
Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 59 –

Validating Rule-based Algorithms

László Lengyel

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

Magyar tudósok körútja 2, 1117 Budapest, Hungary

lengyel@aut.bme.com

Abstract: A rule-based system is a series of if-then statements that utilizes a set of

assertions, to which rules are created on how to act upon those assertions. Rule-based

systems often construct the basis of software artifacts which can provide answers to

problems in place of human experts. Such systems are also referred as expert systems.

Rule-based solutions are also widely applied in artificial intelligence-based systems, and

graph rewriting is one of the most frequently applied implementation techniques for their

realization. As the necessity for reliable rule-based systems increases, so emerges the field

of research regarding verification and validation of graph rewriting-based approaches.

Verification and validation indicate determining the accuracy of a model transformation /

rule-based system, and ensure that the processing output satisfies specific conditions. This

paper introduces the concept of taming the complexity of these verification/validation

solutions by starting with the most general case and moving towards more specific

solutions. Furthermore, we provide a dynamic (online) method to support the validation of

algorithms designed and executed in rule-based systems. The proposed approach is based

on a graph rewriting-based solution.

Keywords: verification/validation of rule-based systems; graph rewriting-based model

transformations; dynamic verification of model transformations

1 Introduction

Rule-based systems [1] [2] provide an adaptable method, suitable for a number of

different problems. Rule-based systems are appropriate for fields, where the

problem area can be written in the form of if-then rule statements and for which

the problem area is not extremely too great. In case of too many rules, the system

may become difficult to maintain and can result in decreased performance speeds.

A classic example of a rule-based system is a domain-specific expert system that

uses rules to make deductions or narrow down choices. For example, an expert

system might help a doctor choose the correct diagnosis based on a dozen

symptoms, or select tactical moves when playing a game. Rule-based systems can

L. Lengyel Validating Rule-based Algorithms

 – 60 –

be used in natural language processing or to perform lexical analysis to compile or

interpret computer programs. Rule-based programming attempts to derive

execution instructions from a starting set of data and rules. This is a more indirect

method than that employed by an imperative programming language, which lists

execution steps sequentially.

As rule-based systems are being applied to many diverse scenarios, there is a need

for methods that support the verification and validation (V&V) of the algorithms

performed by these systems. In this paper, we discuss the concept of taming the

complexity of the verification/validation solutions. Furthermore, we introduce a

dynamic (online) approach to address the V&V of rule-based systems.

V&V of a rule-based system is the process of ensuring that the rules meet

specifications and fulfill their intended purpose. Based on [3], we use the

following definitions: Verification is the process of evaluating the rule definitions

to determine whether the imposed specification is fulfilled. Validation is the

process of evaluating the rules, either during or following the rule execution, to

determine whether it satisfies the end-user requirements. In other words,

validation is intended to answer the question: “Is this the system we intended to

create from the users perspective?” (Is this product specified according to the

user's actual needs?) Verification provides answers to the question: “Is the system

built in accordance with the design?” (Does the product conform to the

specifications?)

During the analysis of a rule-based system, our goal is to prove that (i) certain

properties hold for the output, if the input is valid, or (ii) to provide the criteria

that must be satisfied by the input in order to guarantee the desired properties for

the output. The analysis of a rule-based system is said to be static when the

implementation of the rules and the language definition of the input and output

models are used during the analysis process without considering the specific input.

In the case of the dynamic approach, we analyze the rule-based system for a

specific input, and then check whether certain properties hold for the output

during or after the successful application of the rules. The static technique is more

general and poses more complex challenges. The goal of static analysis is to

determine whether the rule-based system itself meets various, specific

requirements.

The rest of this paper is organized as follows. Section 2 discusses the concept of

taming the complexity of verification/validation solutions. We start with the most

general case, static methods, and work toward the most specific, the dynamic

solution. Section 3 introduces a method, which makes possible to dynamically

validate rule-based systems. Section 4 compares our solution with the related

V&V approaches and further highlights the relevance of the suggested approach.

Finally, concluding remarks are elaborated.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 61 –

2 Taming Verification/Validation Complexity

Several static approaches provide formalism and verify that the semantics are

preserved or guaranteed during the transformation of a model, e.g. approaches

provided by Asztalos et al. [4], Biermann et al. [5], Bisztray and Heckel [6], Cabot

et al. [7], or Schatz [8].

