
Acta Polytechnica Hungarica Vol. 12, No. 4, 2015 

 – 59 – 

Validating Rule-based Algorithms 

László Lengyel 

Department of Automation and Applied Informatics 

Budapest University of Technology and Economics 

Magyar tudósok körútja 2, 1117 Budapest, Hungary 

lengyel@aut.bme.com 

Abstract: A rule-based system is a series of if-then statements that utilizes a set of 

assertions, to which rules are created on how to act upon those assertions. Rule-based 

systems often construct the basis of software artifacts which can provide answers to 

problems in place of human experts. Such systems are also referred as expert systems. 

Rule-based solutions are also widely applied in artificial intelligence-based systems, and 

graph rewriting is one of the most frequently applied implementation techniques for their 

realization. As the necessity for reliable rule-based systems increases, so emerges the field 

of research regarding verification and validation of graph rewriting-based approaches. 

Verification and validation indicate determining the accuracy of a model transformation / 

rule-based system, and ensure that the processing output satisfies specific conditions. This 

paper introduces the concept of taming the complexity of these verification/validation 

solutions by starting with the most general case and moving towards more specific 

solutions. Furthermore, we provide a dynamic (online) method to support the validation of 

algorithms designed and executed in rule-based systems. The proposed approach is based 

on a graph rewriting-based solution. 

Keywords: verification/validation of rule-based systems; graph rewriting-based model 

transformations; dynamic verification of model transformations 

1 Introduction 

Rule-based systems [1] [2] provide an adaptable method, suitable for a number of 

different problems. Rule-based systems are appropriate for fields, where the 

problem area can be written in the form of if-then rule statements and for which 

the problem area is not extremely too great. In case of too many rules, the system 

may become difficult to maintain and can result in decreased performance speeds. 

A classic example of a rule-based system is a domain-specific expert system that 

uses rules to make deductions or narrow down choices. For example, an expert 

system might help a doctor choose the correct diagnosis based on a dozen 

symptoms, or select tactical moves when playing a game. Rule-based systems can 
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be used in natural language processing or to perform lexical analysis to compile or 

interpret computer programs. Rule-based programming attempts to derive 

execution instructions from a starting set of data and rules. This is a more indirect 

method than that employed by an imperative programming language, which lists 

execution steps sequentially. 

As rule-based systems are being applied to many diverse scenarios, there is a need 

for methods that support the verification and validation (V&V) of the algorithms 

performed by these systems. In this paper, we discuss the concept of taming the 

complexity of the verification/validation solutions. Furthermore, we introduce a 

dynamic (online) approach to address the V&V of rule-based systems. 

V&V of a rule-based system is the process of ensuring that the rules meet 

specifications and fulfill their intended purpose. Based on [3], we use the 

following definitions: Verification is the process of evaluating the rule definitions 

to determine whether the imposed specification is fulfilled. Validation is the 

process of evaluating the rules, either during or following the rule execution, to 

determine whether it satisfies the end-user requirements. In other words, 

validation is intended to answer the question: “Is this the system we intended to 

create from the users perspective?” (Is this product specified according to the 

user's actual needs?) Verification provides answers to the question: “Is the system 

built in accordance with the design?” (Does the product conform to the 

specifications?) 

During the analysis of a rule-based system, our goal is to prove that (i) certain 

properties hold for the output, if the input is valid, or (ii) to provide the criteria 

that must be satisfied by the input in order to guarantee the desired properties for 

the output. The analysis of a rule-based system is said to be static when the 

implementation of the rules and the language definition of the input and output 

models are used during the analysis process without considering the specific input. 

In the case of the dynamic approach, we analyze the rule-based system for a 

specific input, and then check whether certain properties hold for the output 

during or after the successful application of the rules. The static technique is more 

general and poses more complex challenges. The goal of static analysis is to 

determine whether the rule-based system itself meets various, specific 

requirements. 

The rest of this paper is organized as follows. Section 2 discusses the concept of 

taming the complexity of verification/validation solutions. We start with the most 

general case, static methods, and work toward the most specific, the dynamic 

solution. Section 3 introduces a method, which makes possible to dynamically 

validate rule-based systems. Section 4 compares our solution with the related 

V&V approaches and further highlights the relevance of the suggested approach. 

Finally, concluding remarks are elaborated. 
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2 Taming Verification/Validation Complexity 

Several static approaches provide formalism and verify that the semantics are 

preserved or guaranteed during the transformation of a model, e.g. approaches 

provided by Asztalos et al. [4], Biermann et al. [5], Bisztray and Heckel [6], Cabot 

et al. [7], or Schatz [8]. 

