporate sensors was driven mainly by an availability of technology and 

competition’s efforts to develop SPs. Consequently, the benefits of sensor data 

utilization presented across the literature are often not tangible or relatable. Besides, 

the available literature does not provide the implementation guidelines applicable 

and tailored for the PD activities within the specific company. The utilization of 

sensor data acquired by SPs may support PD activities primarily through 

informational (providing better-informed decision-making) and transactional 

benefits (such as performing virtual instead of physical activities). An overview of 

the suggested informational and transactional benefits of sensor and enterprise data 

utilization in PD activities across PD stages (as suggested by [42]) is provided in 

Figure 4. These benefits are derived from the use cases described in the related 

literature and the conducted case study. Two suggested use cases described in 

subsection 4.2.1 depict the mapping of available sensor data to the requirements and 

quality reports. Such a mapping of sensor data should also be conducted to the other 

PD activities. As a result, possibilities to reap the benefits throughout PD may be 

clarified, together with their costs. 
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Figure 4 

Overview of the benefits of sensor and enterprise data utilization in PD activities 

5.2 Tailoring Data Exploitation Elements to the PD Activities 

and a PD Team 

Once sensor data acquired by SPs are transmitted to the company's cloud, they are 

analyzed and visualized. Management and exploitation of data acquired by SPs have 

often been recognized as the most common challenges when implementing digital 

technologies in companies [5]. The reason is the bilateral nature of the exploitation 

elements which enable data analysis and visualization. The exploitation elements 

should be flexible to make data accessible to different company's functional users 

and stakeholders (e.g. development, marketing and sales, after-sales service).  

The flexibility may be achieved by enabling a digital thread [9]. At the same time, 

the exploitation elements should provide data analysis and visualization tailored to 

users’ and stakeholders’ needs and preferences to assure the specific benefit 

realization. The interviewed PD team emphasized the need for such a solution, 

which would allow management, utilization, and analysis of continuously acquired 

sensor data from SPs and product-related data stored in the central repository. 

Customization may be achieved through a modular approach ‒ by using digital 

models with varying amount of the presented attributes [30]. The digital models 

should be adjusted for each product lifecycle stage, PD activity, and the use case 

with a specific benefit as a goal. For instance, requirements validation may be 

accomplished using low-fidelity models with only several specific attributes that 

concern the particular requirement (such as runtime or the number of switch 

activations). On the other hand, virtual simulation for the quality issues analysis 

asks for more attributes and a model of a higher fidelity in order to be perceivable. 

Regardless of the digital twin fidelity level, it is here suggested to enable data 

exploitation through engineering support tools which the PD team members already 

use for the execution of respective tasks and activities [3]. An example would be 

the incorporation of newly available sensor data into the support tool for 

requirement management that the interviewed PD team uses. In this way, available 

data would be contextualized into useful information that can be directly queried by 

the PD team within their usual tasks and activities [48]. Besides, the confidence in 

decision making is positively affected when data are provided through a familiar 
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visual representation [49]. Further, two out of three steps in making sense of 

received data and information [1] may be supported when they are presented 

through familiar visual representations incorporated within the already enabled 

engineering support tools. Namely, (1) integration of the represented data into one’s 

understanding of the situation by elaborating it and evaluating its quality with 

contextual knowledge, and (2) inferring its implications for one’s tasks and 

responsibilities on how to apply it [1]. Hence, the process of making sense of 

received data and information may be easier, faster, and more systematic (less 

dependent on individual data interpretation skills). 

5.3 Managing the Required Organizational Changes 

Productive utilization of sensor data acquired by SPs within a company requires the 

organizational changes concerning new skills, roles, and processes. For example, a 

revised PD project workflow for SPs in the observed company now has an 

additional step which should nudge consideration and exploration of (1) embedding 

additional sensors in products and (2) enabling enhanced capabilities of other smart 

and connectivity components (e.g. faster and continuous data transmission) that 

may benefit stakeholders throughout the PD process. However, the problem 

recognized in the current company practice is the absence of a project focused 

entirely on the recognition of the benefits and requirements for SP's sensor data 

utilization in PD activities. A thorough understanding of the PD process, the team, 

and the available data is needed to enable recognition and evaluation of the benefits. 

It is a necessity to analyze the processes so that one may understand the need for 

data exploitation solutions, and to design processes and solutions together in order 

to assure effective support [50]. 

Since making sense of available data and extraction of relevant information out of 

them depend on data interpretation skills [1], it is also necessary to support PD team 

members by introducing new roles responsible for exploiting and formalizing data, 

and deducing knowledge from them. Similarly, [3] the role of a knowledge engineer 

should be introduced to act as a bridge between product data (sensor data and other 

enterprise data) and incorporation of deducted information and knowledge into PD 

activities, for example, by using knowledge-based methods within a PLM system. 

In the case of the observed company, it has been suggested to establish a new role 

(a project manager) in the area of information management, responsible for the 

management of sensor data utilization across business units by relating it to the PD 

projects, processes, activities, and tasks. Hence, this new role should encourage and 

maintain a continuous collaboration between several company's areas and 

functions, namely, information management, data science, IT, business units, and 

dedicated business area departments (such as technology development or quality 

and process management). 
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Conclusions and Further Work 

Several infrastructural and organizational challenges must be addressed to allow for 

the utilization of sensor data acquired by SPs, in a way that will support and benefit 

PD, within a large engineering company. First, it is challenging for the company's 

management and PD team to gain transparency over benefits of sensor data 

utilization for PD. Both theoretical and empirical research on use cases from the 

majority of product lifecycle stages, PD stages and activities, as well as, the 

different product types, are still missing. The lack of detailed studies across all PD 

stages, and product lifecycle in general, implies that many potential benefits are still 

unrevealed. Secondly, solutions providing accessibility and visualization of 

gathered data should be tailored to the PD activities and teams, which asks for a 

holistic understanding of the PD process, team, and available data. Data acquisition 

should be automated, whereas the extraction of information and deduction of 

knowledge should be systematic and formalized to reduce uncertainties in data 

utilization. Finally, it has been suggested that the new skills, roles, and processes 

should be introduced to provide transparency over benefits of sensor data utilization 

for PD and enable its implementation within PD activities. Future work on this topic 

would include experimental studies within several companies, including the 

consideration of different products and the various types of PD projects. Based on 

the empirical findings of further studies, guidelines on utilization of sensor data 

acquired by SPs and a more exhaustive presentation of its benefits may be offered. 
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