The approach of Asztalos et al. focuses on the static analysis of special model

processing programs. This approach provides the theoretical basis for a possible

verification framework. It applies a final formula that describes the properties that

remain true at the end of the transformation. It is possible to derive either proof or

refutation of a verifiable property from this final formula. The approach provides

predefined components to deduct the desired properties.

In the approach, presented by Bisztray and Heckel, to understand and control the

semantic consequences, Communicating Sequential Processes (CSP) are applied

to capture the behavior of processes both before and after the transformation. The

approach verifies semantic properties of the transformations at the level of rules,

such that every application of a rule has a known semantic effect.

In the approach of Bierman et al., model transformations are defined as a special

kind of typed graph transformations. The solution implements a formal approach

to validate various functional behaviors and consistencies of model

transformations.

There exist noticeable differences between the complexity of static and dynamic

V&V approaches. The static technique is more general, because its responsibility

is to determine if the rule-based system itself meets certain requirements.

Contrarily, in the case of the dynamic approach, the transformation is analyzed

based on a single specific input.

Figure 1

Taming the complexity of verification/validation

It is common knowledge that the algorithmic complexity of V&V can be very

challenging, if not altogether hopeless in a general sense. However, practical cases

do not require generality. The complexity-related questions are as follows: Does

the problem contain specific subclasses that are solvable, yet practically relevant?

Is it necessary to analyze the algorithm of the rule-based system? Or will it suffice

to verify the system for a certain class of possible input models?

L. Lengyel Validating Rule-based Algorithms

 – 62 –

Our classification defines that the static approach is the most general and the

dynamic is the most specific of V&V methods (Figure 1a). In order to reduce

V&V complexity, we classify the V&V approaches to address complexity. In

order to accomplish this, we begin with the general case (static verification) and

create more specific cases (dynamic verification). Between these two extreme

approaches, we identify several complexity-related restricting solutions (Fig. 1b).

These methods do not attempt to prove the semantic correctness for one or all

possible inputs (prove the properties of the rule-based system), but instead take a

class of input types into consideration. We have identified the following

complexity categories:

A. Static methods

B. Restricting solutions:

1. Language classes

2. Rule-based system classes

3. Predefined components

C. Dynamic methods

A. Static methods. Model checker tools (e.g. Augur [9], CheckVML [10], or

GROOVE [11]) apply static methods during the verification.

B1. Restricting solutions / Language classes. This approach defines a class of

input models. Based on a metamodel, a language class is defined by additional

metamodel constraints or the simplification of the metamodel, i.e. through the

elimination of some domain concepts. As a result, the modified language contains

only a restricted class of original models, therefore, the complexity of the

processing transformation decreases along with the complexity of the

transformation verification. Examples of language classes are provided in OMG

Query/View/Transformation Specification [12]. The Annex A of the QVT

specification introduces two language classes: Simple UML Metamodel and

Simple RDBMS Metamodel. These domains provide limited language elements

and attributes that are suitable to define the required models, but do not provide

additional, unnecessary language constructions. For instance, a Table containing

Keys can be modeled, but the Key type does not provide attributes to specify

further details. Another example regarding language classes is the limitation of the

multiplicity to 1 or 0..1. A third example presents itself when only finite input

models are permitted. A sample language class also introduced in the next section:

DomainServers (Figure 2).

B2. Restricting solutions / Rule-based system classes. This approach restricts the

rule specification language itself. We modify the metamodel of the rule

specification language in order to allow for rule-based system definitions with

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 63 –

specific properties. An example of a rule-based system class is one in which rule

chains are allowed (successively applying several rules in a predefined order) but

loops are forbidden. Proving the termination of such rule-based system requires

reasonably less complexity than in the general case, when loops are permitted. For

example in the field of layered grammars [13], Bottoni et al. [14] developed a

termination criterion which ensures that the creation of all objects of a certain type

should precede the deletion of an object of the same type. Therefore, the layer

deleting an object of a given type should not create such an object, nor should the

subsequent rules. This means the productions in a deletion layer will terminate.