The approach of Asztalos et al. focuses on the static analysis of special model 

processing programs. This approach provides the theoretical basis for a possible 

verification framework. It applies a final formula that describes the properties that 

remain true at the end of the transformation. It is possible to derive either proof or 

refutation of a verifiable property from this final formula. The approach provides 

predefined components to deduct the desired properties. 

In the approach, presented by Bisztray and Heckel, to understand and control the 

semantic consequences, Communicating Sequential Processes (CSP) are applied 

to capture the behavior of processes both before and after the transformation. The 

approach verifies semantic properties of the transformations at the level of rules, 

such that every application of a rule has a known semantic effect. 

In the approach of Bierman et al., model transformations are defined as a special 

kind of typed graph transformations. The solution implements a formal approach 

to validate various functional behaviors and consistencies of model 

transformations. 

There exist noticeable differences between the complexity of static and dynamic 

V&V approaches. The static technique is more general, because its responsibility 

is to determine if the rule-based system itself meets certain requirements. 

Contrarily, in the case of the dynamic approach, the transformation is analyzed 

based on a single specific input. 

 

Figure 1 

Taming the complexity of verification/validation 

It is common knowledge that the algorithmic complexity of V&V can be very 

challenging, if not altogether hopeless in a general sense. However, practical cases 

do not require generality. The complexity-related questions are as follows: Does 

the problem contain specific subclasses that are solvable, yet practically relevant? 

Is it necessary to analyze the algorithm of the rule-based system? Or will it suffice 

to verify the system for a certain class of possible input models? 
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Our classification defines that the static approach is the most general and the 

dynamic is the most specific of V&V methods (Figure 1a). In order to reduce 

V&V complexity, we classify the V&V approaches to address complexity. In 

order to accomplish this, we begin with the general case (static verification) and 

create more specific cases (dynamic verification). Between these two extreme 

approaches, we identify several complexity-related restricting solutions (Fig. 1b). 

These methods do not attempt to prove the semantic correctness for one or all 

possible inputs (prove the properties of the rule-based system), but instead take a 

class of input types into consideration. We have identified the following 

complexity categories: 

A. Static methods 

B. Restricting solutions: 

1. Language classes 

2. Rule-based system classes 

3. Predefined components 

C. Dynamic methods 

 

A. Static methods. Model checker tools (e.g. Augur [9], CheckVML [10], or 

GROOVE [11]) apply static methods during the verification. 

B1. Restricting solutions / Language classes. This approach defines a class of 

input models. Based on a metamodel, a language class is defined by additional 

metamodel constraints or the simplification of the metamodel, i.e. through the 

elimination of some domain concepts. As a result, the modified language contains 

only a restricted class of original models, therefore, the complexity of the 

processing transformation decreases along with the complexity of the 

transformation verification. Examples of language classes are provided in OMG 

Query/View/Transformation Specification [12]. The Annex A of the QVT 

specification introduces two language classes: Simple UML Metamodel and 

Simple RDBMS Metamodel. These domains provide limited language elements 

and attributes that are suitable to define the required models, but do not provide 

additional, unnecessary language constructions. For instance, a Table containing 

Keys can be modeled, but the Key type does not provide attributes to specify 

further details. Another example regarding language classes is the limitation of the 

multiplicity to 1 or 0..1. A third example presents itself when only finite input 

models are permitted. A sample language class also introduced in the next section: 

DomainServers (Figure 2). 

B2. Restricting solutions / Rule-based system classes. This approach restricts the 

rule specification language itself. We modify the metamodel of the rule 

specification language in order to allow for rule-based system definitions with 
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specific properties. An example of a rule-based system class is one in which rule 

chains are allowed (successively applying several rules in a predefined order) but 

loops are forbidden. Proving the termination of such rule-based system requires 

reasonably less complexity than in the general case, when loops are permitted. For 

example in the field of layered grammars [13], Bottoni et al. [14] developed a 

termination criterion which ensures that the creation of all objects of a certain type 

should precede the deletion of an object of the same type. Therefore, the layer 

deleting an object of a given type should not create such an object, nor should the 

subsequent rules. This means the productions in a deletion layer will terminate. 

Therefore, the termination analysis of transformations satisfying this criterion 

requires less complexity than the general case. 