Therefore, the termination analysis of transformations satisfying this criterion

requires less complexity than the general case.

B3. Restricting solutions / Predefined components. In this case, the verification

procedure is constructed from predefined components. We can state facts about

the components that treat the verification process as axioms: therefore, the results

of other tools or human analysis can be also utilized. Applying these predefined

components, we can deduce what output model properties are provided by the

given transformation for the provided input domain. For example, the formal

language, developed by Asztalos et al. [4], is able to express a set of model

transformation properties. The language is appropriate to specify both the

properties of the output models and the properties of the relation between the input

and output model pairs. In most cases, the proofs within the class of predefined

components are conducted by dedicated checker tools (e.g. GROOVE [11] or

CheckVML [10]) or through human analysis.

C. Dynamic methods. Examples of dynamic methods are provided by Lengyel

[15]. In their approach, the validation of the rule-based system is achieved with

constraints assigned to the rules as pre- and postconditions. A similar approach

was developed by Narayanan and Karsai [16], in which the semantic equivalence

between inputs was guaranteed via bi-simulation checks on the execution log of

the transformation.

In applying these restricting solutions, i.e. working with language classes, rule-

based system classes, or predefined components, we ensure that (i) the verification

of the rule-based system requires less complexity than the classical static

verification and (ii) the verification results are valid not only for a specific input,

but for a class of input models or rule-based systems. The next section discusses a

dynamic validation method.

L. Lengyel Validating Rule-based Algorithms

 – 64 –

3 Dynamically Validated Rule-based Systems

There are several model transformation approaches ranging from relational

specifications [17] and graph transformation techniques [18], to algorithmic

techniques for the implementation of a model transformation. The following

provides our categorization of these approaches: [19] traversal-based and direct

manipulation approaches [20], template-based approaches (e.g., OCL [21], XPath,

or T4 Text Templates), relational approaches (e.g., Query, Views,

Transformations (QVT) [12]), graph rewriting-based approaches (e.g., AGG [22],

AToM
3
 [23], GReAT [24], TGGs [25], VIATRA2 [26], and VMTS [27]),

structure-driven approaches (e.g., OptimalJ and QVT), and hybrid approaches that

combine two or more of the previous categories (e.g., ATL [28]).

Rule-based systems are often realized based on the graph rewriting-based

approach. Therefore, our focus is on the V&V of the graph transformations.

Graph rewriting-based transformations [29] have their roots in classical

approaches to rewriting, such as Chomsky grammars and term rewriting [30].

There are many other representations of this, which will be addressed later. In

essence, a rewriting rule is composed of a left-hand side (LHS) pattern and a right-

hand side (RHS) pattern. Operationally, a graph transformation from a graph G to

a graph H is mainly conducted based on the following three steps:

a. Choose a rewriting rule.

b. Find an occurrence of the LHS in host graph G satisfying the application

conditions of the rule.

c. Finally, replace the subgraph matched in G by the RHS.

Graph transformations define the transformation of models. The LHS of a rule

defines the pattern to be found in the host model; therefore, the LHS is considered

the positive application condition (PAC). However, it is often necessary to specify

what pattern should not be present. This is referred to as negative application

condition (NAC) [31]. Besides NACs, some approaches [22] [26] use other

constraint languages, e.g., OCL, Java, C# or Python to define the execution

conditions.

The ordering of rules can be achieved by explicit control structures or can be

implicit due to the nature of their rule specifications. Moreover, several rules may

be applicable simultaneously. Blostein et al. [32] have classified graph

transformation organization into four categories. (i) An unordered graph-rewriting

system simply consists of a set of graph-rewriting rules. Applicable rules are

selected non-deterministically until none are any longer applicable. (ii) A graph

grammar consists of rules, a start graph and terminal states. Graph grammars are

used for generating language elements and language recognition. (iii) In ordered

graph-rewriting systems, a control mechanism explicitly orders the rule

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 65 –

application of a set of rewriting rules (e.g. priority-based, layered/phased, or those

containing an explicit control flow structure). (iv) In event-driven graph-rewriting

systems, rule execution is triggered by external events. This approach has recently

seen a rise in popularity [33].

Controlled (or programmed) graph transformations impose a control structure over

the transformation rules to maintain a more strict order of execution in a sequence

of rules. The control structure primitives of graph transformation may provide the

following properties: atomicity, sequencing, branching, looping, non-determinism,

recursion, parallelism, back-tracking and/or hierarchy [15] [30].

Some examples of control structures are as follows: AGG [22] uses layered graph

grammars. The layers fix the order in which rules are applied. The control

mechanism of AToM
3
 [23] is a priority-based transformation flow. Fujaba [34]

uses story diagrams to define model transformations. The control structure

language of GReAT [24] uses a data flow diagram notation. GReAT also has a

test rule construction; a test rule is a special expression that is used to change the

control flow during execution. VIATRA2 [26] applies abstract state machines

(ASM). VMTS [27] uses stereotyped UML activity diagrams to further specify

control flow structures. In [29], a comparative study is provided that examines the

control structure capabilities of the tools AGG, AToM
3
, VIATRA2, and VMTS.

In the case of rule-based systems, the application order of the rules is supported by

a conflict resolution strategy. The strategy may be determined by the actual area or

may simply be a matter of preference. In any case, it is vital as it controls which of

the applicable rules are fired and thus the behavior of the entire system. The most

common strategies are as follows:

a. First applicable: If the rules are in a specified order, firing the first

applicable rule allows for control over the order in which rules are fired.

b. Random: Though it does not provide the predictability or control of the

first-applicable strategy, it does have certain advantages. For one, its

unpredictability is an advantage in some circumstances (e.g., in games).

A random strategy simply chooses a single random rule to fire from the

conflict set. Another possibility for a random strategy is a fuzzy rule-

based system in which each rule has a factored probability, i.e., some

rules are more likely to fire than others.

c. Least recently used: Each of the rules is accompanied by a time or step

stamp, which marks the time of its last usage. This maximizes the

number of individual rules that are fired at least once. This strategy is

perfect when all rules are needed for the solution of a given problem.

d. Best rule: Each rule is given a weight, which specifies its comparative

consideration to the alternatives. The rule with the most preferable

outcomes is chosen based on this weight.

L. Lengyel Validating Rule-based Algorithms

 – 66 –

3.1 An Example

Rules can be made more relevant to software engineering models if the

transformation specifications allow the assigning of validation constraints to the

transformation rules.

Figure 2

The DomainServers metamodel

Figure 2 depicts the metamodel of a domain-specific language. This language

defines that an instance model contains Domain objects. A domain can contain

sub-domains and domains can also be linked to each other. A domain has Server

objects. A server must belong to a domain. A server contains a ServerName, Id,

Type (enum attribute with values Web, Database, Mail, and Gateway), and Load

attributes. Servers contain sequentially ordered Tiers. A tier has the following

attributes: TierName, Id, Type (enum attribute with values CPU and I/O), OrderId,

ServiceTime, and VisitNumber. Each server has exactly one ThreadPool element.

A ThreadPool is comprised of ThreadPoolName, Id, and MaxNumberOfThreads

attributes. The ThreadPool contains Threads. Each thread has Id and State (enum

attribute with values Ready and Occupied) attributes. Servers have one or more

Queues. A queue has QueueName, Id, and QueueLimit attributes. A queue must

belong to a server. Furthermore, servers and queues can contain Tasks. Tasks

assigned to servers are under processing, while tasks in a queue are in waiting

state. A task has the following attributes: TaskName, Id, Priority (enum attribute

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 67 –

with values Normal, High, and Urgent), and ProcessedState (enum attribute with

values Waiting, Processing, and Complete). There are also more specific task

types inherited from Task: Email, BulkEmail, WebRequest, DBRequest, and

AuthorizationRequest. Each of these metamodel elements also includes further

attributes.

Figure 3 introduces a control flow model of a rule-based system. The processing

has three transformation rules. The rule CheckServerLoad selects a Server, which

Load is over 80%. If there is no such server, then the transformation terminates.

Otherwise, a new server node, with a ThreadPool and a Queue node, is inserted

into the domain. Next, the transformation rule, RearrangeTasks, rearranges tasks

from the queue of the overloaded server to the queue of the new server. The rule

RearrangeTasks is executed in Exhaustive mode: the rule is continuously applied

while the Load of the overloaded servers is over 70%, and the Load of the new

server remains under 70%. The transformation is executed in a loop. This means,

after easing the load of one server, the process continues and therefore, the

transformation can insert additional, new servers.