B3. Restricting solutions / Predefined components. In this case, the verification 

procedure is constructed from predefined components. We can state facts about 

the components that treat the verification process as axioms: therefore, the results 

of other tools or human analysis can be also utilized. Applying these predefined 

components, we can deduce what output model properties are provided by the 

given transformation for the provided input domain. For example, the formal 

language, developed by Asztalos et al. [4], is able to express a set of model 

transformation properties. The language is appropriate to specify both the 

properties of the output models and the properties of the relation between the input 

and output model pairs. In most cases, the proofs within the class of predefined 

components are conducted by dedicated checker tools (e.g. GROOVE [11] or 

CheckVML [10]) or through human analysis. 

C. Dynamic methods. Examples of dynamic methods are provided by Lengyel 

[15]. In their approach, the validation of the rule-based system is achieved with 

constraints assigned to the rules as pre- and postconditions. A similar approach 

was developed by Narayanan and Karsai [16], in which the semantic equivalence 

between inputs was guaranteed via bi-simulation checks on the execution log of 

the transformation. 

 

In applying these restricting solutions, i.e. working with language classes, rule-

based system classes, or predefined components, we ensure that (i) the verification 

of the rule-based system requires less complexity than the classical static 

verification and (ii) the verification results are valid not only for a specific input, 

but for a class of input models or rule-based systems. The next section discusses a 

dynamic validation method. 
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3 Dynamically Validated Rule-based Systems 

There are several model transformation approaches ranging from relational 

specifications [17] and graph transformation techniques [18], to algorithmic 

techniques for the implementation of a model transformation. The following 

provides our categorization of these approaches: [19] traversal-based and direct 

manipulation approaches [20], template-based approaches (e.g., OCL [21], XPath, 

or T4 Text Templates), relational approaches (e.g., Query, Views, 

Transformations (QVT) [12]), graph rewriting-based approaches (e.g., AGG [22], 

AToM
3
 [23], GReAT [24], TGGs [25], VIATRA2 [26], and VMTS [27]), 

structure-driven approaches (e.g., OptimalJ and QVT), and hybrid approaches that 

combine two or more of the previous categories (e.g., ATL [28]). 

Rule-based systems are often realized based on the graph rewriting-based 

approach. Therefore, our focus is on the V&V of the graph transformations. 

Graph rewriting-based transformations [29] have their roots in classical 

approaches to rewriting, such as Chomsky grammars and term rewriting [30]. 

There are many other representations of this, which will be addressed later. In 

essence, a rewriting rule is composed of a left-hand side (LHS) pattern and a right-

hand side (RHS) pattern. Operationally, a graph transformation from a graph G to 

a graph H is mainly conducted based on the following three steps: 

a. Choose a rewriting rule. 

b. Find an occurrence of the LHS in host graph G satisfying the application 

conditions of the rule. 

c. Finally, replace the subgraph matched in G by the RHS. 

Graph transformations define the transformation of models. The LHS of a rule 

defines the pattern to be found in the host model; therefore, the LHS is considered 

the positive application condition (PAC). However, it is often necessary to specify 

what pattern should not be present. This is referred to as negative application 

condition (NAC) [31]. Besides NACs, some approaches [22] [26] use other 

constraint languages, e.g., OCL, Java, C# or Python to define the execution 

conditions. 

The ordering of rules can be achieved by explicit control structures or can be 

implicit due to the nature of their rule specifications. Moreover, several rules may 

be applicable simultaneously. Blostein et al. [32] have classified graph 

transformation organization into four categories. (i) An unordered graph-rewriting 

system simply consists of a set of graph-rewriting rules. Applicable rules are 

selected non-deterministically until none are any longer applicable. (ii) A graph 

grammar consists of rules, a start graph and terminal states. Graph grammars are 

used for generating language elements and language recognition. (iii) In ordered 

graph-rewriting systems, a control mechanism explicitly orders the rule 
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application of a set of rewriting rules (e.g. priority-based, layered/phased, or those 

containing an explicit control flow structure). (iv) In event-driven graph-rewriting 

systems, rule execution is triggered by external events. This approach has recently 

seen a rise in popularity [33]. 

Controlled (or programmed) graph transformations impose a control structure over 

the transformation rules to maintain a more strict order of execution in a sequence 

of rules. The control structure primitives of graph transformation may provide the 

following properties: atomicity, sequencing, branching, looping, non-determinism, 

recursion, parallelism, back-tracking and/or hierarchy [15] [30]. 