Figure 3

Example model transformation: LoadBalancing

Figure 4 depicts two example rules: AddNewServer and RearrangeTasks. The

figure follows a compact notation, containing no separated LHS and RHS pattern.

The colors code the following: black nodes and edges denote unmodified

elements, blue ones indicate newly created elements, and red ones mark the

elements deleted by the rule. The transformation rule AddNewServer gets the

Domain type node as a parameter and creates the new Server with a ThreadPool,

two Threads, a Tier, and a Queue. The transformation rule, RearrangeTasks,

receives the two servers with their queues as parameters and performs the

rearrangement as a single task. The rule is executed in Exhaustive mode, which

enables several tasks to be moved between the queues.

L. Lengyel Validating Rule-based Algorithms

 – 68 –

Figure 4

Example model transformation rules: (a) AddNewServer and (b) RearrangeTasks

Some example constraints assigned to the rules are as follows:

context Server inv serverCardinality:

Server.allInstances()->count() < 40

context Queue inv queueCardinality:

Queue.allInstances()->count() >= Server.allInstances()->count()

The constraints serverCardinality and queueCardinality define the number of

specific type elements in the model. These are cardinality issues related to the

whole model.

context Queue inv queueLimit:

QueueLimit < 1500

The constraint queueLimit is an attribute value constraint that maximizes

QueueLimit attribute of Queue type nodes.

context Server inv largeThreadPools:

Server.allInstances->forall(s | s.ThreadPool.Threads->count()<= 50 OR

 (s.Tiers->exists(t | t.Type = Type::CPU) AND

 s.Tiers->exists(t | t.Type = Type::I/O)))

The constraint largeThreadPools defines that for each server, if the number of

threads in the ThreadPool exceeds 50, then separated CPU and I/O tiers are

employed.

The presented constraints are assigned to the rules and guarantee our

requirements. After a successful rule execution, the conditions hold and the output

is valid. The fact that the successful execution of the rule guarantees the valid

output cannot be achieved without these validation constraints.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 69 –

3.2 Validating Rule-based Systems

The objective of our research activities is to support the V&V of algorithms

performed by rule-based systems. The requirements, assigned to the rules are both

input and output related requirements, i.e. we define certain pre- and

postconditions that should hold before and after the execution of the rule. In

several cases rules do not contain certain node or edge types that are about to be

included into our V&V requirements. These requirements may relate to a

temporary (during the processing) or a final (following the processing) state of the

input or generated models. Moreover, several different directions can be followed;

e.g. we can assert additional requirements to the input and output models

(metamodel constraints), or the rule-based system can be extended with the use of

appropriate testing and validating rules.

Dynamic validation covers both the attribute value and the structure validation,

which can be expressed in first-order logic extended with traversing capabilities.

Example languages that currently applied for defining attribute value and interval

conditions are Object Constraint Language (OCL), C, Java, and Python. These

conditions and requirements are pre- and postconditions of a transformation rule.

Definition (Precondition). A precondition assigned to a rule is a Boolean

expression that must be true at the moment of rule firing.

Definition (Postcondition). A postcondition assigned to a rule is a Boolean

expression that must be true after the completion of a rule.

If a precondition of a rule is not true, then the rule fails without being fired. If a

postcondition of a rule is not true after the execution of the rule, the rule fails.

Regarding pre- and postconditions the execution of a rule is as follows (Figure 5):

a. Finding the match according to the LHS structure.

b. Validating the constraints defined in LHS on the matched parts of the

input model.

c. If a match satisfies all constraints (preconditions), then executing the rule,

otherwise the rule fails.

d. Validating the constraints defined in RHS on the modified/generated

model. If the result of the rule satisfies the postconditions, then the rule

was successful, otherwise the rule fails.

L. Lengyel Validating Rule-based Algorithms

 – 70 –

Figure 5

The transformation process

A direct corollary is that an expression in LHS is a precondition to the rule, and an

expression in RHS is a postcondition to the rule. A rule can be executed if and

only if all conditions enlisted in LHS are true. Also, if a rule finished successfully,

then all conditions enlisted in RHS must be true.

Statement 1. If a finite sequence of rules is specified properly with the help of

validation constraints, and the sequence of rules has been executed successfully

for the input model, then the modified/generated output model is in accordance

with the expected result that is described by the finite sequence of transformation

rules refined with the constraints [7].

Definition (Low-level construct). Pre- and postconditions defined as constraints

and propagated to the rules are low-level constructs.

Definition (High-level construct). Validation, preservation and guarantee

properties are high-level constructs.

Definition (Validated rule execution). A rule execution is validated if it satisfies a

set of high-level constructs.

To summarize, high-level constructs define the requirements on a higher

abstraction level, e.g. servers should not be overloaded. Low-level constructs are

the appropriate constraints assigned to the appropriate rules. These constraints

assist in achieving the required conditions.

This method can be followed in Figure 4. Finding the structural match the

preconditions are validated, and after performing the rule execution,

postconditions are validated. Both of the validation should be successful in order

for the whole rule to be successful.

With this method the required properties can be defined on low-level, i.e. on the

level of rules. In summary, we can say that the presented dynamic approach

supports that if the execution of a rule finishes successfully, the generated output

is valid and fulfills the required conditions. The validation of the rule-based

system is achieved with constraints assigned to the rules as pre- and

postconditions.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 71 –

Statement 2. Rule-based systems can be validated with the presented dynamic

validation method.

Statement 3. Taming verification complexity can be applied for rule-based

systems.

4 Related Work

In order to underpin the relevance of current results we compiled a collection of

challenging transformations requiring V&V. The provided methods support

different domain-specific languages-based [35] model-driven approaches.

Giese et al. [36] points out the challenge in using model-driven software

development (MDD). The problem is the lack of verified transformations,

especially in the area of safety-critical systems. The verification of critical safety

properties on the model level is useful only if the automatic code generation is

guaranteed to be correct, i.e. the verified properties are guaranteed to hold true for

the generated code as well. This means it is necessary to pay special attention to

checking for semantic equivalence, at least to a moderate level, between the model

specification and the generated code.

In the field of developing safety-critical systems, model analysis possesses

advantages over pure testing of implemented systems. For example, important

required safety properties of a system under development could be verified on the

model level rather than trying to systematically test for the absence of failures.

Narayanan and Karsai [16] have summarized that in the development of a model-

based software, a complete design and analysis process involves designing the

system using the design language, converting it into the analysis language and

performing the verification on the analysis model. They established that graph

transformations were a powerful and convenient method increasingly being used

to automate this conversion. In such a scenario, the transformation must ensure

that the analysis model preserves the semantics of the design model. They

concluded that methods are required to verify that the semantics used during the

analysis are indeed preserved across the transformation.

de Lara and Taentzer [37] discussed the need for verified and validated model

processing in the field of Multi-Paradigm Modeling (MPM) [38]. Software

systems have components that may require descriptions using different notations,

due to different characteristics. For the analysis of certain properties of the system

as a whole, or its simulation, we transformed each component into a common

single formalism, in which appropriate analysis or simulation techniques are

available.

L. Lengyel Validating Rule-based Algorithms

 – 72 –

Varró [39] went on to state that due to the increasing complexity of IT systems

and modeling languages, conceptual, human design errors will occur in any model

on any high level of the formal modeling paradigm. Accordingly, the use of

formal specification techniques alone does not guarantee the functional

correctness and consistency of the system under design. Therefore, automated

formal verification tools are required to verify the requirements fulfilled by the

system model. As the input language of model checker tools is too basic for direct

use, model transformations are applied to project behavioral models into the input

languages of the model-checking tools.

In conclusion, it is important to understand that model transformations and rule-

based systems themselves can be erroneous; therefore, uncovering solutions to

make model transformations and rule-based systems free of conceptual errors is

essential.

Conclusions

Rule-based systems can effectively automate problem-solving standards. Such

systems provide a method for capturing and refining human expertise, and affirm

their relevance to the industry. Instead of representing knowledge in a relatively

declarative way, i.e., numerous things that are known to be true, rule-based

systems represent knowledge in terms of a collection of rules that tell what should

be done, i.e., what can be concluded from different situations?