Some examples of control structures are as follows: AGG [22] uses layered graph 

grammars. The layers fix the order in which rules are applied. The control 

mechanism of AToM
3
 [23] is a priority-based transformation flow. Fujaba [34] 

uses story diagrams to define model transformations. The control structure 

language of GReAT [24] uses a data flow diagram notation. GReAT also has a 

test rule construction; a test rule is a special expression that is used to change the 

control flow during execution. VIATRA2 [26] applies abstract state machines 

(ASM). VMTS [27] uses stereotyped UML activity diagrams to further specify 

control flow structures. In [29], a comparative study is provided that examines the 

control structure capabilities of the tools AGG, AToM
3
, VIATRA2, and VMTS. 

In the case of rule-based systems, the application order of the rules is supported by 

a conflict resolution strategy. The strategy may be determined by the actual area or 

may simply be a matter of preference. In any case, it is vital as it controls which of 

the applicable rules are fired and thus the behavior of the entire system. The most 

common strategies are as follows: 

a. First applicable: If the rules are in a specified order, firing the first 

applicable rule allows for control over the order in which rules are fired. 

b. Random: Though it does not provide the predictability or control of the 

first-applicable strategy, it does have certain advantages. For one, its 

unpredictability is an advantage in some circumstances (e.g., in games). 

A random strategy simply chooses a single random rule to fire from the 

conflict set. Another possibility for a random strategy is a fuzzy rule-

based system in which each rule has a factored probability, i.e., some 

rules are more likely to fire than others. 

c. Least recently used: Each of the rules is accompanied by a time or step 

stamp, which marks the time of its last usage. This maximizes the 

number of individual rules that are fired at least once. This strategy is 

perfect when all rules are needed for the solution of a given problem. 

d. Best rule: Each rule is given a weight, which specifies its comparative 

consideration to the alternatives. The rule with the most preferable 

outcomes is chosen based on this weight. 
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3.1 An Example 

Rules can be made more relevant to software engineering models if the 

transformation specifications allow the assigning of validation constraints to the 

transformation rules. 

 

Figure 2 

The DomainServers metamodel 

Figure 2 depicts the metamodel of a domain-specific language. This language 

defines that an instance model contains Domain objects. A domain can contain 

sub-domains and domains can also be linked to each other. A domain has Server 

objects. A server must belong to a domain. A server contains a ServerName, Id, 

Type (enum attribute with values Web, Database, Mail, and Gateway), and Load 

attributes. Servers contain sequentially ordered Tiers. A tier has the following 

attributes: TierName, Id, Type (enum attribute with values CPU and I/O), OrderId, 

ServiceTime, and VisitNumber. Each server has exactly one ThreadPool element. 

A ThreadPool is comprised of ThreadPoolName, Id, and MaxNumberOfThreads 

attributes. The ThreadPool contains Threads. Each thread has Id and State (enum 

attribute with values Ready and Occupied) attributes. Servers have one or more 

Queues. A queue has QueueName, Id, and QueueLimit attributes. A queue must 

belong to a server. Furthermore, servers and queues can contain Tasks. Tasks 

assigned to servers are under processing, while tasks in a queue are in waiting 

state. A task has the following attributes: TaskName, Id, Priority (enum attribute 
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with values Normal, High, and Urgent), and ProcessedState (enum attribute with 

values Waiting, Processing, and Complete). There are also more specific task 

types inherited from Task: Email, BulkEmail, WebRequest, DBRequest, and 

AuthorizationRequest. Each of these metamodel elements also includes further 

attributes. 

Figure 3 introduces a control flow model of a rule-based system. The processing 

has three transformation rules. The rule CheckServerLoad selects a Server, which 

Load is over 80%. If there is no such server, then the transformation terminates. 

Otherwise, a new server node, with a ThreadPool and a Queue node, is inserted 

into the domain. Next, the transformation rule, RearrangeTasks, rearranges tasks 

from the queue of the overloaded server to the queue of the new server. The rule 

RearrangeTasks is executed in Exhaustive mode: the rule is continuously applied 

while the Load of the overloaded servers is over 70%, and the Load of the new 

server remains under 70%. The transformation is executed in a loop. This means, 

after easing the load of one server, the process continues and therefore, the 

transformation can insert additional, new servers. 

 

 

Figure 3 

Example model transformation: LoadBalancing 

 

Figure 4 depicts two example rules: AddNewServer and RearrangeTasks. The 

figure follows a compact notation, containing no separated LHS and RHS pattern. 