The motivation of the current work was to support the verification/validation of

rule-based systems. In this paper, we have introduced the concept of taming

verification complexity. We have seen that the static validation method is more

general and raises challenges that are more complex. We have discussed the

possibilities of reducing the complexity of V&V and have introduced different

restricting solutions. Finally, we have presented the dynamic approach, in which

the rule-based system is validated for a specific input model.

Then, we have introduced a method, which facilitates to apply the graph rewriting-

based dynamic (online) validation results in the field of rule-based systems. The

solution facilitates to validate single rules, rule chains, and in effect

transformations as a whole. The validation is driven by the pre- and postconditions

assigned to these rules.

Our current research activities concentrate on trace-based verification/validation

approaches. In these cases, constraints are validated based on the trace files,

following the execution. This is the difference between the trace-based approach

and the currently presented dynamic approach.

Acknowledgement

This work was partially supported by the European Union and the European

Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 73 –

References

[1] Hayes-Roth, F.: Rule-based systems, Communication of ACM 28, 9, 921-

932 (1985), DOI=10.1145/4284.4286

http://doi.acm.org/10.1145/4284.4286

[2] Williams, T. and Bainbridge, B.: Rule-based Systems, In Approaches to

Knowledge Representation: an Introduction, Research Studies Press Ltd.,

Taunton, UK, UK 101-115 (1988)

[3] IEEE Standard Glossary of Software Engineering Terminology, 610.12-

1990 (1990)

[4] Asztalos, M., Lengyel, L., Levendovszky, T.: A Formal Framework for

Automated Verification of Model Transformations, Software Testing,

Verification and Reliability, 23:(5), 405-435 (2013)

[5] Biermann, E., Ermel, C., Taentzer, G.: Formal Foundation of Consistent

EMF Model Transformations by Algebraic Graph Transformation,

Software and Systems Modeling (SoSyM), Springer, 1-24 (2011)

[6] Bisztray, D., Heckel, R., Ehrig, H.: Verification of Architectural

Refactorings by Rule Extraction, In Fundamental Approaches to Software

Engineering, LNCS, Vol. 4961, Springer, 347-361 (2008)

[7] Cabot, J., Clariso, R., Guerra, E., de Lara, J.: V&V of Declarative Model-

to-Model Transformations through Invariants, J. Syst. Softw., Vol. 83(2),

283-302 (2010)

[8] Schatz B.: Formalization and Rule-based Transformation of EMF Ecore-

based Models, Software Language Engineering: First International

Conference, SLE 2008, France, 227-244 (2008)

[9] Augur website, http://www.ti.inf.uni-due.de/research/augur/index.html

[10] Rensink, A., Schmidt, A., Varró, D.: Model Checking Graph

Transformations: A Comparison of Two Approaches. Proceedings of the

ICGT 2004: Second International Conference on Graph Transformation,

LNCS, Vol. 3256, Springer, Rome, Italy, 226-241 (2004)

[11] GROOVE: GRaphs for Object-oriented VErification Website,

http://groove.sourceforge.net/groove-index.html

[12] OMG Query/View/Transformation (QVT) Specification, Meta Object

Facility 2.0 Query/Views/Transformation Specification, OMG doc. ptc/07-

07-07, 2007, http://www.omg.org/

[13] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay,

Sz.: Termination Criteria for Model Transformation, FASE 2005, LNCS,

49-63 (2005)

[14] Bottoni, P., Taentzer, G., Schürr, A.: Efficient Parsing of Visual Languages

based on Critical Pair Analysis and Contextual Layered Graph

L. Lengyel Validating Rule-based Algorithms

 – 74 –

Transformation, Proceedings of the Visual Languages 2000 IEEE

Computer Society, 59-60 (2000)

[15] Lengyel, L.: Online Validation of Visual Model Transformations, PhD

thesis, Budapest University of Technology and Economics, Department of

Automation and Applied Informatics (2006)

[16] Narayanan, A., Karsai, G.: Towards Verifying Model Transformations,

ENTCS, Vol. 211, 191-200 (2008)