The colors code the following: black nodes and edges denote unmodified 

elements, blue ones indicate newly created elements, and red ones mark the 

elements deleted by the rule. The transformation rule AddNewServer gets the 

Domain type node as a parameter and creates the new Server with a ThreadPool, 

two Threads, a Tier, and a Queue. The transformation rule, RearrangeTasks, 

receives the two servers with their queues as parameters and performs the 

rearrangement as a single task. The rule is executed in Exhaustive mode, which 

enables several tasks to be moved between the queues. 
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Figure 4 

Example model transformation rules: (a) AddNewServer and (b) RearrangeTasks 

Some example constraints assigned to the rules are as follows: 

context Server inv serverCardinality: 

Server.allInstances()->count() < 40 

 

context Queue inv queueCardinality: 

Queue.allInstances()->count() >= Server.allInstances()->count() 

The constraints serverCardinality and queueCardinality define the number of 

specific type elements in the model. These are cardinality issues related to the 

whole model. 

context Queue inv queueLimit: 

QueueLimit < 1500 

The constraint queueLimit is an attribute value constraint that maximizes 

QueueLimit attribute of Queue type nodes. 

context Server inv largeThreadPools: 

Server.allInstances->forall(s | s.ThreadPool.Threads->count()<= 50 OR 

     (s.Tiers->exists(t | t.Type = Type::CPU) AND  

      s.Tiers->exists(t | t.Type = Type::I/O))) 

The constraint largeThreadPools defines that for each server, if the number of 

threads in the ThreadPool exceeds 50, then separated CPU and I/O tiers are 

employed. 

The presented constraints are assigned to the rules and guarantee our 

requirements. After a successful rule execution, the conditions hold and the output 

is valid. The fact that the successful execution of the rule guarantees the valid 

output cannot be achieved without these validation constraints. 
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3.2 Validating Rule-based Systems 

The objective of our research activities is to support the V&V of algorithms 

performed by rule-based systems. The requirements, assigned to the rules are both 

input and output related requirements, i.e. we define certain pre- and 

postconditions that should hold before and after the execution of the rule. In 

several cases rules do not contain certain node or edge types that are about to be 

included into our V&V requirements. These requirements may relate to a 

temporary (during the processing) or a final (following the processing) state of the 

input or generated models. Moreover, several different directions can be followed; 

e.g. we can assert additional requirements to the input and output models 

(metamodel constraints), or the rule-based system can be extended with the use of 

appropriate testing and validating rules. 

Dynamic validation covers both the attribute value and the structure validation, 

which can be expressed in first-order logic extended with traversing capabilities. 

Example languages that currently applied for defining attribute value and interval 

conditions are Object Constraint Language (OCL), C, Java, and Python. These 

conditions and requirements are pre- and postconditions of a transformation rule. 

Definition (Precondition). A precondition assigned to a rule is a Boolean 

expression that must be true at the moment of rule firing. 

Definition (Postcondition). A postcondition assigned to a rule is a Boolean 

expression that must be true after the completion of a rule. 

If a precondition of a rule is not true, then the rule fails without being fired. If a 

postcondition of a rule is not true after the execution of the rule, the rule fails. 

Regarding pre- and postconditions the execution of a rule is as follows (Figure 5): 

a. Finding the match according to the LHS structure. 

b. Validating the constraints defined in LHS on the matched parts of the 

input model. 

c. If a match satisfies all constraints (preconditions), then executing the rule, 

otherwise the rule fails. 

d. Validating the constraints defined in RHS on the modified/generated 

model. If the result of the rule satisfies the postconditions, then the rule 

was successful, otherwise the rule fails. 



L. Lengyel Validating Rule-based Algorithms 

 – 70 – 

 

Figure 5 

The transformation process 

A direct corollary is that an expression in LHS is a precondition to the rule, and an 

expression in RHS is a postcondition to the rule. A rule can be executed if and 

only if all conditions enlisted in LHS are true. Also, if a rule finished successfully, 

then all conditions enlisted in RHS must be true. 

Statement 1. If a finite sequence of rules is specified properly with the help of 

validation constraints, and the sequence of rules has been executed successfully 

for the input model, then the modified/generated output model is in accordance 

with the expected result that is described by the finite sequence of transformation 

rules refined with the constraints [7]. 

Definition (Low-level construct). Pre- and postconditions defined as constraints 

and propagated to the rules are low-level constructs. 

Definition (High-level construct). Validation, preservation and guarantee 

properties are high-level constructs. 

Definition (Validated rule execution). A rule execution is validated if it satisfies a 

set of high-level constructs. 

To summarize, high-level constructs define the requirements on a higher 

abstraction level, e.g. servers should not be overloaded. Low-level constructs are 

the appropriate constraints assigned to the appropriate rules. These constraints 

assist in achieving the required conditions. 

This method can be followed in Figure 4. Finding the structural match the 

preconditions are validated, and after performing the rule execution, 

postconditions are validated. Both of the validation should be successful in order 

for the whole rule to be successful. 

With this method the required properties can be defined on low-level, i.e. on the 

level of rules. In summary, we can say that the presented dynamic approach 

supports that if the execution of a rule finishes successfully, the generated output 

is valid and fulfills the required conditions. The validation of the rule-based 

system is achieved with constraints assigned to the rules as pre- and 

postconditions. 
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Statement 2. Rule-based systems can be validated with the presented dynamic 

validation method. 

Statement 3. Taming verification complexity can be applied for rule-based 

systems. 

4 Related Work 

In order to underpin the relevance of current results we compiled a collection of 

challenging transformations requiring V&V. The provided methods support 

different domain-specific languages-based [35] model-driven approaches. 

Giese et al. [36] points out the challenge in using model-driven software 

development (MDD). The problem is the lack of verified transformations, 

especially in the area of safety-critical systems. The verification of critical safety 

properties on the model level is useful only if the automatic code generation is 

guaranteed to be correct, i.e. the verified properties are guaranteed to hold true for 

the generated code as well. This means it is necessary to pay special attention to 

checking for semantic equivalence, at least to a moderate level, between the model 

specification and the generated code. 

In the field of developing safety-critical systems, model analysis possesses 

advantages over pure testing of implemented systems. For example, important 

required safety properties of a system under development could be verified on the 

model level rather than trying to systematically test for the absence of failures. 

Narayanan and Karsai [16] have summarized that in the development of a model-

based software, a complete design and analysis process involves designing the 

system using the design language, converting it into the analysis language and 

performing the verification on the analysis model. They established that graph 

transformations were a powerful and convenient method increasingly being used 

to automate this conversion. In such a scenario, the transformation must ensure 

that the analysis model preserves the semantics of the design model. They 

concluded that methods are required to verify that the semantics used during the 

analysis are indeed preserved across the transformation. 

de Lara and Taentzer [37] discussed the need for verified and validated model 

processing in the field of Multi-Paradigm Modeling (MPM) [38]. Software 

systems have components that may require descriptions using different notations, 

due to different characteristics. For the analysis of certain properties of the system 

as a whole, or its simulation, we transformed each component into a common 

single formalism, in which appropriate analysis or simulation techniques are 

available. 
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Varró [39] went on to state that due to the increasing complexity of IT systems 

and modeling languages, conceptual, human design errors will occur in any model 

on any high level of the formal modeling paradigm. Accordingly, the use of 

formal specification techniques alone does not guarantee the functional 

correctness and consistency of the system under design. Therefore, automated 

formal verification tools are required to verify the requirements fulfilled by the 

system model. As the input language of model checker tools is too basic for direct 

use, model transformations are applied to project behavioral models into the input 

languages of the model-checking tools. 

In conclusion, it is important to understand that model transformations and rule-

based systems themselves can be erroneous; therefore, uncovering solutions to 

make model transformations and rule-based systems free of conceptual errors is 

essential. 

Conclusions 

Rule-based systems can effectively automate problem-solving standards. Such 

systems provide a method for capturing and refining human expertise, and affirm 

their relevance to the industry. Instead of representing knowledge in a relatively 

declarative way, i.e., numerous things that are known to be true, rule-based 

systems represent knowledge in terms of a collection of rules that tell what should 

be done, i.e., what can be concluded from different situations? 

The motivation of the current work was to support the verification/validation of 

rule-based systems. In this paper, we have introduced the concept of taming 

verification complexity. We have seen that the static validation method is more 

general and raises challenges that are more complex. We have discussed the 

possibilities of reducing the complexity of V&V and have introduced different 

restricting solutions. Finally, we have presented the dynamic approach, in which 

the rule-based system is validated for a specific input model. 

Then, we have introduced a method, which facilitates to apply the graph rewriting-

based dynamic (online) validation results in the field of rule-based systems. The 

solution facilitates to validate single rules, rule chains, and in effect 

transformations as a whole. The validation is driven by the pre- and postconditions 

assigned to these rules. 

Our current research activities concentrate on trace-based verification/validation 

approaches. In these cases, constraints are validated based on the trace files, 

following the execution. This is the difference between the trace-based approach 

and the currently presented dynamic approach. 
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