[17] Akehurst, D., Kent, S.: A Relational Approach to Defining Transformations

in a Metamodel, In UML 2002 - The Unified Modeling Language, 5
th

International Conference, Dresden, Germany, LNCS, Vol. 2460, Springer-

Verlag, 243-258 (2002)

[18] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. editors: Handbook on

Graph Grammars and Computing by Graph Transformation: Application,

Languages and Tools, Vol. 2, World Scientific, Singapore (1999)

[19] Mens, T., v. Gorp, P.: A Taxonomy of Model Transformation, Electronic

Notes in Theoretical Computer Science, Vol. 152, Proceedings of the

International Workshop on Graph and Model Transformation (GraMoT

2005), 125-142 (2006)

[20] Vajk, T., Kereskényi, R., Levendovszky, T., Lédeczi, Á.: Raising the

Abstraction of Domain-Specific Model Translator Development, 16
th

Annual IEEE International Conference and Workshop on the Engineering

of Computer Based Systems, USA, 31-37 (2009)

[21] OMG Object Constraint Language (OCL) Specification, Version 2.2, OMG

document formal/2010-02-01, 2010, http://www.omg.org/

[22] AGG: The Attributed Graph Grammar System website, http://tfs.cs.tu-

berlin.de/agg

[23] AToM
3
: A Tool for Multi-paradigm, Multi-formalism and Meta-modeling

website, http://atom3.cs.mcgill.ca

[24] GReAT: Graph Rewriting and Transformation website,

http://www.isis.vanderbilt.edu/tools/GReAT

[25] Schürr, A.: Specification of Graph Translators with Triple Graph

Grammars, Proceedings of the WG94 international workshop on graph-

theoretic concepts in computer science, LNCS, Vol. 903, Springer, Berlin

Heidelberg New York, 151-163 (1994)

[26] VIATRA2 (VIsual Automated model TRAnsformations) framework

website, http://eclipse.org/gmt/VIATRA2

[27] VMTS: Visual Modeling and Transformation System website,

http://www.aut.bme.hu/vmts

[28] ATL: ATLAS Transformation Language website, http://eclipse.org/atl/

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 75 –

[29] Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky,

T., Prange, U., Varró D., Varró-Gyapay, Sz.: Model Transformation by

Graph Transformation: A Comparative Study, ACM/IEEE 8
th

 International

Conference on Model Driven Engineering Languages and Systems,

Montego Bay, Jamaica (2005)

[30] Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by

Graph Transformation: Foundations, Vol. 1, World Scientific, Singapore

(1997)

[31] Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative

Application Conditions, Fundamenta Informaticae, Vol. 26, 287-313 (1996)

[32] Blostein, D., Fahmy, H., Grbavec, A.: Issues in the Practical Use of Graph

Rewriting, In proceedings of the 5
th

 International Workshop on Graph

Grammars and Their App to Computer Science, Williamsburg, USA,

LNCS, Vol. 1073, Springer-Verlag, 38-55 (1996)

[33] Guerra, E., de Lara, J.: Event-driven Grammars: Relating Abstract and

Concrete Levels of Visual Languages, SoSym, Vol. 6, 317-347 (2007)

[34] Fujaba Tool Suite website, http://www.fujaba.de/

[35] Kövesdán, G., Asztalos, M. and Lengyel L.: Architectural Design Patterns

for Language Parsers, Acta Polytechnica Hungarica 11:(5), 39-57 (2014)

[36] Giese, H., Glesner, S., Leitner, J., Schafer, W., Wagner, R.: Towards

Verified Model Transformations, In ModeVVa06 (2006)

[37] de Lara, J., Taentzer, G.: Automated Model Transformation and its

Validation with AToM3 and AGG, in Diagrammatic Representation and

Inference, Lecture Notes in Artificial Intelligence, Vol. 2980, Springer,

182-198 (2004)

[38] de Lara, J., Vangheluwe, H., Alfonseca, M.: Metamodelling and Graph

Grammars for Multi-Paradigm Modelling in AToM3, Journal of Software

and Systems Modeling, Vol. 3(3), 194-209 (2004)

[39] Varró, D.: Automated Formal Verification of Visual Modeling Languages

by Model Checking, Journal on Software and System Modeling, Vol. 3(2),

85-113 (2004)

